
PIFOLD: TOWARD EFFECTIVE AND EFFICIENT PROTEIN
INVERSE FOLDING

Zhangyang Gao & Cheng Tan
AI Research and Innovation Lab
Westlake University
Zhejiang University

Pablo Chacón
Department of Biological Physical Chemistry,
Rocasolano Institute of Physical Chemistry, CSIC
pablo@chaconlab.org

Stan Z. Li
AI Research and Innovation Lab
Westlake University
Stan.ZQ.Li@westlake.edu.cn

ABSTRACT
How can we design protein sequences folding into the desired structures effec-
tively and efficiently? Structure-based protein design has attracted increasing at-
tention in recent years; however, few methods can simultaneously improve the
accuracy and efficiency due to the lack of expressive features and autoregressive
sequence decoder. To address these issues, we propose PiFold, which contains a
novel residue featurizer and PiGNN layers to generate protein sequences in a one-
shot way with improved recovery. Experiments show that PiFold could achieve
51.66% recovery on CATH 4.2, while the inference speed is 70 times faster than
the autoregressive competitors. In addition, PiFold achieves 58.72% and 60.42%
recovery scores on TS50 and TS500, respectively. We conduct comprehensive
ablation studies to reveal the role of different types of protein features and model
designs, inspiring further simplification and improvement.
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Figure 1: Performance comparison. We compare graph-based protein design methods, recording the recovery
scores with the Y-axis, the inference time cost with the X-axis, and the perplexity with the circle size. The Re-
covery and perplexity results in the CATH dataset are reported without third-party training data. The inference
time is the cost to generate 100 long protein sequences (average length = 1632) on an NVIDIA V100.

1 INTRODUCTION

Proteins are linear chains of amino acids that fold into 3D structures to control cellular processes,
such as transcription, translation, signaling, and cell cycle control. Creating novel proteins for hu-
man purposes could deepen our understanding of living systems and facilitate the fight against the
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disease. One of the crucial problems is to design protein sequences that fold to desired structures,
namely structure-based protein design (Pabo, 1983). Recently, deep learning models have revolu-
tionized many fields (He et al., 2016; Li et al., 2022c; Liu et al., 2022b; Gao et al., 2022d; Tan et al.,
2022a;b;d; Gao et al., 2020b), including the protein inverse folding (Li et al., 2014; Wu et al., 2021;
Pearce & Zhang, 2021; Ovchinnikov & Huang, 2021; Ding et al., 2022; Gao et al., 2020a; 2022a;
Dauparas et al., 2022; Ingraham et al., 2019; Jing et al., 2020; Tan et al., 2022e; Hsu et al., 2022;
O’Connell et al., 2018; Wang et al., 2018; Qi & Zhang, 2020; Strokach et al., 2020; Chen et al.,
2019; Zhang et al., 2020a; Huang et al., 2017; Anand et al., 2022; Strokach & Kim, 2022; Li &
Koehl, 2014; Greener et al., 2018; Karimi et al., 2020; Anishchenko et al., 2021; Cao et al., 2021;
Liu et al., 2022a; McPartlon et al., 2022; Huang et al., 2022; Dumortier et al., 2022; Li et al., 2022a;
Maguire et al., 2021; Li et al., 2022b), among which graph-based models have made significant
progress. However, there is still room to improve the model’s accuracy and efficiency. For example,
most graph models could not achieve 50+% sequence recovery in CATH dataset due to the lack of
expressive residue representations. Moreover, they also suffer from the autoregressive generation,
resulting in low inference speed. We aim to simultaneously improve the accuracy and efficiency
with a simple model containing as few redundancies as possible.

For years, graph-based models have struggled to learn expressive residue representations through
better feature engineering, more elaborate models, and a larger training dataset. For example, Al-
phaDesign (Gao et al., 2022a) and ProteinMPNN (Dauparas et al., 2022) point out that additional
angle and distance features could significantly improve the representation quality. GraphTrans (In-
graham et al., 2019), GVP (Jing et al., 2020), and GCA (Tan et al., 2022e) introduce new modules
considering graph-based message passing, equivariant vectors, and global attention to learn geo-
metric representations from residue interactions. ESM-IF (Hsu et al., 2022) incorporates additional
training data to capture more structural learning bias. Although they have made significant progress,
two problems remain to be solved under the same data set setting: (1) Is there a better way to con-
struct effective features to facilitate learning residual representations? (2) How can we improve the
model to allow it to learn better representation from residue interactions?

