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Abstract

Protein inverse folding has attracted increasing attention in recent years. However,1

we observe that current methods are usually limited to the CATH dataset and the2

recovery metric. The lack of a unified framework for ensembling and compar-3

ing different methods hinders the comprehensive investigation. In this paper, we4

propose ProteinInvBench, a new benchmark for protein design, which comprises5

extended protein design tasks, integrated models, and diverse evaluation metrics.6

We broaden the application of methods originally designed for single-chain pro-7

tein design to new scenarios of multi-chain and de novo protein design. Recent8

impressive methods, including GraphTrans, StructGNN, GVP, GCA, AlphaDesign,9

ProteinMPNN, PiFold and KWDesign are integrated into our framework. In addi-10

tion to the recovery, we also evaluate the confidence, diversity, sc-TM, efficiency,11

and robustness to thoroughly revisit current protein design approaches and inspire12

future work. As a result, we establish the first comprehensive benchmark for protein13

design, which is publicly available at https://github.com/A4Bio/OpenCPD.14

1 Introduction15

Protein inverse folding is a fundamental problem in biology and has many applications in medicine,16

agriculture, and bioenergy [1–4]. It has thereby attracted increasing attention in both the machine17

learning and biology communities [5, 6]. Traditional physical-inspired methods suffer from the18

problem of expensive computation and unsatisfactory accuracy. Recently, deep learning methods19

have shown great potential in simplifying the process and improving accuracy [7–39]. Among20

them, we observe that graph-based methods achieve state-of-the-art performance. However, previous21

methods are usually limited to the CATH dataset and the recovery metric. We emphasize that22

recovery is not the only important metric for protein design. Other metrics such as confidence,23

diversity, TM-score, efficiency, and robustness are also important for comprehensively revisiting24

current approaches. Also, the evaluation dataset should be further extended from CATH dataset to25

broader or more difficult cases to facilitate practical applications. All these challenges motivate us to26

establish ProteinInvBench, a unified benchmark for protein inverse folding, in which multiple tasks,27

models, and metrics are introduced and integrated.28

ProteinInvBench extends the task of protein design from single-chain to multi-chain and de novo29

protein design. To our knowledge, many computational protein design methods [17, 22, 23, 26, 40]30

have only been evaluated on the outdated single-chain structure dataset CATH4.2. Furthermore, few31

studies [24, 32] have investigated protein design performance in multi-chain tasks, and even fewer32

have evaluated the performance comparison on de novo protein structures. To fill this knowledge gap,33
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we first benchmark open-sourced graph-based models on the latest CATH4.3 dataset and extend them34

to the case of multi-chain protein design. We then collect de novo protein structures with little or no35

similarity to existing structures from the CASP15 competition. Evaluating models on the CASP1536

dataset allows us to gain a better understanding of the potential of AI models in designing de novo37

proteins and reveals that different models exhibit non-trivial differences in generalizability. We hope38

that the more complex and challenging tasks in ProteinInvBench will facilitate the development of39

protein design methods for practical applications.40

ProteinInvBench also provides a range of metrics to comprehensively understand the strengths and41

weaknesses of each method. Beyond the recovery score that measures the percentage of exactly42

matched residues, we also evaluate the confidence, diversity, sc-TM, efficiency, and robustness. These43

metrics will be introduced in detail in the Sec.5. Notably, we use novel metrics such as confidence44

and sc-TM to measure the quality of designed sequences in an unsupervised and unbiased manner,45

respectively. With additional metrics, we encourage researchers to develop more robust, efficient46

models that can generate diverse proteins for higher success rates in wet experiments.47

Widely considered 

Tasks: Designing proteins over single-chain, multi-chain and de-novo structures

Single-chain Multi-chain De-novo
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Models: Recent strong baselines that provide open-source training code

Metrics: The most comprehensive evaluation metrics to date
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Figure 1: The framework of the proposed benchmark. The benchmark is organized incrementally from tasks to
models, to metrics. We color contents in green and blue that are widely and partially considered by previous
studies, respectively. Newly introduced contents are colored in pink.

Based on the constructed benchmark, we conduct extensive experiments to extend baseline models48

to new tasks and evaluate them on diverse metrics. All models are reproduced, integrated, and49

extended under a unified code framework. ProteinInvBench not only reproduces the reported results50

of baselines but also provides new insights into the detailed strengths and weaknesses of each method51

under different scenarios. To summarize, our contributions are as follows:52

1. Tasks: We extend recent impressive models from single-chain protein design to the scenarios of53

multi-chain and de novo protein design.54

2. Models: We integrate recent impressive models into a unified framework for efficiently reproduc-55

ing and extending them to custom tasks.56

3. Metrics: We incorporate new metrics such as confidence, sc-TM, and diversity for protein design,57

and integrate metrics including recovery, robustness, and efficiency to formulate a comprehensive58

evaluation system.59

4. Benchmark: We establish the first comprehensive benchmark of protein design, providing60

insights into the strengths and weaknesses of different methods.61
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2 Overall Framework and Problem Definition62

Overall Framework We present the overall framework in Figure 1, which contains three compo-63

nents: (1) Multiple datasets for the task of single-chain, multi-chain, and de-novo protein design.64

