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Abstract

Spatio-temporal predictive learning is a learning paradigm that enables models to1

learn spatial and temporal patterns by predicting future frames from given past2

frames in an unsupervised manner. Despite remarkable progress in recent years,3

a lack of systematic understanding persists due to the diverse settings, complex4

implementation, and difficult reproducibility. Without standardization, comparisons5

can be unfair and insights inconclusive. To address this dilemma, we propose6

OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning that7

categorizes prevalent approaches into recurrent-based and recurrent-free models.8

OpenSTL provides a modular and extensible framework implementing various9

state-of-the-art methods. We conduct standard evaluations on datasets across10

various domains, including synthetic moving object trajectory, human motion,11

driving scenes, traffic flow and weather forecasting. Based on our observations,12

we provide a detailed analysis of how model architecture and dataset properties13

affect spatio-temporal predictive learning performance. Surprisingly, we find that14

recurrent-free models achieve a good balance between efficiency and performance15

than recurrent models. Thus, we further extend the common MetaFormers to boost16

recurrent-free spatial-temporal predictive learning. We open-source the code and17

models at github.com/chengtan9907/OpenSTL.18

1 Introduction19

Recent years have witnessed rapid and remarkable progress in spatio-temporal predictive learning [35,20

26, 9, 38]. This burgeoning field aims to learn latent spatial and temporal patterns through the21

challenging task of forecasting future frames based solely on given past frames in an unsupervised22

manner [37]. By ingesting raw sequential data, these self-supervised models can uncover intricate23

spatial and temporal interdependencies without the need for tedious manual annotation, enabling them24

to extrapolate coherently into the future in a realistic fashion [26, 11]. Spatio-temporal predictive25

learning benefits a wide range of applications with its ability to anticipate the future from the past in26

a data-driven way, including modeling the devastating impacts of climate change [35, 32], predicting27

human movement [55, 42], forecasting traffic flow in transportation systems [7, 48], and learning28

expressive representations from video [29, 17]. By learning to predict the future without supervision29

from massive datasets, these techniques have the potential to transform domains where anticipation30

and planning are crucial but limited labeled data exists [8, 2, 41, 28].31

⇤Equal contribution.
†Corresponding author.
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Figure 1: Two typical sptaio-temporal predictive learning models.

Despite the significance of spatio-temporal predictive learning and the development of various32

approaches, there remains a conspicuous lack of a comprehensive benchmark for this field. We33

believe that a comprehensive benchmark is essential for advancing the field and facilitating meaningful34

comparisons between different methods. In particular, there exists a perennial question that has not35

yet been conclusively answered: is it necessary to employ recurrent neural network architectures36

to capture temporal dependencies? In other words, can recurrent-free models achieve performance37

comparable to recurrent-based models without explicit temporal modeling?38

Since the seminal work ConvLSTM [35] was proposed, which ingeniously integrates convolutional39

networks and long-short term memory (LSTM) networks [13] to separately capture spatial and tem-40

poral correlations, researchers have vacillated between utilizing or eschewing recurrent architectures.41

As shown in Figure 1, (a) ConvLSTM is a prototypical recurrent-based model that infuses a recurrent42

structure into convolutional networks. (b) PredRNN [46] represents a series of recurrent models43

that revise the flow of information to enhance performance. (c) MetaVP is the recurrent-free model44

that abstracted from SimVP by substituting its IncepU [9] modules with MetaFormers [53]. (d)45

SimVP [9, 37] is a typical recurrent-free model that achieves performance comparable to previous46

state-of-the-art models without explicitly modeling temporal dependencies.47

In this study, we illuminate the long-standing question of whether explicit temporal modeling48

with recurrent neural networks is requisite for spatio-temporal predictive learning. To achieve49

this, we present a comprehensive benchmark called OpenSTL (Open Spatio-Temporal predictive50

Learning). We revisit the approaches that represent the foremost strands within a modular and51

extensive framework to ensure fair comparisons. We summarize our main contributions as follows:52

• We build OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning53

that includes 14 representative algorithms and 24 models. OpenSTL covers a wide range of54

methods and classifies them into two categories: recurrent-based and recurrent-free methods.55