Most graph models (Dauparas et al., 2022; Ingraham et al., 2019; Jing et al., 2020; Hsu et al., 2022;
Tan et al., 2022e; Hsu et al., 2022) adopt the autoregressive decoding scheme to generate amino
acids, dramatically slowing down the inference process. Interestingly, few studies have attempted to
improve the model efficiency, perhaps because the efficiency gain requires sacrificing some accuracy
(Bahdanau et al., 2015; Vaswani et al., 2017; Ghazvininejad et al., 2019; Geng et al., 2021; Xie et al.,
2020; Wang et al., 2019; Gu et al., 2018), while the latter is more important than efficiency in protein
design. To address this dilemma, AlphaDesign (Gao et al., 2022a) proposes a parallel self-correcting
module to speed up inference while almost maintaining the recovery. Nevertheless, it still causes
some performance degradation and requires two iterations for prediction. Can we generate protein
sequences in a one-shot way without loss of accuracy?

We propose PiFold (protein inverse folding) to address the problems above, containing a novel
residue featurizer and stacked PiGNNs. As to the featurizer, for each residue, we construct more
comprehensive features and introduce learnable virtual atoms to capture information overlooked by
real atoms. The PiGNN considers feature dependencies at the node, edge, and global levels to learn
from multi-scale residue interactions. In addition, we could completely remove the autoregressive
decoder by stacking more PiGNN layers without sacrificing accuracy. Experiments show that Pi-
Fold can achieve state-of-the-art recoveries on several real-world datasets, i.g., 51.66% on CATH
4.2, 58.72 on TS 50, and 60.42% on TS 500. PiFold is the first graph model that could exceed
55% recovery on TS50 and 60% recovery on TS500. In addition, PiFold’s inference efficiency in
designing long proteins is improved by 70+ times compared to autoregressive competitors. More
importantly, we conduct extensive ablation studies to reveal the role of each module, which helps
deepen the reader’s understanding of PiFold and may provide further inspiration for subsequent
research. In summary, our contributions include:

1. We propose a novel residue featurizer to construct comprehensive residue features and learn
virtual atoms to capture complementary information with real atoms.

2. We propose a PiGNN layer to learn representations from multi-scale residue interactions.

3. We suggest removing the autoregressive decoder to speed up without sacrificing accuracy.

4. We comprehensively compare advanced graph models in real-world datasets, e.g., CATH,
TS50, and TS500, and demonstrate the potential of designing different protein chains.
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2 RELATED WORKS

Structure-based protein design is the reverse problem of protein folding (Jumper et al., 2021; Wu
et al., 2022; Lin et al., 2022; Mirdita et al., 2022; Wang et al., 2022; Li et al., 2022d).

Problem definition The structure-based protein design aims to find the amino acids sequence
S = {si : 1 ≤ i ≤ n} folding into the desired structure X = {xi ∈ R3 : 1 ≤ i ≤ n}, where
n is the number of residues and the natural proteins are composed by 20 types of amino acids, i.e.,
1 ≤ si ≤ 20 and si ∈ N+. Formally, that is to learn a function Fθ:

Fθ : X 7→ S. (1)

Because homologous proteins always share similar structures (Pearson & Sierk, 2005), the problem
itself is underdetermined, i.e., the valid amino acid sequence may not be unique (Gao et al., 2020a).
To consider both sequential and structural dependencies, recent works (Hsu et al., 2022) suggest
combining the 3D structural encoder and 1D sequence decoder, where the protein sequences are
generated in an autoregressive way:

p(S|X; θ) =

n∏
t=1

p(st|s<t, X; θ). (2)

Based on different types of structural encoders, existing works can be divided into MLP-based,
CNN-based, and GNN-based ones (Gao et al., 2022a).

