I am a forth-year Ph.D. candidate (2021~) at Zhejiang University and Westlake University, advised by Stan Z. Li. My research focuses on generative AI for Science and focuses on solving key problems in the field of science, such as biomolecular design and spatiotemporal predictive learning.
Looking forward to academic communications and feel free to contact me!
Most recent publications on Google Scholar.
‡ indicates equal contribution.
dyAb: Flow Matching for Flexible Antibody Design with AlphaFold-driven Pre-binding Antigen
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Yufei Huang, Haitao Lin, Lirong Wu, Fandi Wu, Mathieu Blanchette, Stan Z. Li
AAAI, 2025.
FoldToken: Learning Protein Language via Vector Quantization and Beyond
Zhangyang Gao‡, Cheng Tan‡, Jue Wang, Yufei Huang, Lirong Wu, Stan Z. Li
AAAI, 2025.
SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning
Cheng Tan‡, Zhangyang Gao‡, Siyuan Li‡, Stan Z. Li
TMM: IEEE Transactions on Multimedia, 2024.
Learning Complete Protein Representation by Dynamically Coupling of Sequence and Structure
Bozhen Hu‡, Cheng Tan‡, Jun Xia, Yue Liu, Lirong Wu, Jiangbin Zheng, Yongjie Xu, Yufei Huang, Stan Z. Li
NeurIPS, 2024.
ProtGO: Function-Guided Protein Modeling for Unified Representation Learning
Bozhen Hu‡, Cheng Tan‡, Yongjie Xu, Zhangyang Gao, Jun Xia, Lirong Wu, Stan Z. Li
NeurIPS, 2024.
UniIF: Unified Molecule Inverse Folding
Zhangyang Gao‡, Jue Wang‡, Cheng Tan‡, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li
NeurIPS, 2024.
RFold: Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective
Cheng Tan‡, Zhangyang Gao‡, Hanqun Cao, Xingran Chen, Ge Wang, Lirong Wu, Jun Xia, Jiangbin Zheng, Stan Z. Li
ICML, 2024.
A Survey on Generative Diffusion Model
Hanqun Cao‡, Cheng Tan‡, Zhangyang Gao‡, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li
TKDE: IEEE Transactions on Knowledge and Data Engineering, 2024.
RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Bozhen Hu, Siyuan Li, Zicheng Liu, Stan Z. Li
ICLR, 2024.
KW-Design: Pushing the Limit of Protein Design via Knowledge Refinement
Zhangyang Gao‡, Cheng Tan‡, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, Stan Z. Li
ICLR, 2024.
Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li
AAAI, 2024.
OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning
Cheng Tan‡, Siyuan Li‡, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z. Li
NeurIPS, 2023.
Proteininvbench: Benchmarking Protein Inverse Folding on Diverse Tasks, Models, and Metrics
Zhangyang Gao‡, Cheng Tan‡, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z. Li
NeurIPS, 2023.
CONVERT: Contrastive Graph Clustering with Reliable Augmentation
Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu
ACM MM, 2023.
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Yongjie Xu, Jun Xia, Siyuan Li, Stan Z. Li
CVPR, 2023.
PiFold: Toward Effective and Efficient Protein Inverse Folding
Zhangyang Gao‡, Cheng Tan‡, Stan Z. Li
ICLR, 2023 (Spotlight).
Hyperspherical Consistency Regularization
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Siyuan Li, Stan Z. Li
CVPR, 2022.
SimVP: Simpler yet Better Video Prediction
Zhangyang Gao‡, Cheng Tan‡, Lirong Wu, Stan Z. Li
CVPR, 2022.
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan, Jun Xia, Lirong Wu, Stan Z. Li
ACM MM, 2021 (Oral).
Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive
Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li
TKDE: IEEE Transactions on Knowledge and Data Engineering, 2021.
R3Design: Deep Tertiary Structure-based RNA Sequence Design and Beyond
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z. Li
Briefings in Bioinformatics, 2024.
Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency
Jingxuan Wei‡, Cheng Tan‡, Zhangyang Gao, Linzhuang Sun, Bihui Yu, Ruifeng Guo, Stan Z. Li
ECML-PKDD, 2024.
Target-aware Molecular Graph Generation
Cheng Tan‡, Zhangyang Gao‡, Stan Z. Li
ECML-PKDD, 2023.
Learning to Augment Graph Structure for both Homophily and Heterophily Graphs
Lirong Wu‡, Cheng Tan‡, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li
ECML-PKDD, 2023.
CoSP: Co-supervised Pre-training of pocket and ligand
Zhangyang Gao‡, Cheng Tan‡, Jun Xia, Stan Z. Li
ECML-PKDD, 2023.
Generative De Novo Protein Design with Global Context
Cheng Tan‡, Zhangyang Gao‡, Jun Xia, Bozhen Hu, Stan Z. Li
ICASSP, 2023.
OT Cleaner: Label Correction as Optimal Transport
Jun Xia‡, Cheng Tan‡, Lirong Wu, Yongjie Xu, Stan Z. Li
ICASSP, 2022.
Structure-Preserving and Batch-Correcting Visualization Using Deep Manifold Transformation for Single-cell RNA-Seq Profiles
Yongjie Xu, Zelin Zang, Jun Xia, Cheng Tan, Yulan Geng, Stan Z Li
Communication Biology, 2023.
dyAb: Flow Matching for Flexible Antibody Design with AlphaFold-driven Pre-binding Antigen
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Yufei Huang, Haitao Lin, Lirong Wu, Fandi Wu, Mathieu Blanchette, Stan Z. Li
AAAI, 2025.
FoldToken: Learning Protein Language via Vector Quantization and Beyond
Zhangyang Gao‡, Cheng Tan‡, Jue Wang, Yufei Huang, Lirong Wu, Stan Z. Li
AAAI, 2025.
Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization
Lirong Wu, Haitao Lin, Yufei Huang, Zhangyang Gao, Cheng Tan, Yunfan Liu, Tailin Wu, Stan Z. Li
AAAI, 2025.
SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning
Cheng Tan‡, Zhangyang Gao‡, Siyuan Li‡, Stan Z. Li
TMM: IEEE Transactions on Multimedia, 2024.
Learning Complete Protein Representation by Dynamically Coupling of Sequence and Structure
Bozhen Hu‡, Cheng Tan‡, Jun Xia, Yue Liu, Lirong Wu, Jiangbin Zheng, Yongjie Xu, Yufei Huang, Stan Z. Li
NeurIPS, 2024.
ProtGO: Function-Guided Protein Modeling for Unified Representation Learning
Bozhen Hu‡, Cheng Tan‡, Yongjie Xu, Zhangyang Gao, Jun Xia, Lirong Wu, Stan Z. Li
NeurIPS, 2024.
UniIF: Unified Molecule Inverse Folding
Zhangyang Gao‡, Jue Wang‡, Cheng Tan‡, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li
NeurIPS, 2024.
Towards Robust mph{De Novo} Peptide Sequencing in Proteomics against Data Biases
Jun Xia, Shaorong Chen, Jingbo Zhou, Xiaojun Shan, Wenjie Du, Zhangyang Gao, Cheng Tan, Bozhen Hu, Jiangbin Zheng, Stan Z. Li
NeurIPS, 2024.
RFold: Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective
Cheng Tan‡, Zhangyang Gao‡, Hanqun Cao, Xingran Chen, Ge Wang, Lirong Wu, Jun Xia, Jiangbin Zheng, Stan Z. Li
ICML, 2024.
A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer
Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, Stan Z. Li
ICML, 2024.
Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion Bridge
Yufei Huang, Odin Zhang, Lirong Wu, Cheng Tan, Haitao Lin, Zhangyang Gao, Siyuan Li, Stan Z. Li
ICML, 2024.
VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling
Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, Stan Z. Li
ICML, 2024.