(2) Strong baselines are integrated into our unified framework, including GraphTrans, GVP, GCA,65

AlphaDesign, ProteinMPNN, PiFold, and KWDesign. (3) Diverse metrics are used to evaluate the66

designed proteins in a quantitative and comprehensive manner.67

Problem Definition The protein inverse folding problem [41] aims to find the amino acids sequence68

S = {si : 1 ≤ i ≤ n} folding into the desired structure X = {Xi ∈ Rm,3 : 1 ≤ i ≤ n}, where m is69

the maximum number of points belonging to the i-th residue, n is the number of residues and the70

natural proteins are composed by 20 types of amino acids, i.e., 1 ≤ si ≤ 20 and si ∈ N+. Therefore,71

the protein inverse folding problem is usually formulated as a structure-to-sequence learning problem,72

where the goal is to learn a function Fθ:73

Fθ : X 7→ Ŝ. (1)

The function Fθ is usually parameterized by a neural network, and the parameters θ are learned by74

minimizing the cross-entropy loss, i.e., L(Fθ(X ),S) = −
∑n

i=1 log sip(ŝi|X , θ)75

3 Datasets76

CATH The CATH (Class, Architecture, Topology, Homology) [42] database is a comprehensive77

resource for protein structure classification that hierarchical group proteins based on their structural78

features. The database defines classes based on topological similarities, architectures based on the79

arrangement of secondary structure elements, topologies based on the connectivity of secondary80

structure elements, and homologous domains based on sequence similarity. Previous works such81

as GraphTrans [26], GVP [17], and GCA [22] have used the CATH4.2 version of the database as a82

benchmark for protein design, which splits the dataset by CATH topology classification and includes83

18,024 proteins for training, 608 proteins for validation, and 1,120 proteins for testing. However,84

CATH4.2 is an outdated version and may not represent the current protein structure space. To address85

this, we use the newer version, CATH4.3 for benchmarking protein design and follow the data86

splitting protocol of ESMIF [29]. This results in a training set of 16,153 structures, a validation set of87

1,457 structures, and a test set of 1,797 structures. Note that the curated CATH dataset contains only88

single-chain structures and does not consider the case of designing multi-chain proteins.89

PDB The Protein Data Bank (PDB) [43] is a comprehensive database of 3D structural data for90

biological molecules. To study multi-chain protein design, we utilized a ProteinMPNN dataset91

derived from PDB assemblies with high resolution and less than 10,000 residues. The dataset92

was preprocessed by clustering sequences at 30% identity, resulting in 25,361 clusters. Following93

ProteinMPNN’s setup, we divided the clusters randomly into training (23,358), validation (1,464),94

and test sets (1,539), ensuring that none of the chains from the target chain or biounits of the target95

chain were present in the other two sets. During each training epoch, we cycled through the sequence96

clusters and randomly selected a sequence member from each cluster. This dataset was used for97

the task of multi-chain protein design, expanding the comparison of computational protein design98

methods, as many previous methods were omitted in this task.99

TS45 In addition to designing single- and multi-chain proteins, we also include a set of de novo100

proteins collected from the CASP15 competition to provide a more realistic assessment [44, 45].101

The Critical Assessment of Protein Structure Prediction (CASP15), which took place from May102

through August 2022, was held after the release dates of CATH4.3 (July 1, 2019) and PDB (August103

2, 2021). In CASP15, diverse protein targets are introduced, including FM (Free Modeling), TBM104

(Template-Based Modeling), TBM-easy, and TBM-hard proteins. There are 18 FM, 25+2 TBM105

(including 20 TBM-eazy, 5 TMB-hard, 2 FM/TBM). The FM targets have no homology to any known106

protein structure, making them particularly suitable for de novo protein design. The TBM targets107

have some homology to known protein structures, while the TBM-easy targets are relatively easy108

TBM targets. The TBM-hard targets are more difficult TBM targets, with lower levels of sequence109

identity to known structures. We download the public TS-domains structures from CASP15 which110

consists of 45 structures, namely TS45. We use TS45 as a benchmark for de novo protein design, as111

the structures are less similar to known structures and were not determined prior to the construction112

of the training sets.113
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4 Baseline models114

We ensemble recent strong protein design baselines under the unified framework. Currently, we115

support open-sourced graph methods, such as GraphTrans, StructGNN [26], GVP [17], GCA [22],116

AlphaDesign [23], ProteinMPNN [24], PiFold [40] and KWDesign [46], that we can access their117

codes and training scripts. StructGNN and GraphTrans [26] employ C-alpha for geometric features,118

while GCA [22] adds global attention. GVP [17] introduces a novel GNN layer for invariant119

and equivariant features. However, these methods suffer from poor inference efficiency due to120

autoregressive decoders. To overcome this, AlphaDesign [23] replaces the decoder with an iterative121