MLP-based models MLP is used to predict the probability of 20 amino acids for each residue,
and various methods are mainly difficult in feature construction. SPIN (Li et al., 2014) integrates
torsion angles (φ and ψ), fragment-derived sequence profiles, and structure-derived energy profiles
to predict protein sequences. SPIN2 (O’Connell et al., 2018) adds backbone angles (θ and τ ), local
contact number, and neighborhood distance to improve the recovery from 30% to 34%. (Wang
et al., 2018) uses backbone dihedrals (φ, ψ and ω), the sovlent-accessible surface area of backbone
atoms (Cα, N,C, and O), secondary structure types (helix, sheet, loop), Cα − Cα distance and
unit direction vectors of Cα − Cα, Cα − N and Cα − C, which achieves 33.0% recovery on 50
test proteins. The MLP methods have a high inference speed, but their recovery is relatively low
due to the partial consideration of structural information. These methods require complex feature
engineering using multiple databases and computational tools, limiting their widespread usage.

CNN-based models CNN methods extract residue features from the protein structure, which can
be further classified as 2D CNN-based and 3D CNN-based. The 2D CNN-based SPROF (Chen
et al., 2019) extracts structural features from the distance matrix and achieves a 39.8% recovery.
In contrast, 3D CNN-based methods extract residue features from the atom distribution in a three-
dimensional grid box. For each residue, the atomic density distribution is computed after being
translated and rotated to a standard position so that the model can learn translation and rotation
invariant features. ProDCoNN (Zhang et al., 2020a) designs a nine-layer 3D CNN to predict the
corresponding residues at each position, which uses multi-scale convolution kernels and achieves
42.2% recovery. DenseCPD (Qi & Zhang, 2020) further uses the DensetNet architecture (Huang
et al., 2017) to boost the recovery to 55.53%. Recent works (Anand et al., 2022) have also explored
the potential of deep models to generalize to de novo proteins. Although 3DCNN-based models
improve recovery, their inference is slow, probably because they require separate pre-processing and
prediction for each residue.

Graph-based models Graph methods represent the 3D structure as a k-NN graph, then use graph
neural networks (Defferrard et al., 2016; Kipf & Welling, 2016; Veličković et al., 2017; Zhou et al.,
2020; Zhang et al., 2020b; Gao et al., 2022b; Tan et al., 2022c; Gao et al., 2022c) to extract residue
features while considering structural constraints. The protein graph encodes the residue information
in node vectors and constructs edges and edge features between neighboring residues. GraphTrans
(Ingraham et al., 2019) uses the graph attention encoder and autoregressive decoder for protein
design. GVP (Jing et al., 2020) increases the performance via novel geometric vector perceptrons,
considering both scalar and vector features. GCA (Tan et al., 2022e) further introduces global graph
attention for protein design. Another related work is ProteinSolver (Strokach et al., 2020), but it was
mainly developed for scenarios where partial sequences are known and does not report results on
standard datasets. Recently, AlphaDesign (Gao et al., 2022a), ProteinMPNN (Dauparas et al., 2022)
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and Inverse Folding (Hsu et al., 2022) achieve dramatic improvements. Compared to CNN methods,
graph models do not require rotating each residue separately as in CNN, thus improving the training
efficiency. Compared to MLP methods, the well-exploited structural information helps GNN obtain
higher recovery. In summary, GNN can achieve a good balance between efficiency and accuracy.

3 METHOD

3.1 OVERALL FRAMEWORK

We show the overall PiFold framework in Figure.2, where the inputs are protein structures, and
outputs are protein sequences expected to fold into the input structures. We propose a novel residue
featurizer and PiGNN layer to learn expressive residue representations. Specifically, the residue
featurizer constructs comprehensive residue features and creates learnable virtual atoms to capture
information complementary to real atoms. The PiGNN considers multi-scale residue interactions in
node, edge, and global context levels. PiFold could generate protein sequences in a one-shot manner
with a higher recovery than previous autoregressive (Ingraham et al., 2019; Jing et al., 2020; Tan
et al., 2022e; Dauparas et al., 2022; Hsu et al., 2022) or iterative models (Gao et al., 2022a).
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Figure 2: The overall framework of PiFold. The featurizer module extracts comprehensive residue features
from the fixed real atoms and learnable virtual atoms. We stack ten layers of PiGNNs, considering node-level,
edge-level, and global-level residue interactions, to learn expressive residue representations. PiFold generates
protein sequences in a one-shot manner, without autoregressive or iterative decoding schemas.