• We conduct extensive experiments on a diversity of tasks ranging from synthetic moving56

object trajectories to real-world human motion, driving scenes, traffic flow, and weather57

forecasting. The datasets span synthetic to real-world data and micro-to-macro scales.58

• While recurrent-based models have been well developed, we rethink the potential59

of recurrent-free models based on insights from OpenSTL. We propose generalizing60

MetaFormer-like architectures [53] to boost recurrent-free spatio-temporal predictive learn-61

ing. Recurrent-free models can thus reformulate the problem as a downstream task of62

designing vision backbones for general applications.63
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2 Background and Related work64

2.1 Problem definition65

We propose the formal definition for the spatio-temporal predictive learning problem as follows.66

Given a sequence of video frames X t,T = {xi}t
t�T+1 up to time t spanning the past T frames, the67

objective is to predict the subsequent T 0 frames Yt+1,T 0
= {xi}t+1+T

0

t+1 from time t + 1 onwards,68

where each frame xi 2 RC⇥H⇥W typically comprises C channels, with height H and width W69

pixels. In practice, we represent the input sequence of observed frames and output sequence of70

predicted frames respectively as tensors X t,T 2 RT⇥C⇥H⇥W and Yt+1,T 0 2 RT
0⇥C⇥H⇥W .71

The model with learnable parameters ⇥ learns a mapping F⇥ : X t,T 7! Yt+1,T 0
by leveraging both72

spatial and temporal dependencies. In our case, the mapping F⇥ corresponds to a neural network73

trained to minimize the discrepancy between the predicted future frames and the ground-truth future74

frames. The optimal parameters ⇥⇤ are given by:75

⇥⇤ = argmin
⇥

L(F⇥(X t,T ),Yt+1,T 0
), (1)

where L denotes a loss function that quantifies such discrepancy.76

In this study, we categorize prevalent spatio-temporal predictive learning methods into two classes:77

recurrent-based and recurrent-free models. For recurrent-based models, the mapping F⇥ comprises78

several recurrent interactions:79

F⇥ : f✓(x
t�T+1

,ht�T+1) � ... � f✓(xt
,ht) � ... � f✓(xt+T

0�1
,ht+T

0�1), (2)
where hi represents the memory state encompassing historical information and f✓ denotes the80

mapping between each pair of adjacent frames. The parameters ✓ are shared across each state.81

Therefore, the prediction process can be expressed as follows:82

xt+1 = f✓(x
i
,hi), 8i 2 {t+ 1, · · · , t+ T

0}, (3)
For recurrent-free models, the prediction process directly feeds the whole sequence of observed83

frames into the model and outputs the complete predicted frames at once.84

2.2 Recurrent-based models85

Since the pioneering work ConvLSTM [35] was proposed, recurrent-based models [26, 27, 14,86

11, 52, 28] have been extensively studied. PredRNN [46] adopts vanilla ConvLSTM modules87

to build a Spatio-temporal LSTM (ST-LSTM) unit that models spatial and temporal variations88

simultaneously. PredRNN++ [44] proposes a gradient highway unit to mitigate the gradient vanishing89

and a Casual-LSTM module to cascadely connect spatial and temporal memories. PredRNNv2 [47]90

further proposes a curriculum learning strategy and a memory decoupling loss to boost performance.91

MIM [48] introduces high-order non-stationarity learning in designing LSTM modules. PhyDNet [11]92

explicitly disentangles PDE dynamics from unknown complementary information with a recurrent93

physical unit. E3DLSTM [45] integrates 3D convolutions into recurrent networks. MAU [3] proposes94

a motion-aware unit that captures motion information. Although various recurrent-based models have95

been developed, the reasons behind their strong performance remain not fully understood.96

2.3 Recurrent-free models97

Compared to recurrent-based models, recurrent-free models have received less attention. Previous98

studies tend to use 3D convolutional networks to model temporal dependencies [25, 1]. PredCNN [51]99

and TrajectoryCNN [22] use 2D convolutional networks for efficiency. However, early recurrent-100

free models were doubted due to their poor performance. Recently, SimVP [9, 37, 38] provided101

a simple but effective recurrent-free baseline with competitive performance. PastNet [50] and102

