Cheng Tan

Ph.D. candidate, Westlake University & Zhejiang University

tancheng [AT] westlake.edu.cn

Bio

I am a forth-year Ph.D. candidate (2021~) at Zhejiang University and Westlake University, advised by Stan Z. Li. My research focuses on generative AI for Science and focuses on solving key problems in the field of science, such as biomolecular design and spatiotemporal predictive learning.

Looking forward to academic communications and feel free to contact me!

News

Publications

Most recent publications on Google Scholar.
indicates equal contribution.

dyAb: Flow Matching for Flexible Antibody Design with AlphaFold-driven Pre-binding Antigen

Cheng Tan, Yijie Zhang, Zhangyang Gao, Yufei Huang, Haitao Lin, Lirong Wu, Fandi Wu, Mathieu Blanchette, Stan Z. Li

AAAI, 2025.

FoldToken: Learning Protein Language via Vector Quantization and Beyond

Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, Stan Z. Li

AAAI, 2025.

SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning

Cheng Tan, Zhangyang Gao, Siyuan Li, Stan Z. Li

TMM: IEEE Transactions on Multimedia, 2024.

Learning Complete Protein Representation by Dynamically Coupling of Sequence and Structure

Bozhen Hu, Cheng Tan, Jun Xia, Yue Liu, Lirong Wu, Jiangbin Zheng, Yongjie Xu, Yufei Huang, Stan Z. Li

NeurIPS, 2024.

ProtGO: Function-Guided Protein Modeling for Unified Representation Learning

Bozhen Hu, Cheng Tan, Yongjie Xu, Zhangyang Gao, Jun Xia, Lirong Wu, Stan Z. Li

NeurIPS, 2024.

UniIF: Unified Molecule Inverse Folding

Zhangyang Gao, Jue Wang, Cheng Tan, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li

NeurIPS, 2024.

RFold: Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective

Cheng Tan, Zhangyang Gao, Hanqun Cao, Xingran Chen, Ge Wang, Lirong Wu, Jun Xia, Jiangbin Zheng, Stan Z. Li

ICML, 2024.

A Survey on Generative Diffusion Model

Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li

TKDE: IEEE Transactions on Knowledge and Data Engineering, 2024.

RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design

Cheng Tan, Yijie Zhang, Zhangyang Gao, Bozhen Hu, Siyuan Li, Zicheng Liu, Stan Z. Li

ICLR, 2024.

KW-Design: Pushing the Limit of Protein Design via Knowledge Refinement

Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, Stan Z. Li

ICLR, 2024.

Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer

Cheng Tan, Zhangyang Gao, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li

AAAI, 2024.

OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning

Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z. Li

NeurIPS, 2023.

Proteininvbench: Benchmarking Protein Inverse Folding on Diverse Tasks, Models, and Metrics

Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z. Li

NeurIPS, 2023.

CONVERT: Contrastive Graph Clustering with Reliable Augmentation

Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu

ACM MM, 2023.

Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning

Cheng Tan, Zhangyang Gao, Lirong Wu, Yongjie Xu, Jun Xia, Siyuan Li, Stan Z. Li

CVPR, 2023.

PiFold: Toward Effective and Efficient Protein Inverse Folding

Zhangyang Gao, Cheng Tan, Stan Z. Li

ICLR, 2023 (Spotlight).

Hyperspherical Consistency Regularization

Cheng Tan, Zhangyang Gao, Lirong Wu, Siyuan Li, Stan Z. Li

CVPR, 2022.

SimVP: Simpler yet Better Video Prediction

Zhangyang Gao, Cheng Tan, Lirong Wu, Stan Z. Li

CVPR, 2022.

Co-learning: Learning from Noisy Labels with Self-supervision

Cheng Tan, Jun Xia, Lirong Wu, Stan Z. Li

ACM MM, 2021 (Oral).

Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive

Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li

TKDE: IEEE Transactions on Knowledge and Data Engineering, 2021.