3.2 FEATURIZE MODULE

This section describes how to construct protein graphs and residue features. We recommend readers
view Fig.3 for intuitive understanding.

Graph structure We represent the protein as a k-NN graph derived from residues to consider the
3D dependencies, where k defaults to 30. The protein graph G(A,X,E) consists of the adjacency
matrix A ∈ {0, 1}n,n, node features X ∈ Rn,fn , and edge features E ∈ Rm,fe . Note that n and m
are the numbers of nodes and edges, and we construct fn node features and fe edge features con-
sidering the inductive bias of residues’ stable structure, order, and coordinates. Since each residue
consists of Cα, C,N and O, we could construct local coordinate system Qi = [bi,ni, bi × ni] for
residue i, where ui = Cαi − Ni,vi = Ci − Cαi , bi = ui−vi

||ui−vi|| , and ni =
ui×vi
||ui×vi|| . Based on

these coordinate systems, we could construct rotation- and translation-invariant features for single
or pairs of residues, including distance, angle, and direction; refer to Fig.3.

Distance features Given atom pairs A and B, the distance feature is RBF(||A−B||), where RBF
is a radial basis function. Note thatA ∈ {Ci, Cαi , Ni, Oi}, B ∈ {Ci, Cαi , Ni, Oi}when computing
features for residue i, while A ∈ {Ci, Cαi , Ni, Oi} and B ∈ {Cj , Cαj , Nj , Oj} when computing
features for residue pair (i, j). Careful readers should notice that the number of features is propor-
tional to the square of the number of atoms, which will be further analyzed and simplified in Ta-
ble.6. Beyond the distances between real atoms, we also introduce virtual atoms {V 1

i , V
2
i , V

3
i , · · · }

for residue i. The additional node and edge features are generated by sampling A and B from

4



{V 1
i , V

2
i , V

3
i , · · · } × {V 1

i , V
2
i , V

3
i , · · · } and {V 1

i , V
2
i , V

3
i , · · · } × {V 1

j , V
2
j , V

3
j , · · · }, respectively.

To ensure that the virtual atoms are translation- and rotation- equivariant to the protein structure,
the model is required to learn their relative position in each local coordinate system. The relative
position vectors are shared across all residues, thus forcing the model to learn consensus knowledge
to extend to general scenarios. We normalize the relative coordinates by limiting their length to a
unit vector for stable training. Formally, denoting the relative position of the k-th virtual atom is
(xk, yk, zk), we compute the absolute coordinates of V ki by{

V ki = [xkbi, ykni, zk(bi × ni)] + Cαi
x2k + y2k + z2k = 1,

(3)

where xk, yk, zk are learnable parameters.
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Figure 3: PiFold featurizer. We construct distance, angle, and direction features for single or paired residues,
all invariant to rotation and translation. Learnable virtual atoms are used for additional distance features.

Angle features As shown in Figure.3, we use the bond angles (αi, βi, γi) and torsion angles
(φi, ψi, ωi) as node features considering the backbone order and local geometry between adjacent
residues. For residue pairs (i, j), the angular features represent the quaternions of relative rotation
between their local coordinate systems, written as qij = q(QTi Qj), where qij is the quaternion
encoding function.

Direction features For single residue i, we use the directions of inner atoms to Cαi as node fea-
tures. For example, the direction feature ofNi isQTi

Ni−Cαi
||Ni−Cαi ||

. Similarly, for pairs of residues (i, j),

the directions include all atoms of residue j to the Cαi , and the direction of Nj is QTi
Nj−Cαi
||Nj−Cαi ||

.
Note that we use the relative direction concerning the local coordinate system Qi to make the fea-
tures rotationally invariant.

3.3 PIGNN

We propose the PiGNN layer to learn geometric residue representations considering multi-scale
residue interactions in node, edge, and global context levels.