1D CNN. Recent advancements include ProteinMPNN [24], which incorporates additional structural122

information, and PiFold [40], a combination of AlphaDesign and ProteinMPNN. KWDesign [46]123

is an ensemble model that utilizes PiFold to create a prompt template. It refines the template using124

pre-trained knowledge, including sequence pretraining (ESM-650M [47]) and structure pretraining125

models (ESMIF’s encoder [29]).126

New baselines [32, 48] will continue to be added in the future. We have not included ESMIF [29]127

in our benchmark since it lacks a training script and is challenging for us to train. We plan to add it128

to the benchmark once we successfully train the model. According to the generation scheme, these129

baselines can be categorized as autoregressive, iterative, and one-shot models.130

Autoregressive models consider both sequential and structural dependencies by combining the131

structural encoder and autoregressive sequence decoder, such as GraphTrans [26], GVP [17], GCA132

[22], and ProteinMPNN [24]. The protein sequences are generated by:133

p(Ŝ|X ; θ) =
n∏

t=1

p(ŝt|ŝ<t,X ; θ). (2)

Autoregressive models have been criticized for being slow in generating long proteins [40].134

Iterative models generate residues in parallel and iteratively refine the generated sequence (Al-135

phaDesign [23] and KWDesign [46]):136

Ŝ(0) ∼ p(Ŝ|X ; θ(0)), Ŝ(t) ∼ p(Ŝ|Ŝ(t−1),X ; θ(t)), (3)

where t indicates the refinement step, affecting the inference time costs. θ is a learnable parameter.137

One-shot models generate the protein sequence in parallel, e.g., PiFold [40], which is quite efficient138

in generating long proteins, written as:139

Ŝ ∼ p(Ŝ|X ; θ). (4)

5 Metrics140

In this section, we introduce metrics that will be used for protein design evaluation, including141

recovery, confidence, diversity, and sc-TM. Previous researches [17, 22, 23, 26, 29, 40] mainly focus142

on improving recovery, while ignoring other metrics. However, we argue that recovery is not the143

only important metric for protein design. Other metrics introduced follows are also crucial for144

comprehensively revisiting current approaches, such as confidence, diversity, sc-TM, efficiency, and145

robustness.146

Recovery Recovery is the primary metric of the ability of the designed protein to recover its original147

residues, defined as:148

Rec =
1

n

n∑
i=1

1(ŝi = si) (5)

where 1(·) is the indicator function, ŝi is the designed residue at the i-th position, and si is the149

corresponding reference residue. A high recovery rate indicates that the designed protein sequence150

is similar to the reference sequence, and it is therefore expected that the folded structure will151

also be similar to the reference structure. Since measuring structural similarity is computationally152

expensive, previous protein design methods have placed a great deal of emphasis on improving153

recovery. However, it is important to note that recovery itself is a proxy metric for measuring154

structural similarity. In other words, a higher recovery rate does not necessarily ensure a higher level155

of structural similarity. Moreover, a high recovery rate may result in low diversity.156
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Confidence Calculating recovery requires access to the reference sequence, which is not always157

available in practice. When the ground-truth sequence is unknown, measuring and ranking the quality158

of the designed sequence becomes more challenging. We introduce the confidence metric to address159

this problem, which is the average predictive probability of designed amino acids, defined as:160

Conf =
1

n

n∑
i=1

p(ŝi) (6)

Diversity To improve the success rate of protein design, it is important to explore a set of protein161

sequences rather than placing a bet on a single sequence. In this case, generating diverse sequences is162

crucial for exploring the reasonable protein sequence space. We define the pairwise diversity [49] as163

Dij =
∑n

l=1 1ri,l ̸=rj,l

n , where ri,l indicates the l-th residue of the i-th designed sequence. The overall164

diversity score is165

Div =
∑
i,j

Di,j

m2
(7)

where i, j ∈ {1, 2, 3, · · · ,m} and m is the number of totally designed sequences. By default, we166

set m = 10. However, measuring diversity alone without combining it with other metrics may be167

misleading. For example, a high diversity indicates a low recovery rate, more likely to result in a low168

structural similarity.169

sc-TM The structural similarity is the ultimate standard for measuring the quality of the designed170

sequence. However, the structures of designed protein sequences needed to be predicted by other171

algorithms, such as AlphaFold [50], RoseTTAFold [51], OmegaFold [52] and ESMFold [47]. The172

protein folding algorithm itself has a certain inductive bias and will cause some prediction errors,173

which will affect the evaluation. To overcome the inductive bias, we introduce the self-consistent174

TM-score (sc-TM) metric:175

sc-TM = TMScore( ˆf(S), f(S)) (8)
where f is the protein folding algorithm and TMscore(·, ·) is a widely used metric [53] for measuring176

protein structure similarity. Since the structures of the designed sequence and reference sequence are177

predicted by the same protein folding algorithm, the model’s inductive bias is expected to be canceled178

out when calculating the TM-score. This approach results in a more robust metric, called the sc-TM,179

that is less affected by the inductive bias of the protein folding algorithm.180

Robustness Robustness measures an algorithm’s ability to maintain its original performance under181

geometric perturbations. It is a useful metric for assessing the stability and generalizability of an182

algorithm. We define robustness as:183

Rob = Rec′ − Rec (9)

where Rec and Rec′ are the recovery after and before applying small Gaussian perturbations to the184