IAM4VP [34] are two recent recurrent-free models that perform strong performance. In this study,103

we implemented representative recurrent-based and recurrent-free models under a unified framework104

to systematically investigate their intrinsic properties. Moreover, we further explored the potential of105

recurrent-free models by reformulating the spatio-temporal predictive learning problem and extending106

MetaFormers [53] to bridge the gap between the visual backbone and spatio-temporal learning.107

3



3 OpenSTL108

3.1 Supported Methods109

3.1.1 Overview110

OpenSTL has implemented 14 representative spatio-temporal predictive learning methods under111

a unified framework, including 11 recurrent-based methods and 3 recurrent-free methods. We112

summarize these methods in Table 1, where we also provide the corresponding conference/journal113

and the types of their spatial-temporal modeling components. The spatial modeling of these methods is114

fundamentally consistent. Most methods apply two-dimensional convolutional networks (Conv2D) to115

model spatial dependencies, while E3D-LSTM and CrevNet harness three-dimensional convolutional116

networks (Conv3D) instead.117

The primary distinction between these methods lies in how they model temporal dependencies118

using their proposed modules. The ST-LSTM module, proposed in PredRNN [46], is the most119

widely used module. CrevNet has a similar modeling approach as PredRNN, but it incorporates120

an information-preserving mechanism into the model. Analogously, Casual-LSTM [44], MIM121

Block [48], E3D-LSTM [45], PhyCell [11], and MAU [3] represent variants of ConvLSTM proposed122

with miscellaneous motivations. MVFB is built as a multi-scale voxel flow block that diverges from123

ConvLSTM. However, DMVFN [15] predicts future frames frame-by-frame which still qualifies as a124

recurrent-based model. IncepU [9] constitutes an Unet-like module that also exploits the multi-scale125

feature from the InceptionNet-like architecture. gSTA [37] and TAU [38] extend the IncepU module to126

simpler and more efficient architectures without InceptionNet or Unet-like architectures. In this work,127

we further extend the temporal modeling of recurrent-free models by introducing MetaFormers [53]128

to boost recurrent-free spatio-temporal predictive learning.129

Table 1: Categorizations of the supported spatial-temporal predictive learning methods in OpenSTL.

Category Method Conference/Journal Spatial modeling Temporal modeling

Recurrent-based

ConvLSTM [35] NeurIPS 2015 Conv2D Conv-LSTM
PredNet [26] ICLR 2017 Conv2D ST-LSTM

PredRNN [46] NeurIPS 2017 Conv2D ST-LSTM
PredRNN++ [44] ICML 2018 Conv2D Casual-LSTM

MIM [48] CVPR 2019 Conv2D MIM Block
E3D-LSTM [45] ICLR 2019 Conv3D E3D-LSTM

CrevNet [52] ICLR 2020 Conv3D ST-LSTM
PhyDNet [11] CVPR 2020 Conv2D ConvLSTM+PhyCell

MAU [3] NeurIPS 2021 Conv2D MAU
PredRNNv2 [47] TPAMI 2022 Conv2D ST-LSTM

DMVFN [15] CVPR 2023 Conv2D MVFB

Recurrent-free
SimVP [9] CVPR 2022 Conv2D IncepU
TAU [38] CVPR 2023 Conv2D TAU

SimVPv2 [37] arXiv Conv2D gSTA

3.1.2 Rethink the recurrent-free models130

Although less studied, recurrent-free spatio-temporal predictive learning models share a similar131

architecture, as illustrated in Figure 2. The encoder comprises several 2D convolutional networks,132

which project high-dimensional input data into a low-dimensional latent space. When given a batch133

of input observed frames B 2 RB⇥T⇥C⇥H⇥W , the encoder focuses solely on intra-frame spatial134

correlations, ignoring temporal modeling. Subsequently, the middle temporal module stacks the135

low-dimensional representations along the temporal dimension to ascertain temporal dependencies.136

Finally, the decoder comprises several 2D convolutional upsampling networks, which reconstruct137

subsequent frames from the learned latent representations.138
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The encoder and decoder enable efficient temporal learning by modeling temporal dependencies139

in a low-dimensional latent space. The core component of recurrent-free models is the temporal140

module. Previous studies have proposed temporal modules such as IncepU [9], TAU [38], and141

gSTA [37] that have proved beneficial. However, we argue that the competence stems primarily142

from the general recurrent-free architecture instead of the specific temporal modules. Thus, we143

employ MetaFormers [53] as the temporal module by changing the input channels from the original144