Local node interactions We use the simplified graph transformer (Gao et al., 2022a) to update
node representations, where the model learns multi-headed attention weights via a MLP instead of
separately computing Q and K. Formally, we take hli and elji as the output feature vectors of node
i and edge j → i in layer l. Before the first GNN layer, we use MLPs to project all input features to
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the d-dimensional space, thus h0
i ∈ Rd and e0ji ∈ Rd. When considering the attention mechanisms

centered in node i, the attention weight aji at the l + 1 layer is calculated by:{
wji = AttMLP(hlj ||elji||hli)
aji =

expwji∑
k∈Ni

expwki

(4)

whereNi is the neighborhood system of node i and || means the concatenation operation. The node
feature hli is updated by: {

vj = NodeMLP(elji||hlj)
ĥl+1
i =

∑
j∈Ni ajivj

(5)

Local edge interactions The protein graph is an attributed graph containing both node and edge
features; however, the simplified graph transformer is a node-centered network, which does not
iteratively update edge features. We find that this neglect will lead to suboptimal representations,
and introducing the edge updating layer could improve the model capability:

el+1
ji = EdgeMLP(ĥlj ||elji||ĥli) (6)

Global context attention While the local interactions play a crucial role in learning residue rep-
resentations (Ingraham et al., 2019; Jing et al., 2020; Gao et al., 2022a), the global information (Tan
et al., 2022e) is also proved to be valuable for improving protein design. However, the time complex-
ity of global attention across the whole protein is proportional to the square of the protein length,
which significantly increases the computational overhead. To simultaneously enjoy the improved
recovery and with good efficiency, we suggest learning a global context vector for each protein and
using it to apply gated attention for node representations:{

ci = Mean({ĥl+1
k }k∈Bi)

hl+1
i = ĥl+1

i � σ(GateMLP(ci))
(7)

where Bi is the index set of residues belonging to the same protein as residue i, � is element-wise
product operation, and σ(·) is the sigmoid function. The computational cost of the global context
attention is linear to the residue numbers.

4 EXPERIMENTS

We comprehensively evaluate PiFold on different datasets and show its superior accuracy and effi-
ciency. Detailed ablation studies are applied to deepen the understanding of PiFold. In summary,
we will answer the following questions:

• Performance (Q1): Could PiFold achieve SOTA accuracy and efficiency on CATH dataset?

• Ablation (Q2): How much gain can be obtained for each improvement?

• Benchmarking (Q3): Could PiFold be extended to more benchmarks, such as TS50 and TS500?

4.1 PERFORMANCE (Q1)
Objective & Setting Could PiFold achieve SOTA recovery and efficiency on real-world datasets?
Does the efficiency improvement require sacrificing the generative quality? To answer these ques-
tions, we compare PiFold against recent strong baselines on the CATH (Orengo et al., 1997) dataset.
We use the same data splitting as GraphTrans (Ingraham et al., 2019) and GVP (Jing et al., 2020),
where proteins are partitioned by the CATH topology classification, resulting in 18024 proteins for
training, 608 proteins for validation, and 1120 proteins for testing. We stack ten layers of PiGNN
to construct the PiFold model with hidden dimension 128. The model is trained up to 100 epochs
by default using the Adam optimizer on NVIDIA V100s. The batch size and learning rate used for
training are 8 and 0.001, respectively. For studying the generative quality, we report perplexity and
median recovery scores on short-chain, single-chain, and all-chain settings. Regarding efficiency,
we report the model inference time when generating 100 long chains with an average length of 1632.
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Baselines We compare PiFold with recent graph models, including StructGNN, StructTrans (In-
graham et al., 2019), GCA (Tan et al., 2022e), GVP (Jing et al., 2020), GVP-large, AlphaDesign
(Gao et al., 2022a), ESM-IF (Hsu et al., 2022), ProteinMPNN (Dauparas et al., 2022), since most
of them are open-source. To make a fair and reliable comparison, we reproduce StructGNN, Struct-
Trans, GCA, GVP, AlphaDesign, and ProteinMPNN under the same data splitting on CATH 4.2.
The relevant results were generally consistent with their papers. Because GVP-large and ESM-IF
do not provide training scripts and their code framework is different from other methods, we have
difficulty reproducing them and therefore copy the results from their manuscripts. It should be re-
minded that ESM-IF uses CATH 4.3 for training, which may lead to incomparable recovery and
perplexity due to the different data volumes. MLP and CNN-based methods are ignored here be-
cause most of them do not report results on CATH nor provide publicly available codes, and we will
discuss them in Section.4.3. For more baseline details, we suggest the reader refer to the Appendix.

