
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

1

Self-supervised Learning on Graphs:
Contrastive, Generative,or Predictive

Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan.Z.Li† , Fellow, IEEE

Abstract—Deep learning on graphs has recently achieved remarkable success on a variety of tasks, while such success relies heavily
on the massive and carefully labeled data. However, precise annotations are generally very expensive and time-consuming. To address
this problem, self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed
pretext tasks without relying on manual labels. In this survey, we extend the concept of SSL, which first emerged in the fields of computer
vision and natural language processing, to present a timely and comprehensive review of existing SSL techniques for graph data.
Specifically, we divide existing graph SSL methods into three categories: contrastive, generative, and predictive. More importantly, unlike
other surveys that only provide a high-level description of published research, we present an additional mathematical summary of existing
works in a unified framework. Furthermore, to facilitate methodological development and empirical comparisons, we also summarize the
commonly used datasets, evaluation metrics, downstream tasks, open-source implementations, and experimental study of various algo-
rithms. Finally, we discuss the technical challenges and potential future directions for improving graph self-supervised learning. Latest
advances in graph SSL are summarized in a GitHub repository https://github.com/LirongWu/awesome-graph-self-supervised-learning.

Index Terms—Deep Learning, Self-supervised Learning, Graph Neural Networks, Unsupervised Learning, Survey.

✦

1 INTRODUCTION

IN recent years, deep learning on graphs has emerged
as a popular research topic, due to its ability to capture

both graph structures and node/edge features. However,
most of the works have focused on supervised or semi-
supervised learning settings, where the model is trained
by specific downstream tasks with abundant labeled data,
which are often limited, expensive, and inaccessible. Due
to the heavy reliance on the number and quality of labels,
these methods are hardly applicable to real-world scenarios,
especially those requiring expert knowledge for annotation,
such as medicine, meteorology, transportation, etc. More im-
portantly, these methods are prone to suffer from problems
of over-fitting, poor generalization, and weak robustness [1].

Recent advances in SSL [2–7] have provided novel in-
sights into reducing the dependency on annotated labels
and enable the training on massive unlabeled data. The
primary goal of SSL is to learn transferable knowledge from
abundant unlabeled data with well-designed pretext tasks
and then generalize the learned knowledge to downstream
tasks with specific supervision signals. Recently, SSL has
shown its promising capability in the field of computer
vision (CV) [2–4] and natural language processing (NLP) [5–
7]. For example, Moco [2] and SimCLR [3] augment image
data by various means and then train Convolutional Neural
Networks (CNNs) to capture dependencies between differ-
ent augmentations. Besides, BERT [5] pre-trains the model
with Masked LM and Next Sentence Prediction as pretext

• Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan.Z.Li are
with the AI Lab, School of Engineering, Westlake University, Hangzhou
310000, China. E-mail: {wulirong, linhaitao, tancheng, gaozhangyang,
stan.zq.li}@westlake.edu.cn

• † Corresponding author: Stan.Z.Li

Manuscript received April 19, 2005; revised August 26, 2015.

tasks, achieving state-of-the-art performance on up to 11
tasks compared to those conventional methods. Inspired by
the success of SSL in CV and NLP domains, it is a promising
direction to apply SSL to the graph domain to fully exploit
graph structure information and rich unlabeled data.

Compared with image and language sequence data,
applying SSL to graph data is very important and has
promising research prospects. Firstly, Firstly, along with
node features, graph data also contains structure, where
extensive pretext tasks can be designed to capture the in-
trinsic relations of nodes. Secondly, real-world graphs are
usually formed by specific rules, e.g., links between atoms
in molecular graphs are bounded by valence bond theory.
Thus, extensive expert knowledge can be incorporated as a
priori into the design of pretext tasks. Finally, graph data
generally supports transductive learning [8], such as node
classification, where the features of Train/Val/Test samples
are all available during the training process, which makes it
possible to design more feature-related pretext tasks.

Though some works have been proposed recently to
apply SSL to graph data and have achieved remarkable
success [9–19], it is still very challenging to deal with the
inherent differences between grid-like and structured-like
data. Firstly, the topology of the image is a fixed grid, and
the text is a simple sequence, while graphs are not restricted
to these rigid structures. Secondly, unlike the assumption
of independent and identical sample distribution for image
and text data, nodes in the graph are correlated with each
other rather than completely independent. This requires us
to design pretext tasks by considering both node attributes
and graph structures. Finally, there exists a gap between
self-supervised pretext tasks and downstream tasks due to
the divergence of their optimization objectives. Inevitably,
such divergence will significantly hurt the generalization of
learned models. Therefore, it is crucial to reconsider the ob-

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LirongWu/ awesome-graph-self-supervised-learning

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

2

Encoder

Encoder

Representation 1

Representation 2

Loss

(a) Contrastive Method

Encoder Decoder Reconstruction Loss

(b) Generative Method

Encoder Prediction
Head Prediction Loss

Label
Generation

Self-generated
Labels

(c) Predictive Method

Fig. 1. A comparison among the contrastive, generative, and predictive
method. (a): the contrastive method contrasts the views generated from
different augmentation T1(·) and T2(·). The information about the dif-
ferences and sameness between (inter-data) data-data pairs are used
as self-supervision signals. (b): the generative method focuses on the
(intra-data) information embedded in the graph, generally based on
pretext tasks such as reconstruction, which exploit the attributes and
structures of graph data as self-supervision signals. (c): the predictive
method generally self-generates labels by some simple statistical anal-
ysis or expert knowledge, and designs prediction-based pretext tasks
based on self-generated labels to handle the data-label relationship.

jectives of pretext tasks to better match that of downstream
tasks and make them consistent with each other.

In this survey, we extend the concept of SSL, which
first emerged in the fields of computer vision and natural
language processing, to present a timely and comprehensive
review of the existing SSL techniques for graph data. Specif-
ically, we divide existing graph SSL methods into three
categories: contrastive, generative, and predictive, as shown
in Fig. 1. The core contributions of this survey are as follow:

• Present comprehensive and up-to-date reviews on
existing graph SSL methods and divide them into
three categories: contrastive, generative, and predic-
tive, to improve their clarity and accessibility.

• Summarize the core mathematical ideas of recent
research in graph SSL within a unified framework.

• Summarize the commonly used datasets, evaluation
metrics, downstream tasks, open-source codes, and
experimental study of surveyed methods, setting the
stage for developments of future works.

• Point out the technical limitations of current research
and discuss promising directions on graph SSL.

Compared to the existing surveys on SSL [1], we purely
focus on SSL for graph data and present a more mathemat-
ical review on the recent progress from the year 2019 to
2021. Though there have been two surveys on graph SSL,
we argue that they are immature work with various flaws
and shortcomings. For example, [20] clumsily describes each
method in 1-2 sentences, lacking deep insight into the mathe-
matical ideas and implementation details behind. Moreover,

the number of reviewed methods in [21] are even fewer than
half of ours, as it spends too much description on those
less important contents, but ignores the core of graph SSL,
i.e., the design of the pretext task. Compared with [20, 21],
our advantages are as follow: (1) more mathematical details,
striving to summarize each method with one equation; (2)
more implementation details, including 41 datasets statistics
(vs 20 datasets in [20]), evaluation metrics, and open-source
code; (3) more thorough experimental study for fair compar-
ison; (4) more fine-grained, clarified and rational taxonomy;
(5) more surveyed works, 71 methods (vs 47 methods in
[21] vs 18 methods in [20]); (5) more up-to-data review, with
almost all surveyed works published after 2019.

2 PROBLEM STATEMENT

2.1 Notions and Definitions
Unless particularly specified, the notations used in this
survey are illustrated in Table. 1.

Definition 1 (Graph): We use g = (V, E) to denote a graph
where V is the set of N nodes and E is the set of M edges.
Let vi ∈ V denote a node and ei,j denote an edge between
node vi and vj . The l-hop neighborhood of a node vi is
denoted as N (l)

i = {vj ∈ V|d(vi, vj) ≤ l} where d(vi, vj)
is the shortest path length between node vi and vj . In
particular, the 1-hop neighborhood of a node vi is denoted
as Ni = N (1)

i = {vj ∈ V|ei,j ∈ E}. The graph structure can
also be represented by an adjacency matrix A ∈ [0, 1]N×N

with Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E .
Definition 2 (Attribute Graph): Attributed graph, an oppo-

site concept to the unattributed one, refers to a graph where
nodes or edges are associated with their own features (a.k.a,
attributes). For example, each node vi in graph g may be
associated with a feature vector xi ∈ Rd0 , such a graph is
referred to an attributed graph g = (V, E ,X) or g = (A,X),
where X = [x1,x2, . . . ,xN] is the node feature matrix.
Meanwhile, an attributed graph g = (V, E ,Xe) may have
edge attributes Xe, where Xe ∈ RM×b0 is an edge feature
matrix with xe

i,j ∈ Rb0 being the feature vector of edge ei,j .
Definition 3 (Dynamic Graph): A dynamic graph is a

special attributed graph where the node set, graph structure
and node attributes may change dynamically over time. The
dynamic graph can be formalized as g = (V(t), E(t),X(t)) or
g = (A(t),X(t)), where E(t) represents the edge set at the
time step t and A

(t)
i,j = 1 denotes an interaction between

node vi and vj at the time step t (1 ≤ t ≤ T).
Definition 4 (Heterogeneous Graph): Consider a graph g =

(V, E) with a node type mapping function fv : V → Yv and
an edge type mapping function fe : E → Ye, where Yv is the
set of node types and Ye is the set of edge types. For a graph
with more than one type of node or edge, e.g., |Yv| > 1 or
|Ye| > 1, we define it as a heterogeneous graph, otherwise,
it is a homogeneous graph. There are some special types of
heterogeneous graphs: a bipartite graph with |Yv| = 2 and
|Ye| = 1, and a multiplex graph with |Yv| = 1 and |Ye| > 1.