General Point Model Pretraining with Autoencoding and Autoregressive
Zhe Li, Zhangyang Gao, Cheng Tan, Bocheng Ren, Laurence Tianruo Yang, Stan Z. Li
CVPR, 2024
MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
Zhe Li, Laurence Tianruo Yang, Bocheng Ren, Xin Nie Nie, Zhangyang Gao, Cheng Tan, Stan Z. Li
CVPR, 2024
A Survey on Generative Diffusion Model
Hanqun Cao‡, Cheng Tan‡, Zhangyang Gao‡, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li
TKDE: IEEE Transactions on Knowledge and Data Engineering, 2024.
RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Bozhen Hu, Siyuan Li, Zicheng Liu, Stan Z. Li
ICLR, 2024.
KW-Design: Pushing the Limit of Protein Design via Knowledge Refinement
Zhangyang Gao‡, Cheng Tan‡, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, Stan Z. Li
ICLR, 2024.
SemiReward: A General Reward Model for Semi-supervised Learning
Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, Stan Z. Li
ICLR, 2024.
MogaNet: Multi-order Gated Aggregation Network
Siyuan Li, Zedong Wang, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li
ICLR, 2024.
Decoupling Weighing and Selecting for Integrating Multiple Graph Pre-training Tasks
Tianyu Fan, Lirong Wu, Yufei Huang, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li
ICLR, 2024.
Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li
AAAI, 2024.
PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for Efficient and Generalizable Compound-Protein Interaction Prediction
Lirong Wu, Yufei Huang, Cheng Tan, Zhangyang Gao, Bozhen Hu, Haitao Lin, Zicheng Liu, Stan Z. Li
AAAI, 2024.
Wavelet-Driven Spatiotemporal Predictive Learning: Bridging Frequency and Time Variations
Xuesong Nie, Yunfeng Yan, Siyuan Li, Cheng Tan, Xi Chen, Haoyuan Jin, Zhihang Zhu, Stan Z. Li, Donglian Qi.
AAAI, 2024.
OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning
Cheng Tan‡, Siyuan Li‡, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z. Li
NeurIPS, 2023.
Proteininvbench: Benchmarking Protein Inverse Folding on Diverse Tasks, Models, and Metrics
Zhangyang Gao‡, Cheng Tan‡, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z. Li
NeurIPS, 2023.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu‡, Siyuan Li‡, Ge Wang, Lirong Wu, Cheng Tan, Stan Z. Li
NeurIPS, 2023.
Understanding the Limitations of Deep Models for Molecular property prediction: Insights and Solutions
Jun Xia, Lecheng Zhang, Xiao Zhu, Yue Liu, Zhangyang Gao, Bozhen Hu, Cheng Tan, Jiangbin Zheng, Siyuan Li, Stan Z. Li
NeurIPS, 2023.
CONVERT: Contrastive Graph Clustering with Reliable Augmentation
Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu
ACM MM, 2023.
GNN Cleaner: Label Cleaner for Graph Structured Data
Jun Xia, Haitao Lin, Yongjie Xu, Cheng Tan, Lirong Wu, Yongjie Xu, Siyuan Li, Stan Z. Li
TKDE: IEEE Transactions on Knowledge and Data Engineering, 2023.
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Yongjie Xu, Jun Xia, Siyuan Li, Stan Z. Li
CVPR, 2023.
CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition with Variational Alignment
Jiangbin Zheng, Yile Wang, Cheng Tan, Siyuan Li, Ge Wang, Jun Xia, Yidong Chen, Stan Z. Li
CVPR, 2023.
PiFold: Toward Effective and Efficient Protein Inverse Folding
Zhangyang Gao‡, Cheng Tan‡, Stan Z. Li
ICLR, 2023 (Spotlight).
Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules
Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, Stan Z. Li
ICLR, 2023.
Hyperspherical Consistency Regularization
Cheng Tan‡, Zhangyang Gao‡, Lirong Wu, Siyuan Li, Stan Z. Li
CVPR, 2022.
SimVP: Simpler yet Better Video Prediction
Zhangyang Gao‡, Cheng Tan‡, Lirong Wu, Stan Z. Li
CVPR, 2022.