Table 1: Results comparison on the CATH dataset. All baselines are reproduced under the same code frame-
work, except ones marked with †. We copy results of GVP-large and ESM-IF from heir manuscripts (Hsu et al.,
2022). The best and suboptimal results are labeled with bold and underline.

Model Perplexity ↓ Recovery % ↑ CATH version
Short Single-chain All Short Single-chain All 4.2 4.3

StructGNN 8.29 8.74 6.40 29.44 28.26 35.91 X
GraphTrans 8.39 8.83 6.63 28.14 28.46 35.82 X
GCA 7.09 7.49 6.05 32.62 31.10 37.64 X
GVP 7.23 7.84 5.36 30.60 28.95 39.47 X
GVP-large† 7.68 6.12 6.17 32.6 39.4 39.2 X
AlphaDesign 7.32 7.63 6.30 34.16 32.66 41.31 X
ESM-IF† 8.18 6.33 6.44 31.3 38.5 38.3 X
ProteinMPNN 6.21 6.68 4.61 36.35 34.43 45.96 X
PiFold 6.04 6.31 4.55 39.84 38.53 51.66 X

Recovery We report the perplexity and recovery score in Table.1, where two subsets of the full
test set are also considered, following previous works (Ingraham et al., 2019; Jing et al., 2020;
Tan et al., 2022e; Hsu et al., 2022). The ”Short” set contains proteins up to length 100, and the
”Single chain” contains proteins recorded as single chains in the Protein Data Bank. We observe
that the proposed PiFold could consistently improve the perplexity (lower is better) and recovery
score (higher is better) across different test sets. On the ”Short” and ”All” datasets, PiFold achieves
the best perplexities and recovery scores, where the recovery improvement are 3.49% and 1.94%,
respectively. On the ”Single-chain” dataset, PiFold is still the best model when using the CATH 4.2
training set.
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Figure 4: Training PiFold for 20 epochs is enough to achieve SOTA performance.

Efficiency We already know that PiFold can achieve higher recovery; does this improvement come
at the expense of efficiency? We further assess the training and inference time costs of PiFold and
the competitive baselines (AlphaDesign and ProteinMPNN). PiFold could achieve state-of-the-art
perplexity and recovery during the training phase with fewer epochs. As shown in Figure.4, 20
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epochs are enough for PiFold. As to the inference speed, all baselines except AlphaDesign adopt an
autoregressive decoder to generate residues one by one, and the computational complexity is O(L)
to the protein length L. However, PiFold enjoys O(1) computational complexity due to the one-shot
generative schema. We benchmark the inference speed of different graph models on 100 long chains
with an average length of 1632 and show the results in Fig.1, where PiFold is 70 times faster than
autoregressive competitors, including ProteinMPNN, ESM-IF, GCA, StructGNN, StructTrans, GVP.

4.2 ABLATION (Q2)

Objective & Setting How much gain could be obtained from the introduced features and modules?
Will removing the autoregressive decoder reduce performance? We conduct comprehensive ablation
studies for the features and modules to answer these questions. All models are trained up to 20
epochs with a learning rate of 0.001 using the Adam optimizer and OneCycle scheduler.

Table 2: Ablation studies of feature types. The lower the ranking number, the higher the recovery rate and the
model performs better.

Model PiFold model 1 model 2 model 3 model 4 model 5 model 6

Node
Distance X X X X X X
Angle X X X X X X
Direction X X X X X X

Edge
Distance X X X X X X
Angle X X X X X X
Direction X X X X X X

Results Perplexity ↓ 4.55 4.59 4.62 4.53 4.80 4.54 4.65
Recovery ↑ 51.66 51.49 51.05 51.61 49.61 51.51 50.86

Summary Rank – 5 3 6 1 4 2

Feature type ablation We determine the contribution rank of different types of features in Table.2.
We find that edge features are more important than node features, suggesting that amino acid types
may be inferred primarily from residue interactions. Another discovery is that edge distances are
the essential features; however, the number of distances is proportional to the square of the atom
numbers, which may lead to feature explosion and redundancy. We further analyze the role of each
edge distance in Table.6, where the ”Cα-O” and ”C-N” distances are the most significant ones. In
addition, the ablation study in Table.6 also demonstrates that virtual atoms can lead to performance
gains, and the more virtual atoms, the higher recovery. One possible explanation is that virtual atoms
can learn valuable information complementary to backbone atoms, e.g., side chain direction.