Definition 5 (Spatial-Temporal Graph): A spatial-temporal
graph is a special dynamic graph, but noly the node at-
tributes change over time with the node set and graph
structure unchanged. The spatial-temporal graph is defined
as g = (V, E ,X(t)) or g = (A,X(t)), where X(t) ∈ RN×d0 is
the node feature matrix at the time step t (1 ≤ t ≤ T).

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

3

2.2 Downstream Tasks

The downstream tasks for graph data are divided into three
categories: node-level, link-level, and graph-level tasks. A
node-level graph encoder fθ(·) is often used to generate
node embeddings for each node, and a graph-level graph
encoder fγ(·) is used to generate graph-level embeddings.
Finally, the learned embeddings are fed into an optional
prediction head gω(·) to perform specific downstream tasks.

Node-level tasks. Node-level tasks focus on the proper-
ties of nodes, and node classification is a typical node-level
task where only a subset of node VL with corresponding
labels YL are known, and we denote the labeled data as
DL = (VL,YL) and unlabeled data as DU = (VU ,YU). Let
fθ : V → Y be a graph encoder trained on labeled data DL

so that it can be used to infer the labels YU of unlabeled
data. Thus, the objective function for node classification can
be defined as minimizing loss Lnode, as follows

min
θ,ω
Lnode (A,X, θ, ω) =

∑
(vi,yi)∈DL

ℓ
(
gω(hi), yi

)
(1)

where H = fθ(A,X) and hi is the embedding of node vi in
the embedding matrix H. ℓ(·, ·) denotes the cross entropy.

Link-level tasks. Link-level tasks focus on the repre-
sentation of node paris or properties of edges. Taking link
prediction as an example, given two nodes, the goal is to
discriminate if there is an edge between them. Thus, the
objective function for link prediction can be defined as,

min
θ,ω
Llink (A,X, θ, ω) =

∑
vi,vj∈V,i̸=j

ℓ
(
gω(hi,hj),Ai,j

)
(2)

where H = fθ(A,X) and hi is the embedding of node vi in
the embedding matrix H. gω(·) linearly maps the input to a
1-dimension value, and ℓ(·, ·) is the cross entropy.

Graph-level tasks. Graph-level tasks learn from multiple
graphs in a dataset and predict the property of a single
graph. For example, graph regression is a typical graph-
level task where only a subset of graphs GL with corre-
sponding properties PL are known, and we denote it as
DL = (GL,PL). Let fγ : G → P be a graph encoder trained
on labeled data DL and then used to infer the properties
PU of unlabeled graphs GU . Thus, the objective function for
graph regression can be defined as minimizing loss Lgraph,

min
γ,ω
Lgraph (Ai,Xi, γ, ω) =

∑
(gi,pi)∈DL

ℓ
(
gω(hgi), pi

)
(3)

where hgi = fγ(A,X) is the graph-level representation of
graph gi. gω(·) linearly maps the input to a 1-dimension
value, and ℓ(·, ·) is the mean absolute error.

2.3 Graph Neural Networks

Graph neural networks (GNN) [8, 22, 23] are a family of neu-
ral networks that have been widely used as the backbone
encoder in most of the reviewed works. A general GNN
framework involves two key computations for each node
vi at every layer: (1) AGGREGATE operation: aggregating
messages from neighborhood Ni; (2) UPDATE operation:
updating node representation from its representation in the

TABLE 1
Notations used in this paper.

Notations Descriptions
Rm m-dimensional Euclidean space
a,a,A Scalar, vector, matrix
G The set of graphs, G = {g1, g2, · · · , g|G|}
g A graph g = (V, E)
V The set of nodes in graph g
vi A node vi ∈ V
E The set of edges in graph g
ei,j An edge ei,j ∈ E between node vi and node vj
N Number of nodes, N = |V|
M Number of edges, M = |E|
A ∈ RN×N A graph adjacency matrix
D The degree matrix of A, Dii =

∑n
j=1 Aij

IN Identity matrix of dimension N

N (l)
i l-hop Neighborhood set of node vi

Ni 1-hop Neighborhood set of node vi
L The layer number
l The layer index, 1 ≤ l ≤ L
T The time step/iteration number
t The time step/iteration index, 1 ≤ t ≤ T
d0 Dimension of node feature vectors
dl Dimension of node embeddings in the l-th layer
b0 Dimension of edge feature vectors
xi ∈ Rd0 Feature vector of node vi
X ∈ RN×d0 Node feature matrix, X = [x1,x2, . . . ,xN]

X(t) ∈ RN×d0 Node feature matrix at the time step t

xe
i,j ∈ Rb0 Feature vector of edge ei,j

Xe ∈ RM×b0 Edge feature matrix
h
(l)
i ∈ Rdl Node embedding of node vi in the l-th layer

H(l) ∈ RN×dl Embedding matrix in the l-th layer
hi ∈ RdL Node embedding in the L-th layer, hi = h

(L)
i

H ∈ RN×dL Embedding matrix in the L-th layer, H = H(L)

hg ∈ RdL Graph-level representation of graph g
| · | The length of a set
⊙ Element-wise multiplication operation
∥ Vector concatenation
σ(·) The logistic sigmoid activation function
tanh(·) The hyperbolic tangent activation function
LeakyReLU(·) The LeakyReLU activation function
READOUT(·) The readout function
fθ, fθ1 , fθ2 , · · · Node-level encoder to output H = fθ(A,X)
fγ , fγ1 , fγ2 , · · · Graph-level encoder to output hg = fγ(A,X)
gω , gω1 , gω2 , · · · The prediction head
T , T1, T2, · · · The data augmentation transformation
W,Θ, θ, γ, ω Learnable model parameters

previous layer and the aggregated messages. Considering a
L-layer GNN, the formulation of the l-th layer is as follows

a
(l)
i = AGGREGATE(l)

({
h
(l−1)
j : vj ∈ Ni

})
h
(l)
i = UPDATE(l)

(
h
(l−1)
i ,a

(l)
i

) (4)

where 1 ≤ l ≤ L and h
(l)
i is the embedding of node vi in the

l-th layer with h
(0)
i = xi. For node-level or edge-level tasks,

the node representation h
(L)
i can sometimes be used for

downstream tasks directly. However, for graph-level tasks,
an extra READOUT function is required to aggregate node
features to obtain a graph-level representation hg , as follow

hg = READOUT
({

h
(L)
i | vi ∈ V

})
(5)

The design of these component functions is crucial, but
it is beyond the scope of this paper. For a thorough review,
we refer readers to the recent survey [24].

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

4

Encoder Pretext
Task

Prediction
Head

Downstream
Task

Doctor

Police

Waiter

Score

EncoderWorker Student

Writer ?()
Labels

Graph Data

Graph Data

Parameter

Step 1
Pre-train

Step 2
Fine-tune

Prediction Results

(a) Pre-train&Fine-tune (P&F)

Encoder Pretext
Task

Prediction
Head

Downstream
Task

Doctor

Police

Waiter

Doctor

Police

Waiter

Score
?

?

Graph Data
with Labels

Prediction Results

(b) Joint Learning (JL)

Encoder Pretext
Task

Prediction
Head

Downstream
Task

Doctor

Police

Waiter

Score

Frozen
Representations

Doctor Police

Waiter ?
Labels

()

Graph Data

Prediction Results

Step 1
Pre-train

Step 2
Prediction

(c) Unsupervised Representation Learning (URL)

Fig. 2. An overview of training strategies for graph SSL. The train-
ing strategies can be divided into three categories. (a): for the Pre-
train&Fine-tune strategy, it first pre-trains the encoder fθ(·) with un-
labeled nodes by the self-supervised pretext tasks. The pre-trained
encoder’s parameters θinit are then used as the initialization of the
encoder for supervised fine-tuning on downstream tasks. (b): for the
Joint Learning strategy, an auxiliary pretext task is included to help learn
the supervised downstream task. The encoder is trained through both
the pretext task and the downstream task simultaneously. (c): for the
Unsupervised Representation Learning strategy, it first pre-trains the
encoder fθ(·) with unlabeled nodes by the self-supervised pretext tasks.
The pre-trained encoder’s parameters θinit are then frozen and used in
the supervised downstream task with additional labels.

2.4 Training Strategy

The training strategies can be divided into three categories:
Pre-training and Fine-tuning (P&F), Joint Learning (JL), and
Unsupervised Representation Learning (URL), with their
detailed workflow shown in Fig. 2.

Pre-training and Fine-tuning (P&F). In this strategy, the
model is trained in a two-stage paradigm [10]. The encoder
fθ(·) is pre-trained with the pretext tasks, then the pre-
trained parameters θinit are used as the initialization of the
encoder fθinit

(·). At the fine-tuning stage, the pre-trained
encoder fθinit

(·) is fine-tuned with a prediction head gω(·)
under the supervision of specific downstream tasks. The
learning objective is formulated as

θ∗, ω∗ = arg min
(θ,ω)
Ltask(fθinit

, gω) (6)

with initialization θinit = argminθ Lssl(fθ), where Ltask

and Lssl is the loss function of downstream tasks and self-
supervised pretext tasks, respectively.