R3Design: Deep Tertiary Structure-based RNA Sequence Design and Beyond

Cheng Tan, Yijie Zhang, Zhangyang Gao, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z. Li

Briefings in Bioinformatics, 2024.

Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency

Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Bihui Yu, Ruifeng Guo, Stan Z. Li

ECML-PKDD, 2024.

Target-aware Molecular Graph Generation

Cheng Tan, Zhangyang Gao, Stan Z. Li

ECML-PKDD, 2023.

Learning to Augment Graph Structure for both Homophily and Heterophily Graphs

Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li

ECML-PKDD, 2023.

CoSP: Co-supervised Pre-training of pocket and ligand

Zhangyang Gao, Cheng Tan, Jun Xia, Stan Z. Li

ECML-PKDD, 2023.

Generative De Novo Protein Design with Global Context

Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, Stan Z. Li

ICASSP, 2023.

OT Cleaner: Label Correction as Optimal Transport

Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, Stan Z. Li

ICASSP, 2022.

Structure-Preserving and Batch-Correcting Visualization Using Deep Manifold Transformation for Single-cell RNA-Seq Profiles

Yongjie Xu, Zelin Zang, Jun Xia, Cheng Tan, Yulan Geng, Stan Z Li

Communication Biology, 2023.

dyAb: Flow Matching for Flexible Antibody Design with AlphaFold-driven Pre-binding Antigen

Cheng Tan, Yijie Zhang, Zhangyang Gao, Yufei Huang, Haitao Lin, Lirong Wu, Fandi Wu, Mathieu Blanchette, Stan Z. Li

AAAI, 2025.

FoldToken: Learning Protein Language via Vector Quantization and Beyond

Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, Stan Z. Li

AAAI, 2025.

Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization

Lirong Wu, Haitao Lin, Yufei Huang, Zhangyang Gao, Cheng Tan, Yunfan Liu, Tailin Wu, Stan Z. Li

AAAI, 2025.

SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning

Cheng Tan, Zhangyang Gao, Siyuan Li, Stan Z. Li

TMM: IEEE Transactions on Multimedia, 2024.

Learning Complete Protein Representation by Dynamically Coupling of Sequence and Structure

Bozhen Hu, Cheng Tan, Jun Xia, Yue Liu, Lirong Wu, Jiangbin Zheng, Yongjie Xu, Yufei Huang, Stan Z. Li

NeurIPS, 2024.

ProtGO: Function-Guided Protein Modeling for Unified Representation Learning

Bozhen Hu, Cheng Tan, Yongjie Xu, Zhangyang Gao, Jun Xia, Lirong Wu, Stan Z. Li

NeurIPS, 2024.

UniIF: Unified Molecule Inverse Folding

Zhangyang Gao, Jue Wang, Cheng Tan, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li

NeurIPS, 2024.

Towards Robust mph{De Novo} Peptide Sequencing in Proteomics against Data Biases

Jun Xia, Shaorong Chen, Jingbo Zhou, Xiaojun Shan, Wenjie Du, Zhangyang Gao, Cheng Tan, Bozhen Hu, Jiangbin Zheng, Stan Z. Li

NeurIPS, 2024.

RFold: Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective

Cheng Tan, Zhangyang Gao, Hanqun Cao, Xingran Chen, Ge Wang, Lirong Wu, Jun Xia, Jiangbin Zheng, Stan Z. Li

ICML, 2024.

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, Stan Z. Li

ICML, 2024.

Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion Bridge

Yufei Huang, Odin Zhang, Lirong Wu, Cheng Tan, Haitao Lin, Zhangyang Gao, Siyuan Li, Stan Z. Li

ICML, 2024.

VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling

Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, Stan Z. Li

ICML, 2024.