Table 3: Ablation of PiGNN modules.

PiFold model 1 model 2 model 3 model 4 model 5

Node

GCN X
GAT X
QKV X

AttMLP X X X
Edge UpdateEdge X X X X X

Global ContextAtt X X X X

Results Perplexity 4.55 4.74 4.96 4.54 4.62 4.76
Recovery 51.66 49.65 45.78 50.74 51.22 50.00

Summary Change – ↓↓ ↓↓↓ ↓↓ ↓ ↓↓

Model ablation We conduct systematic experiments to determine whether modules of PiGNN are
effective and reveal their relative importance. At to the node message passing module, we compare
the node message passing layer (AttMLP) against GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017) and QKV-based attention layer (Ingraham et al., 2019; Tan et al., 2022e; Dauparas
et al., 2022). We also investigate whether the edge updating operation and global context attention
could contribute to the model performance. As shown in Table.3, we find that the AttMLP-based
messaging mechanism can improve the recovery by at least 0.9%. In addition, the global context
attention and edge updating could improve the recovery by 0.44% and 1.22%, respectively.

AT ablation Could PiFold remove the autoregressive mechanism and still ensure good perfor-
mance? We further explore the effectiveness of the autoregressive decoder (Ingraham et al., 2019)
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Table 4: Autoregressive ablation. ”Enc” and ”AT” indicate the encoder’s and autoregressive layers’ numbers.

PiFold model 1 model 2 model 3 model 4 model 5 model 6
Enc 10 3 3 4 5 6 8
AT 0 2 3 2 1 0 0

Perplexity ↓ 4.55 5.06 5.04 4.92 4.83 4.58 4.53
Recovery ↑ 51.66 49.30 49.37 49.60 50.41 50.96 51.22
Test Time ↓ 36s 527s 707s 522s 347s 30s 34s

and one-shot PiGNN encoder. As shown in Table.4, by gradually replacing the autoregressive de-
coder with the one-shot PiGNN (model 1→ model 5), the recovery will improve. At the same time,
the inference time cost on CATH will reduce. This phenomenon suggests that the expressive encoder
is more important than the autoregressive decoder. The recovery score can be further improved by
using a deeper encoder (model 5→ model 6→ PiFold).

4.3 GENERALIZATION (Q3)

Table 5: Results on TS50 and TS500. All baselines are reproduced under the same code framework, except
ones marked with †, whose results are copied from their manuscripts. The best and suboptimal results are
labeled with bold and underline.

Group Model TS50 TS500

Perplexity ↓ Recovery ↑ Worst ↑ Perplexity ↓ Recovery ↑ Worst ↑

M
L

P SPIN † 30.30 30.30
SPIN2 † 33.60 36.60
Wang’s model † 33.00 36.14

C
N

N SPROF † 39.16 40.25
ProDCoNN † 40.69 42.20
DenseCPD † 50.71 55.53

G
ra

ph

StructGNN 5.40 43.89 26.92 4.98 45.69 0.05
GraphTrans 5.60 42.20 29.22 5.16 44.66 0.03
GVP 4.71 44.14 33.73 4.20 49.14 0.09
GCA 5.09 47.02 28.87 4.72 47.74 0.03
AlphaDesign 5.25 48.36 32.31 4.93 49.23 0.03
ProteinMPNN 3.93 54.43 37.24 3.53 58.08 0.03
PiFold (our) 3.86 58.72 37.93 3.44 60.42 0.03

Objective & Results To present a comprehensive comparison and assess the generalizability of
PiFold across different data sets, we report results on TS50 and TS500 in Table.5. We reproduce
graph-based models and show the perplexity, median recovery score, and worst recovery. For MLP
and CNN models, the results are copied from their manuscripts. We summarize that PiFold could
achieve consistent improvements across TS50 and TS500. To our knowledge, PiFold is the first
graph model that could exceed 55% recovery on TS50 and 60% on TS500. Finally, in Figure. 5, we
show the potential of PiFold in designing all-alpha, all-beta, and mixed proteins.