Joint Learning. In this scheme, the encoder fθ(·) is
jointly trained with a prediction head gω(·) under the
supervision of pretext tasks and downstream tasks. The
joint learning strategy can also be considered as a kind

of multi-task learning or the pretext tasks are served as a
regularization. The learning objective is formulated as

θ∗, ω∗ = arg min
(θ,ω)
Ltask(fθ, gω) + α argmin

θ
Lssl(fθ) (7)

where α is a trade-off hyperparameter.
Unsupervised Representation Learning. This strategy

can also be considered as a two-stage paradigm, with the
first stage similar to Pre-training. However, at the second
stage, the pre-trained parameters θinit are frozen and the
model is trained on the frozen representations with down-
stream tasks only. The learning objective is formulated as

ω∗ = argmin
ω
Ltask(fθinit

, gω) (8)

with initialization θinit = argminθ Lssl(fθ). Compared
to other schemes, unsupervised representation learning is
more challenging since the learning of the encoder fθ(·)
depends only on the pretext task and is frozen in the
second stage. In contrast, in the P&F strategy, the encoder
fθ(·) can be further optimized under the supervision of the
downstream task during the fine-tuning stage.

3 CONTRASTIVE LEARNING

3.1 A Unified Perspective

Inspired by the recent advances of contrastive learning in
CV and NLP domains, some works have been proposed to
apply contrastive learning for graph data. However, most
works simply present motivations or implementations from
different perspectives, but adopt very similar (or even the
same) architectures and designs in practice, which leads to
the emergence of duplicative efforts and hinders the healthy
development of the community. In this survey, we therefore
review existing work from a unified perspective and unify
them into a general framework, and present various designs
for the three main modules for contrastive learning, e.g.,
data augmentation, pretext tasks, and contrastive objectives.
In turn, the contributions of existing work can be essentially
summarized as innovations in these three modules.

In practice, we usually generate multiple views for each
instance through various data augmentations. Two views
generated from the same instance are usually considered as
a positive pair, while two views generated from different
instances are considered as a negative pair. The primary
goal of contrastive learning is to maximize the agreement
of two jointly sampled positive pairs against the agreement
of two independently sampled negative pairs. The agree-
ment between views is usually measured through Mutual
Information (MI) estimation. Given a graph g = (A,X), K
different transformations T1, T1, · · · , TK can be applied to
obtain multiple views {(Ak,Xk)}Kk=1, defined as

Ak,Xk = Tk(A,X); k = 1, 2, · · · ,K (9)

Secondly, a set of graph encoders {fθk}Kk=1 (may be identical
or share weights) can be used to generate different represen-
tations h1,h2, · · · ,hK for each view, given by

hk = fθk(Ai,Xi); k = 1, 2, · · · ,K (10)

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

5

The contrastive learning aims to maximize the mutual
information of two views from the same instance as

max
θ1,θ2,··· ,θK

∑
i

∑
j ̸=i

αi,jMI(hi,hj) (11)

where i, j ∈ {1, 2, · · · ,K}, {hi}Ki=1 are representations
generated from g = (A,X), which are taken as positive
samples. MI(hi,hj) are the mutual information between
two representations hi and hj . Note that depending on differ-
ent pretext tasks, {hk}Kk=1 may not be at the same scale, either
being a node-level, subgraph-level, or graph-level represen-
tation. The negative samples to contrast with {hi}Ki=1 can
be taken as representations {h̃i}Ki=1 that are generated from
another graph g̃ = (Ã, X̃). Besides, we have αi,j ∈ {0, 1},
and their concrete values vary in different schemes.

The design of the contrastive learning for graph data can
be summarized as three main modules: (1) data augmenta-
tion strategy, (2) pretext task, and (3) contrastive objective.
The design of graph encoder is not the focus of graph self-
supervised learning and beyond the scope of this survey;
for more details, please refer to the related survey [24].

3.2 Data Augmentation

The recent works in the CV domain show that the success
of contrastive learning relies heavily on well-designed data
augmentation strategies, and in particular, certain kinds of
augmentations play a very important role in improving
performance. However, due to the inherent non-Euclidean
properties of graph data, it is difficult to directly apply data
augmentations designed for images to graphs. Here, we
divide the data augmentation strategy for graph data into
four categories: feature-based, structure-based, sampling-
based, and adaptive augmentation. An overview of four
types of augmentations is presented in Fig. 3.

3.2.1 Feature-based Augmentation
Given an input graph (A,X), a feature-based augmentation
only performs transformation on the node feature matrix X
or edge feature matrix Xe. Without loss of generality, we
take X as an example, give by

Ã, X̃ = T (A,X) = A, TX(X) (12)

Attribute Masking. The attribute masking [10, 11, 25–27]
randomly masks a small portion of attributes. We specify
TX(X) for the attribute masking as

TX(X) = X⊙ (1− L) +M⊙ L (13)

where L is a masking location matrix where Li,j = 1 if the
j-th element of node vi is masked, otherwise Li,j = 0. M
denotes a masking value matrix. The matrix L is usually
sampled by Bernoulli distribution or assigned manually.
Besides, different schemes of M result in different augmen-
tations. For example, M = 0 denotes a constant masking,
M ∼ N(0,Σ) replaces the original values by Gaussian
noise and M ∼ N(X,Σ) adds Gaussian noise to the input.

Attribute Shuffling. The attribute shuffling [9, 28–31]
performs the row-wise shuffling on the attribute matrix X.
That is, the augmented graph consists of the same nodes as
the original graph, but they are located in different places in

the graph, and receive different contextual information. We
specify TX(X) for the attribute shuffling as

TX(X) = X[idx, :] (14)

where idx is a list containing numbers from 1 to N(N =
|V|), but with a random arrangement.

3.2.2 Structue-based Augmentation
Given a graph (A,X), a structue-based augmentation only
performs transformation on adjacent matrix A, as follows

Ã, X̃ = T (A,X) = TA(A),X (15)

Edge Perturbation. The edge perturbation [14, 25, 32–34]
perturbs structural connectivity through randomly adding
or removing a certain ratio of edges. We specify TA(A) for
the edge perturbation as

TA(A) = A⊙ (1− L) + (1−A)⊙ L (16)

where L is a perturbation location matrix where Li,j =
Lj,i = 1 if the edge between node vi and vj will be
perturbed, otherwise Li,j = Lj,i = 0. Different values in L
result in different perturbation strategies, and more values
set to 1 in L, more server the perturbation is.

Node Insertion. The node insertion [34] adds K nodes
Va = {vN+k}Kk=1 to node set V and add some edges be-
tween Va and V . For a structure transformation Ã = TA(A),
we have Ã:N,:N = A. Given the connection ratio r, we have

p(Ãi,j = Ãj,i = 1) = r, p(Ãi,j = Ãj,i = 0) = 1− r (17)

for N + 1 ≤ i, j ≤ N +K.
Edge Diffusion. The edge diffusion [18, 35] generates

a different topological view of the original graph structure,
with the general edge diffusion process defined as

TA(A) =
∞∑
k=0

ΘkS
k (18)

where S ∈ RN×N is the generalized transition matrix and
Θ is the weighting coefficient which satisfies

∑∞
k=0 Θk =

1,Θk ∈ [0, 1]. Two instantiations of Equ. 18 are: (1) Per-
sonalized PageRank (PPR) with S = D−1/2AD−1/2 and
Θk = α(1−α)k, and (2) Heat Kernel (HK) with S = AD−1

and Θk = e−ttk/k!, where α denotes teleport probability in
a random walk and t is the diffusion time. The closed-form
solutions of PPR and HK diffusion are formulated as

T PPR
A (A) =α

(
In − (1− α)D−1/2AD−1/2

)−1

T HK
A (A) = exp

(
tAD−1 − t

) (19)

3.2.3 Sampling-based Augmentation
Given an input graph (A,X), a sampling-based augmenta-
tion performs transformation on both the adjacent matrix A
and feature matrix X, as follows

Ã, X̃ = T (A,X) = A[S,S],X[S, :] (20)

where S ∈ V and existing methods usually apply five
sampling strategies to obtain the node subset S : uniform
sampling, ego-nets sampling, random walk sampling, im-
portance sampling, and knowledge-based sampling.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

6

(a) Feature-based (b) Structue-based (c) Sampling-based

0.7

0.8
0.9

0.8

0.1

0.2

0.8

0.8
0.9

0.60.1

0.2

(d) Adaptive

Fig. 3. A comparison of the feature-based, structue-based, sampling-based, and adaptive augmentation. The feature-based augmentation generally
randomly (or manually) masks a small portion of node or edge attributes with constants or random values. The structue-based augmentation
randomly (or manually) adds or removes small portions of edges from the graph, which includes methods like edge perturbation, node insertion,
and edge diffusion. The sampling-based augmentation samples nodes and their connected edges from the graph under specific rules, which include
Uniform Sampling, Ego-net Sampling, Random Walk Sampling, Importance Sampling, Knowledge Sampling, etc. The adaptive sampling adopts
attention or gradient-based schemes to perform adaptive sampling based on the learned attention score or gradient magnitude. The numbers in
the Fig. 3(d) are the importance scores of the nodes and edges, and we sample the most important 4 nodes and 3 edges as an example.

Uniform Sampling. The uniform sampling [34] (a.k.a
Node Dropping) uniformly samples a given number of
nodes S from V and remove the remaining nodes directly.

Ego-nets Sampling [11, 36, 37]. Given a typical graph
encoder with L layers, the computation of the node rep-
resentation only depends on its L-hop neighborhood. In
particular, for each node vi, the transformation T (·) samples
the L-ego net surrounding node vi, with S defined as

S = {vj | d(vi, vj) ≤ L} (21)

where d(vi, vj) is the shortest path length between node
vi and vj . The Ego-nets Sampling is essentially a special
version of Breadth-First Search (BFS) sampling.

Random Walk Sampling [18, 25, 38]. It starts a random
walk on graph g from the ego node vi. The walk iteratively
travels to its neighborhood with the probability proportional
to the edge weight. In addition, at each step, the walk re-
turns back to the starting node vi with a positive probability
α. Finally, the visited nodes are collected into a node subset
S .