Cartesian coordinates of the structure, correspondingly. As the template protein structures may not185

be perfect, more robust methods are expected to be more suitable in real-world applications.186

Efficiency Efficiency measures the computational resources and time required to design a set of187

proteins. This study reports the training time, evaluation time, and model parameters of different188

methods over the standard benchmarks. While efficiency may not be a crucial problem compared to189

the recovery and sc-TM, it is a useful metric for assessing the model’s scalability and practicality.190

6 Benchmarking Protein Design191

In this section, we retrain baselines on the newly introduced datasets and evaluate them using diverse192

metrics, resulting in a comprehensive benchmark. The experiments are organized as follows:193

1. Establish a basic benchmark within recovery and confidence. As emphasized by previous194

studies, the recovery rate and predictive confidence are the most important and straightforward195

metrics. We benchmark baselines over these metrics on CATH4.2, CATH4.3, PDB, and TS45196

for the task of single-chain, multi-chain, and de novo protein design, respectively. These results197

could serve as the basic benchmark for future studies.198
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2. Measuring diversity and sc-TM for practical challenging tasks in protein design. We further199

extend the evaluation metrics to diversity and sc-TM. The diversity is opposite of recovery and is200

meaningless if we measure it alone. By examining the sequence diversity and structural sc-TM201

together, we could have a more comprehensive understanding of the designable protein space.202

3. Assessing the robustness when input structures are not perfect. Although the model performs203

well on natural proteins, it may fail when the artificially designed structure is noisy. In this case,204

the robustness of the model is crucial for practical applications. We evaluate the robustness of205

different methods by applying geometric perturbations to the template protein structures during206

the evaluation phase.207

4. Comparing the efficiency. Towards designing efficient, scalable, and generalizable algorithms,208

we evaluate the efficiency in terms of training time, evaluation time, and model parameters to209

facilitate the development of more efficient protein design methods.210

6.1 Recovery and Confidence211

In this section, we benchmark the recovery rate and confidence of different methods on the CATH4.2,212

CATH4.3, PDB, and TS45 datasets to address the problems of single-chain, multi-chain, and de213

novo protein design. By extending from CATH4.2 to the newer CATH4.3 and from single-chain to214

multi-chain to de novo, we have constructed the most comprehensive benchmark to date for protein215

design. All models are retrained and evaluated under the same code framework for a fair comparison.216

The hyperparameters used for training models are provided in the Appendix.217

Table 1: Single-chain results. The best and suboptimal results are labeled with bold and underlined.
Model Confidence ↑ Recovery % ↑
length L < 100 100≤L < 300 300 ≤ L < 500 Full L < 100 100 ≤ L < 300 300 ≤ L < 500 Full

CATH4.2

StructGNN 0.31 0.45 0.45 0.43 0.26 0.36 0.36 0.35
GraphTrans 0.31 0.43 0.43 0.43 0.25 0.35 0.35 0.34
GCA 0.34 0.46 0.47 0.45 0.27 0.38 0.38 0.37
GVP 0.40 0.52 0.53 0.51 0.28 0.40 0.41 0.39
AlphaDesign 0.36 0.49 0.49 0.47 0.33 0.43 0.44 0.42
ProteinMPNN 0.38 0.51 0.52 0.50 0.32 0.47 0.47 0.45
PiFold 0.44 0.58 0.60 0.57 0.39 0.53 0.56 0.52
KWDesign 0.50 0.68 0.72 0.67 0.44 0.62 0.66 0.61

CATH4.3

StructGNN 0.35 0.41 0.47 0.41 0.30 0.34 0.40 0.34
GraphTrans 0.37 0.42 0.48 0.42 0.29 0.34 0.39 0.34
GCA 0.38 0.43 0.49 0.43 0.32 0.36 0.41 0.36
GVP 0.45 0.51 0.55 0.50 0.33 0.38 0.45 0.38
AlphaDesign 0.41 0.48 0.53 0.47 0.37 0.43 0.47 0.42
ProteinMPNN 0.42 0.49 0.57 0.49 0.38 0.44 0.52 0.44
PiFold 0.47 0.56 0.64 0.55 0.43 0.52 0.59 0.51
KWDesign 0.58 0.68 0.76 0.67 0.51 0.61 0.69 0.60

Single-chain Results The results of single-chain protein design are shown in Tab. 1, where both218

CATH4.2 and CATH4.3 datasets are included. We present metrics for proteins of different sequence219

lengths. From Tab. 1, it could be concluded that:220

1. KWDesign and PiFold are the best and second-best models. They consistently outperform all221

other models in terms of both confidence and recovery across all protein lengths in both CATH4.2222

and CATH4.3 datasets. This highlights their effectiveness towards protein inverse folding.223

2. Models perform better on longer proteins. This could be due to the increased complexity and224

information available for longer proteins, allowing the models to make more confident predictions.225

3. CATH4.2 and CATH4.3 datasets show the same performance trend and very similar results,226

thereby validating the performance consistency of the different models. However, it also informs227

us that they are unable to provide complementary information for analyzing protein design228

methods. More diverse, complex, and challenging datasets are needed for further investigation.229