C to inter-frame channels T ⇥ C. By extending the recurrent-free architecture, we leverage the145

advantages of MetaFormers to enhance the recurrent-free model. In this work, we implement146

ViT [6], Swin Transformer [23], Uniformer [19], MLP-Mixer [39], ConvMixer [40], Poolformer [53],147

ConvNeXt [24], VAN [12], HorNet [30], and MogaNet [20] for the MetaFormers-based recurrent-free148

model, substituting the intermediate temporal module in the original recurrent-free architecture.149

Recurrent-free architecture

Encoder

Decoder

MetaFormer

Input

Output
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Figure 2: The general architecture of recurrent-free models.

3.2 Supported Tasks150

We have curated five diverse tasks in our OpenSTL benchmark, which cover a wide range of scenarios151

from synthetic simulations to real-world situations at various scales. The tasks include: synthetic152

moving object trajectories, real-world human motion capture, driving scenes, traffic flow, and weather153

forecasting. The datasets used in our benchmark range from synthetic to real-world, and from micro154

to macro scales. We have provided a summary of the dataset statistics in Table 2.155

Table 2: The detailed dataset statistics of the supported tasks in OpenSTL.

Dataset Training size Testing size Channel Height Width T T 0

Moving MNIST 10,000 10,000 1 64 64 10 10
KTH 4,940 3,030 1 128 128 10 20/40

Human3.6M 73,404 8,582 3 128 128 4 4
Kitti&Caltech 3,160 3,095 3 128 160 10 1

TaxiBJ 20,461 500 2 32 32 4 4
WeatherBench-S 2,167 706 1 32/128 64/256 12 12
WeatherBench-M 54,019 2,883 4 32 64 4 4

Synthetic moving object trajectory prediction Moving MNIST [36] is one of the seminal benchmark156

datasets that has been extensively utilized. Each video sequence comprises two moving digits confined157

within a 64⇥ 64 frame. Each digit was assigned a velocity whose direction was randomly chosen158

from a unit circle and whose magnitude was also arbitrarily selected from a fixed range. Apart from159

the original Moving MNIST dataset, we provide two variants with more complicated objects (Moving160

FashionMNIST) that replace the digits with fashion objects and more complex scenes (Moving161

MNIST-CIFAR) that employ images from the CIFAR-10 dataset [18] as the background.162
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Human motion capture Predicting human motion is challenging due to the complexity of human163

movements, which vary greatly among individuals and actions. We utilized the KTH dataset [33],164

which includes six types of human actions: walking, jogging, running, boxing, hand waving, and hand165

clapping. We furnish two settings, predicting the next 20 and 40 frames respectively. Human3.6M [16]166

is an intricate human pose dataset containing high-resolution RGB videos. Analogous to preceding167

studies [11, 48], we predict the next four frames by the observed four frames.168

Driving scene prediction Predicting the future dynamics of driving scenarios is crucial for au-169

tonomous driving. Compared to other tasks, this undertaking involves non-stationary and diverse170

scenes. To address this issue, we follow the conventional approach [26] and train the model on the171

Kitti [10] dataset. We then evaluate the performance on the Caltech Pedestrian [5] dataset. To ensure172

consistency, we center-cropped and downsized all frames to 128⇥ 160 pixels.173

Traffic flow prediction Forecasting the dynamics of crowds is crucial for traffic management and174

public safety. To evaluate spatio-temporal predictive learning approaches for traffic flow prediction,175

we use the TaxiBJ [54] dataset. This dataset includes GPS data from taxis and meteorological data176

in Beijing. The dataset contains two types of crowd flows, representing inflow and outflow. The177

temporal interval is 30 minutes, and the spatial resolution is 32⇥ 32.178

Weather forecasting Global weather pattern prediction is an essential natural predicament. The179

WeatherBench [31] dataset is a large-scale weather forecasting dataset encompassing various types180

of climatic factors. The raw data is re-grid to 5.625� resolution (32⇥ 64 grid points) and 1.40625�181