General Point Model Pretraining with Autoencoding and Autoregressive

Zhe Li, Zhangyang Gao, Cheng Tan, Bocheng Ren, Laurence Tianruo Yang, Stan Z. Li

CVPR, 2024

MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning

Zhe Li, Laurence Tianruo Yang, Bocheng Ren, Xin Nie Nie, Zhangyang Gao, Cheng Tan, Stan Z. Li

CVPR, 2024

A Survey on Generative Diffusion Model

Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li

TKDE: IEEE Transactions on Knowledge and Data Engineering, 2024.

RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design

Cheng Tan, Yijie Zhang, Zhangyang Gao, Bozhen Hu, Siyuan Li, Zicheng Liu, Stan Z. Li

ICLR, 2024.

KW-Design: Pushing the Limit of Protein Design via Knowledge Refinement

Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, Stan Z. Li

ICLR, 2024.

SemiReward: A General Reward Model for Semi-supervised Learning

Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, Stan Z. Li

ICLR, 2024.

MogaNet: Multi-order Gated Aggregation Network

Siyuan Li, Zedong Wang, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li

ICLR, 2024.

Decoupling Weighing and Selecting for Integrating Multiple Graph Pre-training Tasks

Tianyu Fan, Lirong Wu, Yufei Huang, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li

ICLR, 2024.

Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer

Cheng Tan, Zhangyang Gao, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li

AAAI, 2024.

PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for Efficient and Generalizable Compound-Protein Interaction Prediction

Lirong Wu, Yufei Huang, Cheng Tan, Zhangyang Gao, Bozhen Hu, Haitao Lin, Zicheng Liu, Stan Z. Li

AAAI, 2024.

Wavelet-Driven Spatiotemporal Predictive Learning: Bridging Frequency and Time Variations

Xuesong Nie, Yunfeng Yan, Siyuan Li, Cheng Tan, Xi Chen, Haoyuan Jin, Zhihang Zhu, Stan Z. Li, Donglian Qi.

AAAI, 2024.

OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning

Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z. Li

NeurIPS, 2023.

Proteininvbench: Benchmarking Protein Inverse Folding on Diverse Tasks, Models, and Metrics

Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z. Li

NeurIPS, 2023.

Harnessing Hard Mixed Samples with Decoupled Regularizer

Zicheng Liu, Siyuan Li, Ge Wang, Lirong Wu, Cheng Tan, Stan Z. Li

NeurIPS, 2023.

Understanding the Limitations of Deep Models for Molecular property prediction: Insights and Solutions

Jun Xia, Lecheng Zhang, Xiao Zhu, Yue Liu, Zhangyang Gao, Bozhen Hu, Cheng Tan, Jiangbin Zheng, Siyuan Li, Stan Z. Li

NeurIPS, 2023.

CONVERT: Contrastive Graph Clustering with Reliable Augmentation

Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu

ACM MM, 2023.

GNN Cleaner: Label Cleaner for Graph Structured Data

Jun Xia, Haitao Lin, Yongjie Xu, Cheng Tan, Lirong Wu, Yongjie Xu, Siyuan Li, Stan Z. Li

TKDE: IEEE Transactions on Knowledge and Data Engineering, 2023.

Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning

Cheng Tan, Zhangyang Gao, Lirong Wu, Yongjie Xu, Jun Xia, Siyuan Li, Stan Z. Li

CVPR, 2023.

CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition with Variational Alignment

Jiangbin Zheng, Yile Wang, Cheng Tan, Siyuan Li, Ge Wang, Jun Xia, Yidong Chen, Stan Z. Li

CVPR, 2023.

PiFold: Toward Effective and Efficient Protein Inverse Folding

Zhangyang Gao, Cheng Tan, Stan Z. Li

ICLR, 2023 (Spotlight).

Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, Stan Z. Li

ICLR, 2023.

Hyperspherical Consistency Regularization

Cheng Tan, Zhangyang Gao, Lirong Wu, Siyuan Li, Stan Z. Li

CVPR, 2022.