4. The unsupervised confidence is highly correlated to supervised recovery. This discovery suggests230

that researchers can rank the quality of designed proteins based on confidence alone, without231

needing to access the ground truth.232

Multi-chain Results To remedy the problem that CATH4.2 and CATH4.3 are highly consistent233

and do not bring complementary information, we extend the experiment to a multi-chain dataset. The234

corresponding results are presented in Table 2, showing that:235
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Table 2: Multi-chain results. The best and suboptimal results are labeled with bold and underlined.
Model Confidence ↑ Recovery % ↑
length L < 100 100≤L < 500 500 ≤ L < 1000 Full L < 100 100 ≤ L < 500 500 ≤ L < 1000 Full

PDB

StructGNN 0.49 0.49 0.50 0.49 0.41 0.41 0.42 0.41
GraphTrans 0.48 0.47 0.48 0.48 0.40 0.39 0.40 0.40
GCA 0.45 0.45 0.46 0.45 0.41 0.41 0.42 0.41
GVP 0.51 0.53 0.55 0.54 0.44 0.42 0.45 0.43
AlphaDesign 0.52 0.53 0.54 0.53 0.48 0.49 0.50 0.49
ProteinMPNN 0.54 0.56 0.58 0.57 0.52 0.53 0.55 0.53
PiFold 0.56 0.60 0.63 0.61 0.54 0.58 0.60 0.58
KWDesign 0.65 0.71 0.74 0.71 0.59 0.66 0.67 0.66

1. KWDesign achieves the best performance across all the models for proteins of all lengths,236

followed by PiFold and ProteinMPNN.237

2. The longer the protein sequence, the higher the recovery. Like the single-chain case, confidence238

and recovery generally increase with the length of the protein chain. As the length of multi-chain239

protein could be up to 1000, models perform better on the PDB than on the CATH dataset.240

De novo Protein Design To investigate the models’ potential in designing novel proteins, we241

evaluate pre-trained models on TS45. We present the de novo protein design results in Tab. 3,242

considering four subsets of TS45: FM (Free Modeling), TBM (Template-Based Modeling), TBM-243

easy, and TBM-hard. The results show that:244

1. For models pre-trained on CATH4.2 and CATH4.3, KWDesign outperforms others by a large245

margin. The PiFold model consistently performs as the second-best model after KWDesign.246

2. For models pre-trained on PDB, PiFold achieves the best performance, while ProteinMPNN pro-247

vides very competitive recoveries. Switching from the CATH to the PDB dataset, ProteinMPNN248

achieves a more significant performance gain than PiFold.249

3. The consistent performance trend across different protein subsets suggests that the difficulty level250

of the protein design task depends on the nature of the protein subset. For instance, models tend251

to perform better on TBM-easy proteins than on TBM-hard proteins. A more challenging subset252

of proteins may help reveal the shortcomings of current protein design algorithms.253

4. AI methods have demonstrated great potential in de novo protein design, with all models (except254

StructGNN and GraphTrans) achieving recoveries of approximately 40% or higher. However,255

there is still slight performance degradation compared to the results on the original test set.256

Table 3: Results of de novo protein design. The best and suboptimal results are labeled with bold and underlined.
Training set Model Confidence ↑ Recovery % ↑

FM TBM TBM-eazy TBM-hard Full FM TBM TBM-eazy TBM-hard Full

CATH4.2

StructGNN 0.41 0.43 0.48 0.43 0.45 0.35 0.33 0.38 0.35 0.35
GraphTrans 0.39 0.43 0.46 0.42 0.44 0.33 0.30 0.37 0.36 0.36
GCA 0.48 0.43 0.53 0.48 0.50 0.39 0.37 0.41 0.38 0.40
GVP 0.48 0.49 0.50 0.50 0.49 0.37 0.33 0.42 0.39 0.39
AlphaDesign 0.44 0.41 0.50 0.46 0.48 0.41 0.36 0.46 0.41 0.42
ProteinMPNN 0.49 0.48 0.53 0.51 0.52 0.44 0.41 0.46 0.40 0.44
PiFold 0.52 0.46 0.59 0.53 0.55 0.47 0.38 0.50 0.47 0.47
KWDesign 0.55 0.52 0.70 0.62 0.64 0.49 0.40 0.59 0.55 0.54

CATH4.3

StructGNN 0.40 0.40 0.45 0.43 0.44 0.35 0.33 0.38 0.37 0.36
GraphTrans 0.39 0.42 0.46 0.43 0.45 0.35 0.32 0.37 0.35 0.35
GCA 0.46 0.42 0.51 0.44 0.48 0.37 0.33 0.43 0.40 0.41
GVP 0.47 0.45 0.50 0.48 0.49 0.37 0.31 0.41 0.38 0.39
AlphaDesign 0.44 0.40 0.50 0.47 0.48 0.40 0.36 0.44 0.44 0.42
ProteinMPNN 0.49 0.48 0.53 0.49 0.52 0.44 0.34 0.48 0.43 0.46
PiFold 0.54 0.45 0.56 0.51 0.54 0.47 0.38 0.52 0.49 0.49
KWDesign 0.59 0.50 0.70 0.63 0.65 0.50 0.43 0.59 0.60 0.56