(128⇥ 256 grid points). We consider two setups: First, WeatherBench-S is a single-variable setup in182

which each climatic factor is trained independently. The model is trained on data from 2010-2015,183

validated on data from 2016, and tested on data from 2017-2018, with a one-hour temporal interval.184

Second, WeatherBench-M is a multi-variable setup that mimics real-world weather forecasting more185

closely. All climatic factors are trained simultaneously. The model is trained on data from 1979186

to 2015, using the same validation and testing data as WeatherBench-S. The temporal interval is187

extended to six hours, capturing a broader range of temporal dependencies.188

3.3 Evaluation Metrics189

We evaluate the performance of supported models on the aforementioned tasks using various metrics190

in a thorough and rigorous manner. We use them for specific tasks according to their characteristics.191

Error metrics We utilize the mean squared error (MSE) and mean absolute error (MAE) to evaluate192

the difference between the predicted results and the true targets. Root mean squared error (RMSE) is193

also used in weather forecasting as it is more common in this domain.194

Similarity metrics We utilize the structural similarity index measure (SSIM) [49] and peak signal-to-195

noise ratio (PSNR) to evaluate the similarity between the predicted results and the true targets. Such196

metrics are extensively used in image processing and computer vision.197

Perceptual metrics LPIPS [56] is implemented to evaluate the perceptual difference between the198

predicted results and the true targets in the human visual system. LPIPS provides a perceptually-199

aligned evaluation for vision tasks. We utilize this metric in real-world video prediction tasks.200

Computational metrics We utilize the number of parameters and the number of floating-point201

operations (FLOPs) to evaluate the computational complexity of the models. We also report the202

frames per second (FPS) on a single NVIDIA V100 GPU to evaluate the inference speed.203

3.4 Codebase Structure204

While existing open-sourced spatio-temporal predictive learning codebases are independent, OpenSTL205

provides a modular and extensible framework that adheres to the design principles of OpenMMLab [4]206

and assimilates code elements from OpenMixup [21] and USB [43]. OpenSTL excels in user-207

friendliness, organization, and comprehensiveness, surpassing the usability of existing open-source208

STL codebases. A detailed description of the codebase structure can be found in Appendix B.209
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4 Experiment and Analysis210

We conducted comprehensive experiments on the mentioned tasks to assess the performance of the211

supported methods in OpenSTL. Detailed analysis of the results is presented to gain insights into212

spatio-temporal predictive learning. Implementation details can be found in Appendix C.213

4.1 Synthetic Moving Object Trajectory Prediction214

We conduct experiments on the synthetic moving object trajectory prediction task, utilizing three215

datasets: Moving MNIST, Moving FashionMNIST, and Moving MNIST-CIFAR. The performance of216

the evaluated models on the Moving MNIST dataset is reported in Table 3. The detailed results for217

the other two synthetic datasets are in Appendix D.1.218

It can be observed that recurrent-based models yield varied results that do not consistently outperform219

recurrent-free models, while recurrent-based models always exhibit slower inference speeds than their220

recurrent-free counterparts. Although PredRNN, PredRNN++, MIM, and PredRNNv2 achieve lower221

MSE and MAE values compared to recurrent-free models, their FLOPs are nearly five times higher,222

and their FPS are approximately seven times slower than all recurrent-free models. Furthermore, there223

are minimal disparities in the performance of recurrent-free models as opposed to recurrent-based224

models, highlighting the robustness of the proposed general recurrent-free architecture. The remaining225

two synthetic datasets, consisting of more intricate moving objects (Moving FashionMNIST) and226

complex scenes (Moving MNIST-CIFAR), reinforce the experimental findings that recurrent-free227

models deliver comparable performance with significantly higher efficiency. In these toy datasets228

characterized by high frequency but low resolution, recurrent-based models excel in capturing229

temporal dependencies but are susceptible to high computational complexity.230

Table 3: The performance on the Moving MNIST dataset.