Importance Sampling [19]. Given a node vi, we can sam-
ple a subgraph based on the importance of its neighboring
nodes, with an importance score matrix M defined as

M = α · (In − (1− α) ·AD−1) (22)

where α ∈ [0, 1] is a hyperparameter. For a given node vi,
the subgraph sampler chooses top-k important neighbors
anchored by vi to constitute a subgraph with the index of
chosen nodes denoted as S = top− rank(M(i, :), k).

Knowledge Sampling [39]. The knowledge-based sam-
pling incorporates domain knowledge into subgraph sam-
pling. For example, the sampling process can be formal-
ized as a library-based matching problem by counting the
frequently occurring and bioinformatics substructures in the
molecular graph and building libraries (or tables) for them.

3.2.4 Adaptive Augmentation
The adaptive augmentation usually employs attention
scores or gradients to guide the selection of nodes or edges.

Attention-based. The attention-based methods typically
define importance scores for nodes or edges and then aug-
ment data based on their importance. For example, GCA
[40] proposes to keeps important structures and attributes
unchanged, while perturbing possibly unimportant edges
and features. Specifically, the probability of edge removal
and feature masking should be closely related to their im-
portance. Given a node centrality measure φc(·) : V → R+,

it defines edge centrality as the average of two adjacent
nodes’ centrality scores, i.e., si,j = log

φc(vi)+φc(vj)
2 . Then,

the importance of the edge ei,j is defined as

pi,j = min

(
smax − si,j
smax − µs

· pe, pτ
)

(23)

where pe is a hyperparameter that controls the overall prob-
ability of removing edges, smax and µs is the maximum and
average of {si,j}Nj=1 and pτ < 1 is a cut-off probability, used
to truncate the probabilities since extremely high removal
probabilities will overly corrupt graph structures. The node
centrality can be defined as degree centrality, Eigenvector
centrality [41], or PageRank centrality [42], which results
in three variants. The attribute masking based on node
importance is the same as above and will not be repeated.

Gradient-based. Unlike the simple uniform edge re-
moval and insertion as in GRACE [26], GROC [43] adap-
tively performs gradient-based augmentation guided by
edge gradient information. Specifically, it first applies two
stochastic transformations T1(·) and T2(·) to graph g =
(A,X) to obtain two views, masking node attributes inde-
pendently with probability r1 and r2 and then computing
the contrastive loss Lssl between these two views. For a
given node vi, an edge removal candidate set is defined as

S− =
{
(vi, vk)

∣∣∣vk ∈ N (l)
i

}
(24)

, and an edge insertation candidate set is defined as

S+ =
{
(vi, vk)

∣∣∣vk ∈
(
∪vm∈BN (l)

m \N (l)
i

)}
(25)

where B ⊂ V is a node batch. S+ is restricted to the set of
edges (vi, vk) where vi is an anchor node, and vk is within
the l-hop neighborhood of some other anchors vm ̸= vi
but not within the l-hop neighborhood of node vi. Finally,
we backpropagate the loss Lssl to obtain gradient intensity
values for each edge in S− and S+. A further gradient-
based adaptive augmentations are applied on the views
by removing a subset of edges with minimal edge gradient
magnitude values in S− and inserting a subset of edges with
the maximal edge gradient magnitude values in S+.

3.3 Pretext Task
The contrastive learning aims to maximize the agreement
of two jointly sampled positive pairs. Depending on the
definition of a graph view, the scale of the view may be
local, contextual, or global, corresponding to the node-
level, subgraph-level, or graph-level information in the

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

7

Encoder

Encoder
Context-Contex
Global-Global
Local-Local

Local-Global
Local-Context

Cotext-Global

Corss-Scale

Same-Scale

View 1

View 2

Fig. 4. A general framework for contrastive learning methods with three main modules: data augmentation strategies, pretext tasks, and contrastive
objectives. Different views can be generated by a single or a combination of augmentations T1(·) and T2(·). For graph encoder fθ1 (·) and fθ2 (·),
the commonly used graph neural networks include GAE [44], VGAE [44], etc. However, the design of graph encoder is not the focus of graph SSL
and thus beyond the scope of this survey. The two contrasting views may be local, contextual, or global, corresponding to node-level (marked in
red), subgraph-level (marked in green), or graph-level (marked in yellow) information in the graph. The contrastive learning can thus contrast two
views at the same or different scales, which leads to two categories of algorithm: (1) same-scale contrasting, including local-local, context-context,
and global-global contrasting; and (2) cross-scale contrasting, including local-context, local-global, and context-global contrasting.

graph. Therefore, contrastive learning may contrast two
graph views at the same or different scales, which leads to
two categories: (1) Contrasting with the same-scale and (2)
Contrasting with the cross-scale. The two views in the same-
scale contrasting, either positive or negative pairs, are at the
same scale, such as node-node and graph-graph pairs, while
the two views in the cross-scale contrasting have different
scales, such as node-subgraph or node-graph contrasting.
We categorize existing methods from these two perspectives
and present them in a unified framework as shown Fig. 4.
In this section, due to space limitations, we present only
some representative contrastive methods and place those
relatively less important works in Appendix A.

3.3.1 Contrasting with the same-scale
The same-scale contrastive learning is further refined into
three categories based on the different scales of the views:
local-local, context-context, and global-global contrasting.

3.3.1.1 Global-Global Contrasting

GraphCL [25]. Four types of graph augmentations
{Tk}4k=1 are applied to incorporate various priors: (1) Node
Dropping T1(·); (2) Edge Perturbation T2(·); (3) Attribute
Masking T3(·); (4) Subgraph Sampling T4(·). Given a graph
gi = (Ai,Xi) ∈ G, it first applies a series of graph augmen-
tations T (·) randomly selected from {Tk}4k=1 to generate
an augmented graph g̃i = (Ãi, X̃i) = T (Ai,Xi), and
then learns to predict whether two graphs originate from
the same graph or not. Specifically, a shared graph-level
encoder fγ(·) is applied to obtain graph-level representa-
tions hgi = fγ(Ai,Xi) and h̃g̃i = fγ(Ãi, X̃i), respectively.
Finally, the learning objective is defined as follows

max
θ

1

|G|
∑
gi∈G
MI

(
hgi , h̃g̃i

)
(26)

Contrastive Self-supervised Learning (CSSL) [34] fol-
lows a very similar framework to GraphGL, differing only in
the way the data is augmented. Along with node dropping,
it also considers node insertion as an important augmen-
tation strategy. Specifically, it randomly selects a strongly-
connected subgraph S, removes all edges in S, adds a new
node vi, and adds an edge between vi and each node in S.

Label Contrastive Coding (LCC) [45] is proposed to en-
courage intra-class compactness and inter-class separability.
To power contrastive learning, LLC introduces a dynamic
label memory bank and a momentum updated encoder.
Specifically, the query graph (gq, yq) and key graph (gk, yk)
are encoded by two graph-level encoder fγq (·) and fγk

(·) to
obtain graph-level representations hgq and hgk respectively.
If hgq and hgk have the same label, they are considered as
the positive pair, otherwise, they are the negative pair. The
label contrastive loss encourages the model to distinguish
the positive pair from the negative pair. For the encoded
query (gq, yq), its label contrastive loss is calculated by

max
γq

log

∑m
i=1 Iyi=yq · exp

(
hgq · h

(i)
gk /τ

)
∑m

i=1 exp
(
hgq · h

(i)
gk /τ

) (27)

where m is the size of memory bank, τ is the temperature
hyperparameter, and Iyi=yq

is an indicator function to deter-
mine whether the label of i-th key graph g

(i)
k in the memory

bank is the same as yq . The parameter γk of fγk
(·) follows a

momentum-based update mechanism as Moco [2], given by

γk ←− αγk + (1− α)γq (28)

where α ∈ [0, 1) is the momentum weight to control the
speed of γk evolving.

3.3.1.2 Context-Context Contrasting

Graph Contrastive Coding (GCC) [38] is a graph self-
supervised pre-training framework, that captures the uni-
versal graph topological properties across multiple graphs.
Specifically, it first samples multiple subgraphs for each
graph g ∈ G by random walk and collect them in to a
memory bank S . Then the query subgraph gq ∈ S and key
subgraph gk ∈ S are encoded by two graph-level encoders
fγq(·) and fγk

(·) to obtain graph-level representations hgq

and hgk , respectively. If gq and gk are sampled from the
same graph, they are considerd as the positive pair, oth-
erwise they are the negative pair. For the encoded query

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

8

(gq, yq) where yq is the index of graph it sampled from, its
graph contrastive loss is calculated by

max
γq

log

∑|S|
i=1 Iyi=yq

· exp
(
hgq · h

(i)
gk /τ

)
∑|S|

i=1 exp
(
hgq · h

(i)
gk /τ

) (29)

where Iyi=yq is an indicator function to determine whether
the i-th key graph g

(i)
k in the memory bank and query

graph gq are sampled from the same graph. The parameter γk
of fγk

(·) follows a momentum-based updating as in Equ. 28.