All-alpha structure (3tld) All-beta structure (2giy) Mixed structure (1mgr)
(Recovery=56.25, RMSD=0.87) (Recovery=54.19, RMSD=0.35) (Recovery=47.42, RMSD=0.43)

Figure 5: Visual examples. For native structures, we color Helix, Sheet, and Loop with cyan, magenta, and
orange, respectively. We use AlphaFold2 to predict the structures of designed sequences, marked in green. We
provide the recovery score and structural RMSD relative to the ground truth proteins.

9



5 CONCLUSION

We propose PiFold to improve structure-based protein design’s accuracy and efficiency simultane-
ously. A novel protein featurizer and PiGNN layer are introduced to learn expressive residue rep-
resentations. PiFold achieves 51.66%, 58.72%, and 60.42% recovery scores on CATH 4.2, TS50,
and TS500 test sets. Moreover, the inference speed of PiFold is 70 times faster than autoregressive
competitors. We also conduct comprehensive ablation to inspire future studies.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Guoxia Wang, Xiaomin Fang, Zhihua Wu, Yiqun Liu, Yang Xue, Yingfei Xiang, Dianhai Yu, Fan
Wang, and Yanjun Ma. Helixfold: An efficient implementation of alphafold2 using paddlepaddle.
arXiv preprint arXiv:2207.05477, 2022.

Jingxue Wang, Huali Cao, John ZH Zhang, and Yifei Qi. Computational protein design with deep
learning neural networks. Scientific reports, 8(1):1–9, 2018.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5377–5384, 2019.

Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
sequence. BioRxiv, 2022.

Zachary Wu, Kadina E Johnston, Frances H Arnold, and Kevin K Yang. Protein sequence design
with deep generative models. Current opinion in chemical biology, 65:18–27, 2021.

Pan Xie, Zhi Cui, Xiuying Chen, XiaoHui Hu, Jianwei Cui, and Bin Wang. Infusing sequential in-
formation into conditional masked translation model with self-review mechanism. In Proceedings
of the 28th International Conference on Computational Linguistics, pp. 15–25, 2020.

Yuan Zhang, Yang Chen, Chenran Wang, Chun-Chao Lo, Xiuwen Liu, Wei Wu, and Jinfeng Zhang.
Prodconn: Protein design using a convolutional neural network. Proteins: Structure, Function,
and Bioinformatics, 88(7):819–829, 2020a.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering, 2020b.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

13



A APPENDIX

Distance ablation We further analyze the role of each edge distance in Table.6, where the Cα-O”
and ”C-N” distances are the most significant ones. Last but not least, we find that the distances
between learnable virtual atoms significantly improve the recovery, suggesting that the model can
automatically discover critical residual points.

Table 6: Ablation of edge distance features

Model PiFold 1 2 3 4 5 6 7 8 9 10

R
ea

l
di

st
an

ce
s

Cα-Cα X X X X X
Cα-C X X X X X X X
Cα-N X X X X X
Cα-O X X X X X X X
C-C X X X X X
C-N X X X X X X X
C-O X X X X X
N-N X X X X X
N-O X X X X X X X
O-O X X X X X

V
ir

tu
al

at
om

s 0 X
1 X
2 X
3 X X X X X X X X

R
es

ul
ts Perplexity ↓ 4.55 4.55 4.53 4.53 4.54 4.54 4.52 4.55 4.59 4.54 4.53

Recovery ↑ 51.66 51.52 51.63 51.74 51.49 51.70 51.89 51.50 51.02 51.10 51.51
Change – ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓↓↓ ↓↓ ↓

Baseline details ProteinMPNN supports the design of proteins when partial residues are known,
while we focus on designing sequences from structures without any known residues. On CATH4.2,
we note that ProteinMPNN directly assigns sequence labels to residues with missing coordinates,
indicating these residues are treated as known ones. If we allow this trick, ProteinMPNN could
achieve 51% recovery on CATH4.2. To force all methods to be compared under the same setting,
we remove this operation and update the recovery to 45.96%. For ESM-IF, we report their results
without training by third-party data. They have proved that increased data volume could significantly
improve model capability, thus affecting researchers’ judgments about the models. We reproduced
most of the baselines and allow them to be trained and evaluated under the same data splitting and
code framework. We admire these works, and thank all the authors providing open-source codes.
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