PDB

StructGNN 0.46 0.41 0.53 0.47 0.48 0.39 0.34 0.42 0.41 0.41
GraphTrans 0.43 0.42 0.51 0.45 0.48 0.38 0.33 0.44 0.40 0.41
GCA 0.45 0.41 0.49 0.45 0.47 0.40 0.33 0.44 0.43 0.43
GVP 0.51 0.46 0.55 0.53 0.53 0.40 0.32 0.47 0.43 0.43
AlphaDesign 0.49 0.43 0.54 0.50 0.51 0.43 0.39 0.48 0.46 0.46
ProteinMPNN 0.56 0.49 0.58 0.55 0.55 0.52 0.39 0.55 0.51 0.52
PiFold 0.55 0.48 0.59 0.53 0.57 0.52 0.45 0.53 0.52 0.53
KWDesign 0.60 0.67 0.69 0.65 0.66 0.56 0.59 0.60 0.62 0.59
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6.2 Diversity and sc-TM257

Diversity We benchmark the diversity on TS45
dataset using models pre-trained on CATH4.3. As dis-
covered by previous research [24, 29], the sampling
temperature affects diversity. Denote the temperature
as T , the predicted probability vector is p ∈ Rn,20,
we sample new sequences from the distribution of
Multinomial(softmax(p/T )). We vary the tempera-
ture from 0.0 to 0.5 and plot the trends of recovery and
diversity in Fig. 2. Under the same sampling tempera-
ture, high recovery leads to decreased diversity. How-
ever, at the same level of recovery, stronger models have
higher diversity.

Recovery

Diversity

Figure 2: The trends of recovery and diversity.

258

sc-TM While generating diverse protein sequences is appealing, it would be meaningless if these259

sequences could not fold to structures with topologies similar to the reference one. With this in mind,260

we investigate the recovery and sc-TM metrics as the temperature increases. To compute sc-TM, we261

utilize AlphaFold2 [50] to predict protein structures from sequences. According to Fig.3 and Fig.2,262

we observe that a slight increase in temperature from 0 to 0.1 is beneficial in significantly enhancing263

diversity while maintaining good recovery and sc-TM. However, increasing the temperature to 0.5264

renders the designed sequences meaningless in recovery and sc-TM, despite the higher diversity.265

Carefully tuning the temperature would be beneficial in practical applications.266

R
ec

ov
er

y
Sc

-T
M

Temperature=0.0 Temperature=0.1 Temperature=0.5
Figure 3: The statistics of recovery and sc-TM with increasing temperature.

6.3 Robustness and Efficiency267

Robustness We further investigate whether the models are robust to structure perturbations, as the268

artificially designed structures may not be perfect, and the atom position may deviate slightly due to269

thermodynamic vibrations or errors in experimental measurements. We add different Gaussian noise270

to the input structure, i.e., X ← X+ϵN (0, I). Note that the Gaussian noise (in Angstrom) is added in271

both training and evaluation structures, where the noise scale ϵ is chosen from [0.02, 0.2, 0.5, 1.0]. As272

we have shown that models perform consistently on CATH and PDB, we benchmark the robustness273

on CATH4.3. The experimental results are shown in Tab.4, from which we observe that:274

1. Weaker models tend to exhibit greater robustness than stronger models. For example, with275

ϵ = 1, the recoveries of StructGNN and GraphTrans decrease by only 14%, while AlphaDesign,276

ProteinMPNN, PiFold, and KWDesign decrease by at least 20%. This is a natural outcome, as277

weaker models may be the first to reach the performance floors of the dataset.278

2. KWDesign achieves the highest recovery across noise scales, followed by PiFold. StructGNN,279

GraphTrans, GCA, and GVP degrade quickly and reach similar lower bounds. AlphaDesign is280

more affected by noise compared to GCA and GVP, likely due to its reliance on angular features,281

which are more sensitive to noise than distance features.282

3. All models show a decrease in performance as the Gaussian noise scale increases. Developing283

protein design methods with higher robustness remains challenging.284
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Table 4: Results of robustness. We calculate the difference in terms of model performance on the noisy and
clean structures and show it in parentheses. A smaller absolute value of this difference indicates a more robust
model. The best and suboptimal robust models are labeled with bold and underline.

Model Confidence ↑ Recovery % ↑
length L < 100 100 ̸= L < 300 300 ≤ L < 500 Full L < 100 100 ≤ L < 300 300 ≤ L < 500 Full

CATH4.3
(ϵ = 0.02)