3.3.1.3 Local-Local Contrasting

GRACE [26]. Rather than contrasting global-global
views as GraphCL [25] and CSSL [34], GRACE focuses
on contrasting views at the node level. Given a graph
g = (A,X), it first generates two augmentatd graphs
g(1) = (A(1),X(1)) = T1(A,X) and g(2) = (A(1),X(2)) =
T2(A,X). Then it applies a shared encoder fθ(·) to generate
their node embedding matrices H(1) = fθ(A

(1),X(1)) and
H(2) = fθ(A

(2),X(2)). Finally, the pairwise objective for
each positive pair (h(1)

i ,h
(2)
i) is defined as follows

L(h(1)
i ,h

(2)
i) = log

eD(h
(1)
i ,h

(2)
i)/τ

eD(h
(1)
i ,h

(2)
i)/τ +Neg

(30)

where Neg is defined as

Neg =
N∑

k=1

1k ̸=i

[
eD(h

(1)
i ,h

(1)
k)/τ + eD(h

(1)
i ,h

(2)
k)/τ

]
(31)

where eD(h
(1)
i ,h

(1)
k)/τ is the intra-view negative pair and

eD(h
(1)
i ,h

(2)
k)/τ is the inter-view negative pair. The overall

objective to be maximized is then defined as,

max
θ

1

2N

N∑
i=1

[
L(h(1)

i ,h
(2)
i) + L(h(2)

i ,h
(1)
i)

]
(32)

GCA [40] and GROC [43] adopt the same framework
and objective as GRACE but with more flexible and adaptive
data augmentation strategies. The framework proposed by
SEPT [46] is similar to GRACE, but it is specifically de-
signed for the specific downstream task (recommendation)
by combining cross-view contrastive learning with semi-
supervised tri-training. Technically, SEPT first augments the
user data with the user social information, and then it builds
three graph encoders upon the augmented views, with one
for recommendation and the other two used to predict
unlabeled users. Given a certain user, SEPT takes those
nodes whose predicted labels are highly consistent with
the target user as positive samples and then encourages the
consistency between the target user and positive samples.

Cross-layer Contrasting (GMI) [16]. Given a graph
g = (A,X), a graph encoder fθ(·) is applied to obtain the
node embedding matrix H = fθ(A,X). Then the Cross-
layer Node Contrasting can be defined as

max
θ

1

N

N∑
i=1

MI (hi,xi) (33)

where the negative samples to contrast with hi is Neg(hi) =
{xj | vj ∈ Ni}. Similarly, the Cross-layer Edge Contrasting
can be defined as

max
θ

1

N

N∑
i=1

∑
vj∈Ni

MI (wi,j ,Ai,j) (34)

where wi,j = σ(hih
T
j), and the negative samples to contrast

with wi,j are Neg(wi,j) = {Ai,k | vk ∈ Ni and k ̸= j}.
STDGI [28] extents the idea of mutual information max-

imization to spatial-temporal graphs. Specifically, given two
graphs gt = (A,X(t)) and gt+k = (A,X(t+k)) at the time t
and t+ k, a shared graph encoder fθ(·) is applied to obtain
the node embedding matrix H(t) = fθ(A,X(t)). Besides,
it generates an augmentatd graph g̃t+k = (A, X̃(t+k)) =
T (A,X(t+k)) by randomly permuting the node features.
Finally, the learning objective is defined as follows

max
θ

1

N

N∑
i=1

MI
(
h
(t)
i ,x

(t+k)
i

)
(35)

where the negative samples to contrast with h
(t)
i is

Neg(h
(t)
i) = x̃

(t+k)
i .

BGRL [27]. Inspired by BYOL, BGRL proposes to per-
form the self-supervised learning that does not require nega-
tive samples, thus getting rid of the potentially quadratic bot-
tleneck. Specifically, given a graph g = (A,X), it first gen-
erates two augmentatd graph views g(1) = (A(1),X(1)) =
T1(A,X) and g(2) = (A(1),X(2)) = T2(A,X). Then it
applies two graph encoders fθ1(·) and fθ2(·) to generate
their node embedding matrices H(1) = fθ1(A

(1),X(1)) and
H(2) = fθ2(A

(2),X(2)). Moreover, a node-level prediction
head gω(·) is used to output Z(1) = gω(H

(1)). Finally, the
learning objective is defined as follows

max
θ1,ω

1

N

N∑
i=1

z
(1)
i (h

(2)
i)T

∥z(1)i ∥∥h
(2)
i ∥

(36)

where the parameter θ2 are updated as an exponential
moving average (EMA) of parameters θ1, as done in Equ. 28.

SelfGNN [35] differs from BGRL only in the definition
of the objective function. Unlike Equ. 36, SelfGNN defines
the implicit contrastive term directly in the form of MSE,

min
θ1,ω

1

N

N∑
i=1

∥z(1)i − h
(2)
i ∥

2 (37)

HeCo [47]. Consider a meta-path Φk form the meta-path
set {Φk}Kk=1, if there exist a meta-path Φk between node
vi and node vj , then vj can be considered as in the meta-
path neighborhood NΦk

i of node vi, which yields a meta-
path based adjacent matrix AΦk . The HeCo first applies two
graph encoder fsc

θ1
(·) and fmp

θ2
(·) to obtain node embedding

matrices Hsc = fsc
θ1
(A,X) and Hmp = fml

θ2
({AΦk}Kk=1,X).

To define positive and negative samples, HeCo first defines
a function Ci(j) =

∑K
k=1 I

(
j ∈ NΦk

i

)
to count the number

of meta-paths connecting nodes vi and vj . Then it constructs
a set Si = {j | j ∈ V and Ci(j) ̸= 0} and sort it in the
descending order based on the value of Ci(j). Next it selects
the top Tpos nodes from Si as positive samples Pi and treat

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

9

the rest as negative samples Ni directly. Finally, the learning
objective can be defined as follows

max
θ1,θ2

1

N

N∑
i=1

log

∑
vj∈Pi

eD(hsc
i ,hmp

j)/τ∑
vk∈{Pi∪Ni} e

D(hsc
i ,hmp

k)/τ
(38)

3.3.2 Contrasting with the cross-scale
Based on different scales of two views, we further refined
the scope of cross-scale contrastive into three categories:
local-global, local-context, and context-global contrasting.

3.3.2.1 Local-Global Contrasting

Deep Graph Infomax (DGI) [9] is proposed to con-
trast the patch representations and corresponding high-
level summary of graphs. First, it applies an augmenta-
tion transformation T (·) to obtain an augmented graph
g̃ = (Ã, X̃) = T (A,X). Then it passes these two graphs
through two graph encoder fθ1(·) and fθ2(·) to obtain node
embedding matrices H̃ = fθ1(Ã, X̃) and H = fθ2(A,X),
respectively. Beside, a READOUT function is applied to
obtain the graph-level representaion h̃g̃ = READOUT(H̃).
Finally, the learning objective is defined as follows

max
θ1,θ2

1

N

∑
vi∈V
MI

(
h̃g̃,hi

)
(39)

where hi is the node embedding of node vi, and the negative
samples to contrast with h̃g̃ is Neg(h̃g̃) = {hj}vj∈V,j ̸=i.

MVGRL [18] maximize the the mutual information be-
tween the cross-view representations of nodes and graphs.
Given a g = (A,X) ∈ G, it first applies an augmenta-
tion to obtain g̃ = (Ã, X̃) = T (A,X) and then sam-
ples two subgraph g(1) = (A(1),X(1)) = T1(A,X) and
g(2) = (A(2),X(2)) = T2(A,X) from it. Then two graph
encoder fθ1(·) and fθ2(·) and a prejection head gω1

(·)
are applied to obtain node embedding matrices H(1) =
gω1

(fθ1(A
(1),X(1))) and H(2) = gω1

(fθ2(A
(2),X(2))).

In addition, a READOUT function and another prejec-
tion head gω2

(·) are use to obtain graph-level repre-
sentations h

(1)
g = fω2(READOUT(H(1))) and h

(2)
g =

fω2(READOUT(H(2))). The learning objective is defined
as follows:

max
θ1,θ2,ω1,ω2

1

N

∑
vi∈V

[
MI(h(1)

g ,h
(2)
i) +MI(h(2)

g ,h
(1)
i)

]
(40)

where the negative samples to contrast with h
(1)
g is

Neg(h
(1)
g) = {h(2)

j }vj∈V,j ̸=i and the negative samples to
contrast with h

(2)
g is Neg(h

(2)
g) = {h(1)

j }vj∈V,j ̸=i.

3.3.2.2 Local-Context Contrasting

SUBG-CON [19] is proposed by utilizing the strong
correlation between central (anchor) nodes and their sur-
rounding subgraphs to capture contextual structure in-
formation. Given a graph g = (A,X), SUBG-CON first
picks up an anchor node set S from V and then sam-
ples their context subgraph {gi = (A(i),X(i))}|S|

i=1 by
the importance sampling strategy. Then a shared graph
encoder fθ(·) and a READOUT function are applied to

obtain node embedding matrices {H(1),H(2), · · · ,H(|V|)}
where H(i) = fθ(A

(i),X(i)) and graph-level representa-
tions {hg1 ,hg2 , · · · ,hg|V|} where hgi = READOUT(H(i)).
Finally, the learning objective is defined as follows

max
θ

1

|S|
∑
vi∈S
MI

(
h
(i)
i ,hgi

)
(41)

where h
(i)
i is the node representation of anchor node vi in

the node embedding matrix H(i). The negative samples to
contrast with h

(i)
i is Neg(h

(i)
i) = {hgj}vj∈S,j ̸=i.

Graph InfoClust (GIC) [48] relies on a framework
similar to DGI [9]. However, in addition to contrast local-
global views, GIC also maximize the MI between node rep-
resentations and their corresponding cluster embeddings.
Given a graph g = (A,X), it first applies an augmentation
to obtain g̃ = (Ã, X̃) = T (A,X). Then a shared graph
encoder fθ(·) is applied to obtain node embedding matri-
ces H = fθ(A,X) and H̃ = fθ(Ã, X̃). Furthermore, an
unsupervised clustering algorithm is used to group nodes
into K clusters C = {C1, C2, · · · , CK}, and it obtains the
cluster centers by µk = 1

|Ck|
∑

vi∈Ck
hi where 1 ≤ k ≤ K.

To compute the cluster embedding zi for each node vi, it
applies a weighted average of the summaries of the cluster
centers to which node vi belongs zi = σ

(∑K
k=1 rikµk

)
,

where rik is the probability that node vi is assigned to
cluster k, and is a soft-assignment value with

∑
k rik = 1,∀i.