SimVP: Simpler yet Better Video Prediction

Zhangyang Gao, Cheng Tan, Lirong Wu, Stan Z. Li

CVPR, 2022.

Co-learning: Learning from Noisy Labels with Self-supervision

Cheng Tan, Jun Xia, Lirong Wu, Stan Z. Li

ACM MM, 2021 (Oral).

Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive

Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z. Li

TKDE: IEEE Transactions on Knowledge and Data Engineering, 2021.

R3Design: Deep Tertiary Structure-based RNA Sequence Design and Beyond

Cheng Tan, Yijie Zhang, Zhangyang Gao, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z. Li

Briefings in Bioinformatics, 2024.

Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting

Lirong Wu, Haitao Lin, Guojiang Zhao, Cheng Tan, Stan Z. Li

TNNLS: IEEE Transactions on Neural Networks and Learning Systems, 2024.

Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset and Comprehensive Framework

Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Siyuan Li, Bihui Yu, Ruifeng Guo, Stan Z. Li

NCAA: Neural Computing and Applications, 2024.

Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency

Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Bihui Yu, Ruifeng Guo, Stan Z. Li

ECML-PKDD, 2024.

Deep Manifold Transformation for Protein Representation Learning

Bozhen Hu, Zelin Zang, Cheng Tan, Stan Z. Li

ICASSP, 2024.

Target-aware Molecular Graph Generation

Cheng Tan, Zhangyang Gao, Stan Z. Li

ECML-PKDD, 2023.

Learning to Augment Graph Structure for both Homophily and Heterophily Graphs

Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li

ECML-PKDD, 2023.

CoSP: Co-supervised Pre-training of pocket and ligand

Zhangyang Gao, Cheng Tan, Jun Xia, Stan Z. Li

ECML-PKDD, 2023.

Generative De Novo Protein Design with Global Context

Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, Stan Z. Li

ICASSP, 2023.

Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding

Bozhen Hu, Zelin Zang, Jun Xia, Lirong Wu, Cheng Tan, Stan Z. Li

ICASSP, 2023.

WordReg: Mitigating the Gap between Training and Inference with Worst-case Drop Regularization

Jun Xia, Ge Wang, Bozhen Hu, Cheng Tan, Jiangbin Zheng, Yongjie Xu, Stan Z. Li

ICASSP, 2023.

OT Cleaner: Label Correction as Optimal Transport

Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, Stan Z. Li

ICASSP, 2022.

Beyond Homophily and Homogeneity Assumption: Relation-based Frequency Adaptive Graph Neural Networks

Lirong Wu, Haitao Lin, Bozhen Hu, Zhangyang Gao, Cheng Tan, Zicheng Liu, Stan Z. Li

TNNLS: IEEE Transactions on Neural Networks and Learning Systems, 2022.

GraphMixup: Improving Class-Imbalanced Node Classification by Reinforcement Mixup and Self-supervised Context Prediction

Lirong Wu, Jun Xia, Zhangyang Gao, Haitao Lin, Cheng Tan, Stan Z. Li

ECML-PKDD, 2022.

Multi-level disentanglement graph neural network

Lirong Wu, Haitao Lin, Jun Xia, Cheng Tan, Stan Z. Li

NCAA: Neural Computing and Applications, 2022.

Structure-Preserving and Batch-Correcting Visualization Using Deep Manifold Transformation for Single-cell RNA-Seq Profiles

Yongjie Xu, Zelin Zang, Jun Xia, Cheng Tan, Yulan Geng, Stan Z Li

Communication Biology, 2023.

Service

Conference - Program committee member:

ICML, NeurIPS, ICLR, AISTATS, CVPR, ECCV, ICCV, AAAI, ACL, EMNLP, ACM MM, ECML-PKDD, ICASSP, etc.

Journal - Reviewer:

Talks

Awards and Honors

Vitæ

This website was built with jekyll based on a template from Martin Saveski.