StructGNN 0.37 (+0.02) 0.42 (+0.01) 0.49 (+0.02) 0.42 (+0.01) 0.28 (-0.02) 0.33 (-0.01) 0.38 (-0.02) 0.33 (-0.01)
GraphTrans 0.37 (+0.00) 0.41 (-0.01) 0.48 (+0.00) 0.41 (-0.01) 0.28 (-0.01) 0.32 (-0.02) 0.37 (-0.02) 0.32 (-0.02)
GCA 0.36 (-0.02) 0.40 (-0.03) 0.47 (-0.02) 0.41 (-0.02) 0.29 (-0.03) 0.33 (-0.03) 0.39 (-0.02) 0.33 (-0.03)
GVP 0.44 (-0.01) 0.48 (-0.03) 0.54(-0.01) 0.51 (+0.01) 0.29 (-0.04) 0.34 (-0.04) 0.43 (-0.02) 0.36 (-0.02)
AlphaDesign 0.42 (+0.01) 0.50 (+0.02) 0.56 (+0.03) 0.49 (+0.02) 0.33 (-0.04) 0.39 (-0.04) 0.43 (-0.04) 0.38 (-0.04)
ProteinMPNN 0.41 (-0.01) 0.47 (-0.02) 0.55 (-0.02) 0.46 (-0.03) 0.32 (-0.06) 0.40 (-0.04) 0.49 (-0.03) 0.40 (-0.04)
PiFold 0.41 (-0.06) 0.51 (-0.05) 0.60 (-0.04) 0.49 (-0.06) 0.37 (-0.06) 0.47 (-0.05) 0.54 (-0.02) 0.45 (-0.06)
KWDesign 0.50 (-0.08) 0.63 (-0.05) 0.72 (-0.04) 0.61 (-0.06) 0.43 (-0.08) 0.56 (-0.05) 0.65 (-0.04) 0.54 (-0.06)

CATH4.3
(ϵ = 0.2)

StructGNN 0.34 (-0.01) 0.36 (-0.05) 0.41 (-0.06) 0.36 (-0.05) 0.25 (-0.05) 0.28 (-0.06) 0.32 (-0.08) 0.28 (-0.06)
GraphTrans 0.33 (-0.04) 0.36 (-0.06) 0.39 (-0.09) 0.36 (-0.06) 0.25 (-0.04) 0.27 (-0.07) 0.31 (-0.08) 0.27 (-0.07)
GCA 0.33 (-0.05) 0.35 (-0.08) 0.39 (-0.10) 0.35 (-0.08) 0.25 (-0.07) 0.28 (-0.08) 0.31 (-0.10) 0.28 (-0.08)
GVP 0.39 (-0.06) 0.43 (-0.08) 0.45 (-0.10) 0.42 (-0.08) 0.25 (-0.08) 0.28 (-0.10) 0.34 (-0.11) 0.29 (-0.09)
AlphaDesign 0.35 (-0.06) 0.40 (-0.08) 0.43 (-0.10) 0.39 (-0.08) 0.29 (-0.08) 0.33 (-0.10) 0.36 (-0.11) 0.33 (-0.09)
ProteinMPNN 0.37 (-0.05) 0.41 (-0.08) 0.47 (-0.10) 0.41 (-0.08) 0.29 (-0.09) 0.35 (-0.09) 0.41 (-0.11) 0.35 (-0.09)
PiFold 0.35 (-0.12) 0.43 (-0.13) 0.48 (-0.16) 0.41 (-0.14) 0.32 (-0.09) 0.39 (-0.13) 0.45 (-0.14) 0.39 (-0.12)
KWDesign 0.43 (-0.15) 0.53 (-0.15) 0.60 (-0.16) 0.52 (-0.15) 0.38 (-0.13) 0.47 (-0.14) 0.54 (-0.15) 0.46 (-0.14)

CATH4.3
(ϵ = 0.5)

StructGNN 0.30 (-0.05) 0.31 (-0.10) 0.34 (-0.13) 0.31 (-0.10) 0.22 (-0.08) 0.24(-0.10) 0.26 (-0.14) 0.24 (-0.10)
GraphTrans 0.30 (-0.07) 0.31 (-0.11) 0.33 (-0.15) 0.31 (-0.11) 0.22 (-0.07) 0.23 (-0.11) 0.25 (-0.14) 0.24 (-0.10)
GCA 0.30 (-0.08) 0.31 (-0.12) 0.34 (-0.15) 0.31 (-0.12) 0.22 (-0.10) 0.24 (-0.12) 0.26 (-0.15) 0.24 (-0.12)
GVP 0.32 (-0.13) 0.34 (-0.17) 0.37 (-0.18) 0.35 (-0.15) 0.22 (-0.11) 0.25 (-0.13) 0.26 (-0.19) 0.25 (-0.13)
AlphaDesign 0.30 (-0.11) 0.33 (-0.15) 0.35 (-0.18) 0.33 (-0.14) 0.26 (-0.11) 0.28 (-0.15) 0.30 (-0.17) 0.28 (-0.14)
ProteinMPNN 0.34 (-0.08) 0.36 (-0.13) 0.39 (-0.18) 0.37 (-0.12) 0.26 (-0.12) 0.29 (-0.15) 0.33 (-0.19) 0.30 (-0.14)
PiFold 0.32 (-0.15) 0.36 (-0.20) 0.40 (-0.24) 0.35 (-0.20) 0.30 (-0.13) 0.34 (-0.18) 0.37 (-0.22) 0.33 (-0.18)
KWDesign 0.38 (-0.20) 0.47 (-0.21) 0.52 (-0.24) 0.45 (-0.22) 0.33 (-0.18) 0.42 (-0.19) 0.47 (-0.14) 0.41 (-0.19)