For example, ri,k can be defined as ri,k =
exp(hiµ

T
k)∑K

j=1 exp(hiµT
j)

.
Finally, the learning objective is defined as follows

max
θ

1

N

∑
vi∈V
MI (hi, zi) (42)

where the negative samples to contrast with hi is
Neg(hi) = {zj}vj∈V,j ̸=i.

3.3.2.3 Context-Global Contrasting

MICRO-Graph [39]. The key challenge to conducting
subgraph-level contrastive is to sample semantically infor-
mative subgraphs. For molecular graphs, the graph mo-
tifs, which are frequently-occurring subgraph patterns (e.g.,
functional groups) can be exploited for better subgraph
sampling. Specifically, the motif learning is formulated as
a differentiable clustering problem, and EM-clustering is
adopted to group significant subgraphs into several mo-
tifs, thus obtaining a motifs table. Given two graph g(1) =
(A(1),X(1)), g(2) = (A(2),X(2)) ∈ G, it first applies a
shared graph encoder fθ(·) to learn their node embedding
matrices H(1) = fθ(A

(1),X(1)) and H(2) = fθ(A
(2),X(2)).

Then it leverages learned motifs table to sample K motif-
like subgraphs from g(1) and g(2) and obtain their corre-
spongding embedding matrices {H(1)

1 ,H
(1)
2 , · · · ,H(1)

K } and
{H(2)

1 ,H
(2)
2 , · · · ,H(2)

K }. Then a READOUT function is ap-
plied to obtain graph-level and subgraph-level represen-
tations, denoted as h

(1)
g , {h(1)

1 ,h
(1)
2 , · · · ,h(1)

K } and h
(2)
g ,

{h(2)
1 ,h

(2)
2 , · · · ,h(2)

K }. Finally, the objective is defined as

max
θ

1

|G|
∑
g∈G

K∑
k=1

[
MI(h(1)

g ,h
(1)
k) +MI(h(2)

g ,h
(2)
k)

]
(43)

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

10

where the negative samples to contrast with h
(1)
g is

Neg(h
(1)
g) = {h(2)

j }Kj=1 and the negative samples to contrast
with h

(2)
g is Neg(h

(2)
g) = {h(1)

j }Kj=1.
InfoGraph [49] aims to obtain embeddings at the whole

graph level for self-supervised learning. Given a graph
g = (A,X), it first applies an augmentation to obtain g̃ =
(Ã, X̃) = T (A,X). Then a shared L-layer graph encoder
fθ(·) is applied to learn node embedding matrix sequences
{H(l)}Ll=1 and {H̃(l)}Ll=1 obtain from each layer. Then it
concats the representations learned from each layer, hi =

CONCAT({h(l)
i }Ll=1) and h̃i = CONCAT({h̃(l)

i }Ll=1), where
h
(l)
i is the embedding of node vi in the node embedding

matrix H(l) obtained from the l-th layer of the graph en-
coder. In addition, a READOUT function is used to obatain
the graph-level representation hg = READOUT({hi}Ni=1).
Finally, the learning objective is defined as follows

max
θ

∑
g∈G

1

|g|
∑
vi∈g

MI (hg,hi) (44)

where the negative samples to contrast with hg is node rep-
resentations on the augmented graph Neg(hg) = {h̃i}vi∈V .

BiGi [37] is specifically designed for bipartite graph,
where the class label yi ∈ {0, 1} of each node vi is already
known. For a given g = (A,X), it first applies a structure-
based augmentation to obtain g̃ = (Ã,X) = T (A,X).
Then a shared graph encoder fθ(·) is applied to obtain
H = fθ(A,X) and H̃ = fθ(Ã,X). Beisde, it can obtain
the graph-level representation from H directly as follows

hg =
[
σ
(1

|V(1)|
∑

vi∈V(1)

h
)∥∥∥σ(1

|V(2)|
∑

vi∈V(2)

hi

)]
(45)

where V(1) = {vi|vi ∈ V, yi = 0} and V(2) = {vi|vi ∈
V, yi = 1}. For a given edge (vi, vj) ∈ E , it first performs
the ege-nets sampling to obtain two subgraph (centered at
node vi and vj), and then gets their node feature matrix H(i)

and H(j) from H directly. Then a subgraph-level attention
module (similar to GAT) is applied to obatain two subgraph-
level representation hi = Attγ(H

(i)) and hj = Attγ(H
(j)).

Finally, hi and hj are fused to obtain hi,j = [hi∥hj]. Sim-
ilarity, it can obtain the fused representation h̃i,j from H̃.
Finally, the learning objective is defined as follows:

max
θ,γ

1

|E|
∑

(vi,vj)∈E

MI (hg,hi,j) (46)

where the negative samples is defined as Neg(hg) = h̃i,j .

3.4 Contrasive Objectives

The main way to optimize the contrastive learning is to treat
two representations (views) hi and hj as random variables
and maximize their mutual information, given by

MI(hi,hj) = Ep(hi,hj)

[
log

p(hi,hj)

p(hi)p(hj)

]
(47)

To computationally estimate the mutual information in con-
trastive learning, three lower-bound forms of the mutual
information are derived, and then the mutual information is
maximized indirectly by maximizing their lower-bounds.

Donsker-Varadhan Estimator [50] is one of the lower-
bound to the mutual information, defined as

MIDV (hi,hj) =Ep(hi,hj) [D (hi,hj)]

− logEp(hi)p(hj)

[
eD(hi,hj)

] (48)

where p(hi,hj) denotes the joint distribution of two rep-
resentations hi, hj , and p(hi)p(hj) denotes the product of
marginals.D : Rq×Rq → R is a discriminator that maps two
views hi, hj to an agreement score. Generally, the discrimi-
nator D can optionally apply an additional prediction head
gω(·) to map hi to zi = gω(hi) before computing agreement
scores, where gω(·) can be a linear mapping, a nonlinear
mapping (e.g., MLP), or even a non-parametric identical
mapping (zi = hi). The discriminatorD can be taken in vari-
ous forms, i.e., the standard inner productD(zi, zj) = zTi zj ,
the inner product D(zi, zj) = zTi zj/τ with temperature
parameter τ , the cosine similarity D(zi, zj) =

zT
i zj

||zi||||zj || , or

the gaussian similarity D(zi, zj) = exp
(
− ||zi−zj ||22

2σ2

)
.

Jensen-Shannon Estimator. Replacing the KL-
divergence in Equ. 47 with the JS-divergence, it derives
another Jensen-Shannon (JS) estimator [51] which can
estimate and optimize the mutual information more
efficiently. The Jensen-Shannon (JS) estimator is defined as

MIJS (hi,hj) = Ep(hi,hj)

[
log (D(hi,hj))

]
− logEp(hi)p(hj)

[
log

(
1−D (hi,hj)

)] (49)

Let D (hi,hj) = sigmod(D′ (hi,hj)), the Equ.49 can be
re-writed as a softplus (SP) version [18, 49], as follows

MISP (hi,hj) = Ep(hi,hj)

[
− sp

(
−D′ (hi,hj)

)]
− logEp(hi)p(hj)

[
sp
(
D′ (hi,hj)

)] (50)

where sp(x) = log (1 + ex).
InfoNCE Estimator. InfoNCE [52] is one of the most

popular lower-bound to the mutual information, defined as

MINCE (hi,hj) = Ep(hi,hj)

[
D (hi,hj)

− EK∼PN

[
log

1

N

∑
h′
j∈K

eD(hi,h
′
j)
]] (51)

where K consists of N random variables sampled from a n
identical and independent distribution. NT-Xent loss [53] is
a special version of the InfoNCE loss, which defines the dis-
criminator D as D(hi,hj) = hT

i hj/τ with temperature pa-
rameter τ . Taking graph classification as an example, fγ(·)
is a graph encoder that maps a graph g = (A,X) ∈ G to a
graph-level representation hg = fγ(A,X). The InfoNCE is
in practice computed on a mini-batch B of size N + 1, then
the Equ. 51 can be re-writed (with logN discarded) as

MINCE = − 1

N + 1

∑
(A,X)∈B

log
eD(hi,hj)∑

(A′,X′)∈B eD(hi,h
′
j)

(52)

where hi, hj are the positive pair of views that comes from
the same graph g = (A,X), and hi and h′

j are the negative

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

11

pair of views that are computed from g = (A,X) and g′ =
(A′,X′) identically and independently.

Triplet Margin Loss. While all three MI estimators above
estimate the lower bound on mutual information, mutual
information maximization has been shown not to be a
must for contrastive learning [54]. For example, the triplet
margin loss [55] can also be used to optimize the contrastive
learning, but it is not an MI-based contrastive objective,
and optimizing it does not guarantee the maximization of
mutual information. The triplet margin loss is defined as

Ltriplet (hi,hj) = E[(A,X),(A′,X′)]∼G×G

[
max{D

(
hi,h

′
j

)
−D (hi,hj) + ϵ, 0}

] (53)

where the triplet margin loss does not directly minimize the
agreement of the negative sample pair D(hi,h

′
j), but only

ensures that the agreement of the negative sample pair is
smaller than that of the positive sample pair by a margin
value ϵ. The idea behind is that when the negative samples
are sufficiently far apart, i.e., the agreement between them
is small enough, there is no need to further reduce their
agreement, which helps to focus the training more on those
hard samples that are hard to distinguish. The quadruplet
loss [56] further considers imposing constraints on inter-
class samples on top of the triplet margin loss, defined as:

LQuadruplet (hi,hj) = MItriplet + E[(A,X),(A′,X′)]∼G×G

[
max{D

(
h′
i,h

′
j

)
−D (hi,hj) + ϵ′, 0}

] (54)

where ϵ′ is a smaller margin value than ϵ. The quadruplet
loss differs from the triplet margin loss in that it not only
uses an anchor-based sampling strategy but also samples
negative samples in a more random way, which helps to
learn more distinguishable inter-class boundaries.