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan, Jun Xia, Lirong Wu, Stan Z. Li
ACM MM, 2021 (Oral).
Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive
Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li
TKDE: IEEE Transactions on Knowledge and Data Engineering, 2021.
R3Design: Deep Tertiary Structure-based RNA Sequence Design and Beyond
Cheng Tan‡, Yijie Zhang‡, Zhangyang Gao‡, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z. Li
Briefings in Bioinformatics, 2024.
Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting
Lirong Wu, Haitao Lin, Guojiang Zhao, Cheng Tan, Stan Z. Li
TNNLS: IEEE Transactions on Neural Networks and Learning Systems, 2024.
Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset and Comprehensive Framework
Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Siyuan Li, Bihui Yu, Ruifeng Guo, Stan Z. Li
NCAA: Neural Computing and Applications, 2024.
Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency
Jingxuan Wei‡, Cheng Tan‡, Zhangyang Gao, Linzhuang Sun, Bihui Yu, Ruifeng Guo, Stan Z. Li
ECML-PKDD, 2024.
Deep Manifold Transformation for Protein Representation Learning
Bozhen Hu, Zelin Zang, Cheng Tan, Stan Z. Li
ICASSP, 2024.
Target-aware Molecular Graph Generation
Cheng Tan‡, Zhangyang Gao‡, Stan Z. Li
ECML-PKDD, 2023.
Learning to Augment Graph Structure for both Homophily and Heterophily Graphs
Lirong Wu‡, Cheng Tan‡, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li
ECML-PKDD, 2023.
CoSP: Co-supervised Pre-training of pocket and ligand
Zhangyang Gao‡, Cheng Tan‡, Jun Xia, Stan Z. Li
ECML-PKDD, 2023.
Generative De Novo Protein Design with Global Context
Cheng Tan‡, Zhangyang Gao‡, Jun Xia, Bozhen Hu, Stan Z. Li
ICASSP, 2023.
Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding
Bozhen Hu, Zelin Zang, Jun Xia, Lirong Wu, Cheng Tan, Stan Z. Li
ICASSP, 2023.
WordReg: Mitigating the Gap between Training and Inference with Worst-case Drop Regularization
Jun Xia, Ge Wang, Bozhen Hu, Cheng Tan, Jiangbin Zheng, Yongjie Xu, Stan Z. Li
ICASSP, 2023.
OT Cleaner: Label Correction as Optimal Transport
Jun Xia‡, Cheng Tan‡, Lirong Wu, Yongjie Xu, Stan Z. Li
ICASSP, 2022.
Beyond Homophily and Homogeneity Assumption: Relation-based Frequency Adaptive Graph Neural Networks
Lirong Wu, Haitao Lin, Bozhen Hu, Zhangyang Gao, Cheng Tan, Zicheng Liu, Stan Z. Li
TNNLS: IEEE Transactions on Neural Networks and Learning Systems, 2022.
GraphMixup: Improving Class-Imbalanced Node Classification by Reinforcement Mixup and Self-supervised Context Prediction
Lirong Wu, Jun Xia, Zhangyang Gao, Haitao Lin, Cheng Tan, Stan Z. Li
ECML-PKDD, 2022.
Multi-level disentanglement graph neural network
Lirong Wu, Haitao Lin, Jun Xia, Cheng Tan, Stan Z. Li
NCAA: Neural Computing and Applications, 2022.
Structure-Preserving and Batch-Correcting Visualization Using Deep Manifold Transformation for Single-cell RNA-Seq Profiles
Yongjie Xu, Zelin Zang, Jun Xia, Cheng Tan, Yulan Geng, Stan Z Li
Communication Biology, 2023.
ICML, NeurIPS, ICLR, AISTATS, CVPR, ECCV, ICCV, AAAI, ACL, EMNLP, ACM MM, ECML-PKDD, ICASSP, etc.
Journal - Reviewer:This website was built with jekyll based on a template from Martin Saveski.