Method Params (M) FLOPs (G) FPS MSE # MAE # SSIM " PSNR "
ConvLSTM 15.0 56.8 113 29.80 90.64 0.9288 22.10

PredNet 12.5 8.4 659 161.38 201.16 0.7783 14.67
PredRNN 23.8 116.0 54 23.97 72.82 0.9462 23.28

PredRNN++ 38.6 171.7 38 22.06 69.58 0.9509 23.65
MIM 38.0 179.2 37 22.55 69.97 0.9498 23.56

E3D-LSTM 51.0 298.9 18 35.97 78.28 0.9320 21.11
CrevNet 5.0 270.7 10 30.15 86.28 0.9350 22.15
PhyDNet 3.1 15.3 182 28.19 78.64 0.9374 22.62

MAU 4.5 17.8 201 26.86 78.22 0.9398 22.57
PredRNNv2 23.9 116.6 52 24.13 73.73 0.9453 23.21

Recurrent-based

DMVFN 3.5 0.2 1145 123.67 179.96 0.8140 16.15
SimVP 58.0 19.4 209 32.15 89.05 0.9268 21.84
TAU 44.7 16.0 283 24.60 71.93 0.9454 23.19

SimVPv2 46.8 16.5 282 26.69 77.19 0.9402 22.78
ViT 46.1 16.9 290 35.15 95.87 0.9139 21.67

Swin Transformer 46.1 16.4 294 29.70 84.05 0.9331 22.22
Uniformer 44.8 16.5 296 30.38 85.87 0.9308 22.13

MLP-Mixer 38.2 14.7 334 29.52 83.36 0.9338 22.22
ConvMixer 3.9 5.5 658 32.09 88.93 0.9259 21.93
Poolformer 37.1 14.1 341 31.79 88.48 0.9271 22.03
ConvNext 37.3 14.1 344 26.94 77.23 0.9397 22.74

VAN 44.5 16.0 288 26.10 76.11 0.9417 22.89
HorNet 45.7 16.3 287 29.64 83.26 0.9331 22.26

Recurrent-free

MogaNet 46.8 16.5 255 25.57 75.19 0.9429 22.99
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4.2 Real-world Video Prediction231

We perform experiments on real-world video predictions, specifically focusing on human motion232

capturing using the KTH and Human3.6M datasets, as well as driving scene prediction using the233

Kitti&Caltech dataset. Due to space constraints, we present the results for the Kitti&Caltech dataset234

in Table 4, while the detailed results for the other datasets can be found in Appendix D.2. We observed235

that as the resolution increases, the computational complexity of recurrent-based models dramatically236

increases. In contrast, recurrent-free models achieve a commendable balance between efficiency and237

performance. Notably, although some recurrent-based models achieve lower MSE and MAE values,238

their FLOPs are nearly 20 times higher compared to their recurrent-free counterparts. This highlights239

the efficiency advantage of recurrent-free models, especially in high-resolution scenarios.240

Table 4: The performance on the Kitti&Caltech dataset.

Method Params (M) FLOPs (G) FPS MSE # MAE # SSIM " PSNR " LPIPS #
ConvLSTM 15.0 595.0 33 139.6 1583.3 0.9345 27.46 8.58

PredNet 12.5 42.8 94 159.8 1568.9 0.9286 27.21 11.29
PredRNN 23.7 1216.0 17 130.4 1525.5 0.9374 27.81 7.40

PredRNN++ 38.5 1803.0 12 125.5 1453.2 0.9433 28.02 13.21
MIM 49.2 1858.0 39 125.1 1464.0 0.9409 28.10 6.35

E3D-LSTM 54.9 1004.0 10 200.6 1946.2 0.9047 25.45 12.60
PhyDNet 3.10 40.4 117 312.2 2754.8 0.8615 23.26 32.19

MAU 24.3 172.0 16 177.8 1800.4 0.9176 26.14 9.67
PredRNNv2 23.8 1223.0 16 147.8 1610.5 0.9330 27.12 8.92

Recurrent-based

DMVFN 3.6 1.2 557 183.9 1531.1 0.9314 26.78 4.94
SimVP 8.6 60.6 57 160.2 1690.8 0.9338 26.81 6.76
TAU 15.0 92.5 55 131.1 1507.8 0.9456 27.83 5.49

SimVPv2 15.6 96.3 40 129.7 1507.7 0.9454 27.89 5.57
ViT 12.7 155.0 25 146.4 1615.8 0.9379 27.43 6.66

Swin Transformer 15.3 95.2 49 155.2 1588.9 0.9299 27.25 8.11
Uniformer 11.8 104.0 28 135.9 1534.2 0.9393 27.66 6.87