RankMI Loss. While both triplet margin loss and
quadruplet loss ignore the lower bound of the mutual
information, the RankMI Loss [57] seamlessly incorporates
information-theoretic approaches into the representation
learning and maximizes the mutual information among
samples belonging to the same category, defined as:

MIRankMI (hi,hj) = E[(A,X),(A′,X′)]∼G×G

[
D(hi,hj) + log(2− eD(h′

i,h
′
j))

] (55)

As RankMI can incorporate margins based on random pos-
itive and negative pairs, the quadruple loss can be consid-
ered as a special case of RankMI with a fixed margin.

4 GENERATIVE LEARNING

Compared with contrastive methods, the generative meth-
ods shown in Fig. 1(b) are based on generative models
and treat rich information embedded in the data as a nat-
ural self-supervision. In generative methods, the prediction
head gω(·) is usually called the graph decoder, which is
used to perform graph reconstruction. Categorized by how
the reconstruction is performed, we summarize generative
methods into two categories: (1) graph autoencoding that
performs reconstruction in a once-for-all manner; (2) graph
autoregressive that iteratively performs reconstruction. In

this section, due to space limitations, we present only some
representative generative methods and place those rela-
tively less important works in Appendix B.

4.1 Graph Autoencoding

Since the autoencoder [58] was proposed, it has been widely
used as a basic architecture for a variety of image and
text data. Given restricted access to the graph, the graph
autoencoder is trained to reconstruct certain parts of the
input data. Depending on which parts of the input graph
are given or restricted, various pretext tasks have been
proposed, which will be reviewed one by one next.

Graph Completion [12]. Motivated by the success of
image inpainting, graph completion is proposed as a pretext
task for graph data. It first masks one node by removing part
of its features, and then aims to reconstruc masked features
by feeding unmasked node features in the neighborhood. For
a given node vi, it randomly masks its features xi with
x̂i = xi ⊙mi to obtain a new node feature matrix X̂, and
then aim to reconstruct masked features. More formally,

Lssl

(
θ,A, X̂

)
=

∥∥∥fθ(A, X̂)vi
− xi

∥∥∥2 (56)

Here, it just takes one node as an example, and the recon-
struction of multiple nodes can be considered in practice.
Note that only those unmasked neighborhood nodes can be
used to reconstruct the target node for graph completion.

Node Attribute Masking [10] is similar to Graph Com-
pletion, but it reconstructs the features of multiple nodes
simultaneously, and it no longer requires that the neighboring
node features used for reconstruction must be unmasked.

Edge Attribute Masking [11]. This pretext task is specif-
ically designed for graph data with known edge features,
and it enables GNN to learn more edge relation information.
Similarly, it first randomly masks the features of a edge set
Me. Specifically, it obtains a masked edge feature matrix X̂e

where x̂e
i,j = xe

i,j ⊙mi,j for (vi, vj) ∈Me. More formally,

Lssl

(
θ,A,X, X̂e

)
=

1

|Me|
∑

(vi,vj)∈Me

∥∥xe
i,j − xe

i,j

∥∥2 (57)

where xe
i,j = (X

e
)i,j and X

e
= fθ(A,X, X̂e).

Node Attribute Denoising [13]. Different from Node
Attribute Masking, this pretext task aims to add noise to
the node features to obtain a noisy node feature matrix
X̂ = X + N(0,Σ), and then ask the model to reconstruct
the clean node features X. More formally,

Lssl

(
θ,A, X̂

)
=

1

N

∑
vi∈V

∥∥∥fθ(A, X̂)vi
− xi

∥∥∥2 (58)

where adding noise is only one means of corrupting the
image, in addition to blurring, graying, etc. Inspired by this,
it can use arbitrary corruption operations C(·) to obtain the
corrupted features and then force the model to reconstruct
them. Different from Node Attribute Denoising, which re-
constructs raw features from noisy inputs, Node Embedding
Denoising aims to reconstructs clean node features X from
noisy embeddings Ĥ = H+N(0,Σ).

Adjacency Matrix Reconstruction [14]. The graph adja-
cency matrix is one of the most important information in

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

12

graph data, which stores the graph structure information
and the relations between nodes. This pretext task randomly
perturbs parts of the edges in a graph A to obtain Â, then
requires the model to reconstruct the adjacency matrix of
the input graph. More formally,

Lssl

(
θ, Â,X

)
=

1

N2

∑
i,j

(
Ai,j −Ai,j

)2
(59)

where A = fθ(Â,X). During the training process, since the
adjacency matrix A is usually a sparse matrix, it can also
use cross-entropy instead of MAE as loss in practice.

4.2 Graph Autoregressive
The autoregressive model is a linear regression model that
uses a combination of random variables from previous
moments to represent random variables at a later moment.

GPT-GNN [32]. In recent years, the idea of GPT [6]
has also been introduced into the GNN domain. For ex-
ample, GPT-GNN proposes an autoregressive framework
to perform node and edge reconstruction on given graph
iteratively. Given a graph gt = (At,Xt) with its nodes and
edges randomly masked in iteration t, GPT-GNN generates
one masked node Xi and its connected edges Ei to obtain
a updated graph gt+1 = (At+1,Xt+1) and optimizes the
likelihood of the node and edges generation in the next
iteration t+ 1, with the learning objective defined as

pθ (Xt+1,At+1 | Xt,At)

=
∑
o

pθ (Xi, E
¬o
i | Eo

i ,Xt,At) · pθ (Eo
i | Xt,At)

=Eo

[
pθ (Xi, E

¬o
i | Eo

i ,Xt,At)
]

=Eo

[
pθ

(
Xt+1 | Eo

i ,Xt,At

)
pθ(E

¬o
i | Eo

i ,Xt+1,At)
]

(60)

where o is a variable to denote the index vector of all edges
within Et in the iteration t. Thus, Eo

t denotes the observed
edges in the iteration t, and E¬o

i denotes the the masked
edges (to be generated) in the iteration t + 1. Finally, the
graph generation process is factorized into a node attribute
generation step pθ (Xt+1 | Eo

i ,Xt,At) and an edge generation
step pθ(E

¬o
i | Eo

i ,Xt+1,At). In practice, GPT-GNN per-
forms node and edge generation iteratively.

5 PREDICTIVE LEARNING

The contrastive methods deal with the inter-data informa-
tion (data-data pairs), the generative methods focus on the
intra-data information, while the predictive methods aim to
self-generate informative labels from the data as supervision
and handle the data-label relationships. Categorized by how
labels are obtained, we summarize predictive methods into
four categories: (1) Node Property Prediction. The proper-
ties of nodes, such as node degree, are pre-calculated and
used as self-supervised labels to perform prediction tasks.
(2) Context-based Prediction. Local or global contextual
information in the graph can be extracted as labels to aid
self-supervised learning, e.g., by predicting the shortest path
length between nodes, the model can capture long-distance
dependencies, which is beneficial for downstream tasks
such as link prediction. (3) Self-Training. Learning with the
pseudo-labels obtained from the prediction or clustering in

a previous stage or even randomly assigned. (4) Domain
Knowledge-based Prediction. Expert knowledge or special-
ized tools are used in advance to analyze graph data (e.g.,
biological or chemical data) to obtain informative labels. A
comparison of four predictive methods is shown in Fig. 5. In
this section, due to space limitations, we present only some
representative predictive methods and place those relatively
less important works in Appendix C.

5.1 Node-Property Prediction (NP)

An effective way to perform predictive learning is to take
advantage of the extensive implicit numerical properties
within the graph, e.g. node properties, such as node degree
and local clustering coefficient. Specifically, it first defines
a mapping Ω : V → Y to denote the extraction of sta-
tistical labels yi = Ω(A,X)vi

for each node vi from graph
g = (A,X). The learning objective is then formulated as

Lssl (θ,A,X) =
1

N

∑
vi∈V

(
fθ(A,X)vi

− yi
)2

(61)

where fθ(A,X)vi is the predicted label of node vi. With
different node properties, the mapping function Ω(·) can
have different designs. If it use node degree as a local node
property for self-supervision, we have yi = Ω(A,X)vi =∑N

j=1 Ai,j . For the local clustering coefficients, we have

yi = Ω(A,X)vi
=

2
∣∣{(vm, vn)|vm ∈ Ni, vn ∈ Ni}

∣∣
|Ni|(̇|Ni| − 1)

(62)

where the local clustering coefficient is a local coefficient
describing the level of node aggregation in a graph. Beyond
the above two properties, any other node property (or even
a combination of them) can be used as statistical labels to
perform the pretext task of Node Property Prediction.

5.2 Context-based Prediction (CP)

Apart from Node Property Prediction, the underlying graph
structure information can be further explored to construct
a variety of regression-based or classification-based pretext
tasks and thus provide self-supervised signals. We refer to
this branch of methods as context-based predictive methods
because it generally explores contextual information.