CATH4.3
(ϵ = 1.0)

StructGNN 0.27 (-0.08) 0.26 (-0.15) 0.28 (-0.19) 0.27 (-0.14) 0.19 (-0.11) 0.20 (-0.14) 0.21 (-0.19) 0.20 (-0.14)
GraphTrans 0.26 (-0.11) 0.26 (-0.16) 0.27 (-0.21) 0.26 (-0.16) 0.19 (-0.10) 0.19 (-0.15) 0.20 (-0.19) 0.20 (-0.14)
GCA 0.25 (-0.13) 0.25 (-0.18) 0.26 (-0.23) 0.25 (-0.18) 0.19 (-0.13) 0.19 (-0.17) 0.20 (-0.21) 0.19 (-0.17)
GVP 0.29 (-0.16) 0.29 (-0.22) 0.30 (-0.25) 0.27 (-0.23) 0.20 (-0.13) 0.20 (-0.18) 0.21 (-0.24) 0.20 (-0.18)
AlphaDesign 0.16 (-0.25) 0.16 (-0.32) 0.15 (-0.38) 0.16 (-0.31) 0.18 (-0.19) 0.18 (-0.25) 0.18 (-0.29) 0.18 (-0.24)
ProteinMPNN 0.31 (-0.11) 0.30 (-0.19) 0.32 (-0.25) 0.31 (-0.18) 0.22 (-0.16) 0.23 (-0.21) 0.25 (-0.27) 0.23 (-0.21)
PiFold 0.28 (-0.19) 0.29 (-0.27) 0.32 (-0.32) 0.29 (-0.26) 0.26 (-0.17) 0.28 (-0.24) 0.29 (-0.30) 0.28 (-0.23)
KWDesign 0.33 (-0.25) 0.42 (-0.26) 0.45 (-0.31) 0.40 (-0.27) 0.29 (-0.22) 0.37 (-0.24) 0.41 (-0.28) 0.35 (-0.25)

Efficiency To encourage efficient and scalable models, we also benchmark the training cost,285

evaluation cost, the number of trainable parameters, and training epochs in Tab.5. We conclude that:286

1. Training these models over a single epoch is generally fast, except for KWDesign (w/o memory).287

Fortunately, with the memory retrieval technique, KWDesign can achieve a similar speed as the288

other models. It is worth noting that PiFold and KWDesign require only up to 20 epochs to289

achieve competitive performance.290

2. In terms of evaluation efficiency, iterative and one-shot models like AlphaDesign and PiFold291

perform exceptionally well, as they do not require autoregressive generation. On the other292

hand, KWDesign is relatively slower in this category as it needs to make multiple calls to large293

pre-trained models to generate higher-quality sequences.294

3. Stronger models are associated with a higher number of trainable parameters. Among these295

models, GVP shows superior efficiency in utilizing model parameters. KWDesign achieves the296

best performance with the most parameters.297

Table 5: Efficiency comparison.

Model Training Cost Evaluation Cost Others
CATH4.2 CATH4.3 PDB CATH4.2 CATH4.3 PDB Trainable Params # epochs

StructGNN 120s 112s 600s 378s 662s 1068s 1.38MB 100
GraphTrans 130s 123s 583s 438s 737s 1232s 1.53MB 100
GCA 660s 604s 1308s 378s 688s 1020s 2.09MB 100
GVP 402s 380s 840s 1874s 3193s 3753s 0.93MB 100
AlphaDesign 290s 267s 546s 31s 50s 75s 6.62MB 100
ProteinMPNN 165s 154s 540s 347s 570s 889s 1.66MB 100
PiFold 410s 364s 780s 39s 69s 162s 5.79MB 20
KWDesign(w/o memory) 3820s 3624s – 451s 752s – 54.49MB 20
KWDesign(w memory) 453s 437s – – – – 20

7 Conclusion298

Protein inverse folding has received significant attention in recent years. However, the lack of thorough299

comparisons across multiple tasks and metrics hinders the progress toward practical applications.300

To address this issue, we propose ProteinInvBench, which consists of diverse tasks, models, and301

metrics and provides a comprehensive view of computational protein design. We plan to update302

ProteinInvBench when the CATH dataset (every 12 months) is updated.303
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type of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.486

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...487

(a) If your work uses existing assets, did you cite the creators? [Yes]488

(b) Did you mention the license of the assets? [Yes]489

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]490

See our GitHub: github.com/A4Bio/OpenCPD491

(d) Did you discuss whether and how consent was obtained from people whose data you’re492

using/curating? [Yes]493

(e) Did you discuss whether the data you are using/curating contains personally identifiable494

information or offensive content? [N/A]495

5. If you used crowdsourcing or conducted research with human subjects...496

(a) Did you include the full text of instructions given to participants and screenshots, if497

applicable? [N/A]498

(b) Did you describe any potential participant risks, with links to Institutional Review499

Board (IRB) approvals, if applicable? [N/A]500

(c) Did you include the estimated hourly wage paid to participants and the total amount501

spent on participant compensation? [N/A]502
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