MLP-Mixer 22.2 83.5 60 207.9 1835.9 0.9133 26.29 7.75
ConvMixer 1.5 23.1 129 174.7 1854.3 0.9232 26.23 7.76
Poolformer 12.4 79.8 51 153.4 1613.5 0.9334 27.38 7.00
ConvNext 12.5 80.2 54 146.8 1630.0 0.9336 27.19 6.99

VAN 14.9 92.5 41 127.5 1476.5 0.9462 27.98 5.50
HorNet 15.3 94.4 43 152.8 1637.9 0.9365 27.09 6.00

Recurrent-free

MogaNet 15.6 96.2 36 131.4 1512.1 0.9442 27.79 5.39

4.3 Traffic and Weather Forecasting241

Traffic flow prediction and weather forecasting are two critical tasks that have significant implications242

for public safety and scientific research. While these tasks operate at a macro level, they exhibit243

lower frequencies compared to the tasks mentioned above, and the states along the timeline tend to be244

more stable. Capturing subtle changes in such tasks poses a significant challenge. In order to assess245

the performance of the supported models in OpenSTL, we conduct experiments on the TaxiBJ and246

WeatherBench datasets. It is worth noting that weather forecasting encompasses various settings, and247

we provide detailed results of them in Appendix D.3.248

Here, we present a comparison of the MAE and RMSE metrics for representative approaches in249

single-variable weather factor forecasting at low resolution. Figure 3 displays the results for four250

climatic factors, i.e., temperature, humidity, wind component, and cloud cover. Notably, recurrent-251

free models consistently outperform recurrent-based models across all weather factors, indicating252

their potential to apply spatio-temporal predictive learning to macro-scale tasks instead of relying253

solely on recurrent-based models. These findings underscore the promising nature of recurrent-free254

models and suggest that they can be a viable alternative to the prevailing recurrent-based models in255

the context of weather forecasting. Furthermore, in the Appendix, we provide additional insights into256

high-resolution and multi-variable weather forecasting, where similar trends are observed.257
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Figure 3: The (a) MAE and (b) RMSE metrics of the representative approaches on the four weather
forecasting tasks in WeatherBench.

5 Conclusion and Discussion258

This paper introduces OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning259

with a diverse set of 14 representative methods and 24 models, addressing a wide range of challenging260

tasks. OpenSTL categorizes existing approaches into recurrent-based and recurrent-free models.261

To unlock the potential of recurrent-free models, we propose a general recurrent-free architecture262

and introduce MetaFormers for temporal modeling. Extensive experiments are conducted to sys-263

tematically evaluate the performance of the supported models across various tasks. In synthetic264

datasets, recurrent-based models excel at capturing temporal dependencies, while recurrent-free265

models achieve comparable performance with significantly higher efficiency. In real-world video266

prediction tasks, recurrent-free models strike a commendable balance between efficiency and perfor-267

mance. Additionally, recurrent-free models demonstrate significant superiority over their counterparts268

in weather forecasting, highlighting their potential for scientific applications at a macro-scale level.269

Moreover, we observed that recurrent architectures are beneficial in capturing temporal dependencies,270

but they are not always necessary, especially for computationally expensive tasks. Recurrent-free mod-271

els can be a viable alternative that provides a good balance between efficiency and performance. The272

effectiveness of recurrent-based models in capturing high-frequency spatio-temporal dependencies273

can be attributed to their sequential tracking of frame-by-frame changes, providing a local temporal274

inductive bias. On the other hand, recurrent-free models combine multiple frames together, exhibiting275

a global temporal inductive bias that is suitable for low-frequency spatio-temporal dependencies. We276

hope that our work provides valuable insights and serves as a reference for future research.277

While our primary focus lies in general spatio-temporal predictive learning, there are still several open278

problems that require further investigation. One particular challenge is finding ways to effectively279

leverage the strengths of both recurrent-based and recurrent-free models to enhance the modeling of280

spatial-temporal dependencies. While there is a correspondence between the spatial encoding and281

temporal modeling in MetaVP and the token mixing and channel mixing in MetaFormer, it raises the282

question of whether we can improve recurrent-free models by extending the existing MetaFormers.283
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