S2GRL [59]. Motivated by the observation that two arbi-
trary nodes in a graph can interact with each other through
paths of different lengths, S2GRL treats the contextual po-
sition of one node relative to the other as a source of free
and effective supervisory signals. Specifically, it defines the
k-hop context of node vi as Cki = {vj |d(vi, vj) = k}(k =
1, 2, · · · ,K), where d(vi, vj) is the shortest path length
between node vi and node vj . In this way, for each target
node vi, if a node vj ∈ Cki , then the hop count k (relative
contextual position) will be assigned to node vj as pseudo-
label yi,j = k. The learning objective is defined as predicting
the hop count between pairs of nodes, as follows

Lssl (θ, ω,A,X) =
1

NK

∑
vi∈V

K∑
k=1

∑
vj∈Ck

i

ℓ
(
fw

(
fθ(A,X)vi , fθ(A,X)vj

)
, k

) (63)

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

13

Encoder Prediction
Head Prediction Loss

Node Degree

(a) Node Property Prediction

Encoder Prediction
Head Prediction Loss

Shortest Path Length

(b) Context-based Prediction

Encoder Prediction
Head Prediction Loss

Doctor
Police

Waiter

Pseudo Labels

()Writer
Unsupervised Clustering Doctor Police

Waiter

Pseudo Labels

()Writer

Update

(c) Self-training

Node-Edge Counts:
C_N-DOUBLE1_O-SINGLE1

O
C

N

C
C

Encoder Prediction
Head Prediction Loss

 Domain Knowledge
(Valence Bond Theory)

(d) Domain Knowledge-based

Fig. 5. A comparison of predictive learning methods. Categorized by how the labels are obtained, we summarize predictive methods for graph data
into four categories: node property prediction, context-based prediction, self-training, and domain knowledge-based prediction. Fig. (a): the node
property prediction pre-calculates the node properties, such as node degree, and used them as self-supervised labels. Fig. (b): for the context-
based prediction, the local or global contextual information in the graph, such as the shortest path length between nodes, can be extracted as labels
to help with self-supervised learning. Fig. (c): The self-learning method applies algorithms such as unsupervised clustering to obtain pseudo-labels
and then updates the pseudo-label set of the previous stage based on the prediction results or losses. Fig. (d): for the domain knowledge-based
prediction, the domain knowledge, such as expert knowledge or specialized tools, can be used in advance to obtain informative labels.

where ℓ(·) denotes the cross entropy loss and fω(·) linearly
maps the input to a 1-dimension value. Compared with the
task of S2GRL, the PairwiseDistance [10] has truncated the
shortest path longer than 4, mainly to avoid the excessive
computational burden and to prevent very noisy ultra-long
pairwise distances from dominating the optimization.

PairwiseAttrSim [10]. Due to the neighborhood-based
message passing mechanism, the learned representations of
two similar nodes in the graph are not necessarily similar,
as opposed to two identical images that will yield the same
representations in the image domain. Though we would like
to utilize local neighborhoods in GNNs to enhance node
feature transformation, we still wishes to preserve the node
pairwise similarity to some extent, rather than allowing a
node’s neighborhood to drastically change it. Thus, the pre-
text task of PairwiseAttrSim can be established to achieve
node similarity preservation. Specifically, it first samples
node pairs with the K highest and lowest similarities Si,h
and Si,s for node vi, given by

Si,h =
{
(vi, vj) | sij in top-K of {sik}Nk=1,k ̸=i

}
Si,l =

{
(vi, vj) | sij in bottom-K of {sik}Nk=1,k ̸=i

} (64)

where si,j measures the node feature similarity between
node vi and node vj (according to cosine similarity). Let
Si = Si,h ∪ Si,h, the learning objective can then be formu-
lated as a regression problem, as follows

Lssl (θ, ω,A,X) =
1

2NK

∑
vi∈V

∑
(vm,vn)∈Si

(
fw

(
fθ(A,X)vm , fθ(A,X)vn

)
− sm,n

)2
(65)

where fω(·) linearly maps the input to a 1-dimension value.
Distance2Clusters [10]. The PairwiseAttrSim applies a

sampling strategy to reduce the time complexity, but still
involves sorting the node similarities, which is a very time-
consuming operation. Inspired by various unsupervised
clustering algorithms [60–68], if a set of clusters can be pre-
obtained, the PairwiseAttrSim can be further simplified to

predict the shortest path from each node to the anchor nodes
associated with cluster centers, resulting in a novel pretext
task - Distance2Clusters. Specifically, it first partitions the
graph into K clusters {C1, C2, · · · , CK} by applying some
classical unsupervised clustering algorithms. Inside each
cluster Ck , the node with the highest degree will be taken as
the corresponding cluster center, denoted as ck (1 ≤ k ≤ K).
Then it can calculate the distance di ∈ RK from node
vi to cluster centers {ck}Kk=1. The learning objective of
Distance2Clusters is defined as

Lssl (θ,A,X) =
1

N

∑
vi∈V

∥∥∥fθ(A,X)vi − di

∥∥∥2 (66)

Meta-path Prediction [69]. A meta-path of length l is a
sequence of nodes connected with heterogeneous edges, i.e.,
v1

t1−→ v2
t2−→ . . .

tl−→ vl, where tl ∈ T e denote the type of l-
th edge in the meta-path. Given a set of node pair S sampled
from the heterogeneous graph and K pre-defined meta-path
types M, this pretext task aims to predict if the two nodes
(vi, vj) ∈ S are connected by one of the meta-path type
m ∈ M. Finally, the predictions of the K meta-paths are
formulated as K binary classification tasks, as follows

Lssl (θ,A,X) =
1

K|S|
∑

m∈M

∑
(vi,vj)∈S

ℓ
(
fw

(
fθ(A,X)vi , fθ(A,X)vj

)
,Ym

i,j

) (67)

where ℓ(·) deontes the cross entropy loss, and Ym
i,j is the

ground-truth label where Ym
i,j = 1 if there exits a meta-path

m between node vi and node vj , otherwise Ym
i,j = 0.

SLiCE [70]. Different from the pretext task of Meta-path
Prediction [69] that requires pre-defined mate-paths, SLiCE
automatically learns the composition of different meta-paths
for a specific task. Specifically, it first samples a set of nodes
S from the node set V . Given a node in vi ∈ S , it generates a
context subgraph gi = (Ai,Xi) around vi and encodes the
context as a low-dimensional embedding matrix Hi. Then
it randomly masks a node vmi in graph gi for prediction.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

14

Therefore, the pretext task aims to maximize the probability
of observing this masked node vmi based on the context gi,

Lssl (θ,A,X) =
∏
vi∈S

∏
vm
i ∈gi

p (vmi | Hi, θ) (68)

where p(· | θ) can in practice be approximated by a graph
neural networks model fθ(·) parameterized by θ.

Distance2Labeled [10]. Recent work provides deep in-
sight into existing self-supervised pretext tasks that utilize
only attribute and structure information and finds that they
are not always beneficial in improving the performance of
downstream tasks, possibly because the information mined
by the pretext tasks may have been fully exploited during
the message passing by the GNN model. Thus, given partial
information about downstream tasks, such as a small set of
labeled nodes, we can explore label-specific self-supervised
tasks. For example, we directly modify the pretext task of
Distance2Cluster by combining label information to create
a new pretext task - Distance2Labeled. Specifically, it first
calculates the average, minimum, and maximum shortest
path length from node vi to all labeled nodes in class
{Ck}Kk=1, resulting in a distance vector di ∈ R3K . Finally,
the learning objective of Distance2Labeled can be formu-
lated as a distance regression problem, as follows

Lssl (θ,A,X) =
1

N

∑
vi∈V

∥∥∥fθ(A,X)vi − di

∥∥∥2 (69)

Compared with Distance2Cluster, Distance2Labeled uti-
lizes task-specific label information rather than additional
unsupervised clustering algorithms to find cluster centers,
showing advantages in both efficiency and performance.

5.3 Self-Training (ST)
For self-training methods, the prediction results from the
previous stage can be used as labels to guide the training of
next stage, thus achieving self-training in an iterative way.

Multi-stage Self-training [71]. This pretext task is pro-
posed to leverage the abundant unlabeled nodes to help
training. Given both the labeled set Dt

L and unlabeled set
Dt

U in the iteration step t, the graph encoder fθ(·) is first
trained on the labeled set Dt

L, as follows

Lnode

(
θ,A,X,Dt

L

)
=

∑
(vi,yt

i)∈Dt
L

ℓ
(
fθ(A,X)vi

, yti

)
(70)

and then applied to make predictions Ŷt = {ŷti | vi ∈ Vt
U}

on the unlabeled set Vt
U . Then the predicted labels (as well

as corresponding nodes) with K-top high confidence

Dt
N =

{
(vi, ŷ

t
i)| | ŷti in top-K confidence of Ŷt

}
(71)

are considered as the pseudo-labels and moved to the la-
beled node set Dt

L to obtain an updated labeled set Dt+1
L =

Dt
L

⋃
Dt

N and an updated unlabeled set Dt+1
U = Dt

U/Dt
N .

Finally, a fresh graph encoder is trained on the updated
labeled set Dt+1

L , and the above operations are performed
multiple times in an iterative manner.

Node Clustering or Partitioning [12]. Compared to
Multi-stage Self-training, the pretext task of Node Cluster-
ing pre-assigns a pseudo-label yi, e.g., the cluster index, to
each node vi by some unsupervised clustering algorithms.

The learning objective of this pretext task is then formulated
as a classification problem, as follows

Lssl (θ,A,X) =
1

N

∑
vi∈V

ℓ
(
fθ(A,X)vi

, yi
)

(72)

When node attributes are not available, another choice
to obtain pseudo-labels is based on the topology of a given
graph structure or adjacency matrix. Specifically, graph
partitioning [72, 73] is to partition the nodes of a graph
into roughly equal subsets, such that the number of edges
connecting nodes across subsets is minimized. To absorb
the advantages of both attributive- and structural-based
clustering, CAGNN [74] combines the node clustering and
node partitioning to proposed a new pretext task. Con-
cretely, it first assigns cluster indices as pseudo labels but
follows a topology refining process that refines the clusters
by minimizing the inter-cluster edges.

M3S [75]. Combining Multi-stage Self-training with
Node Clustering, M3S applies DeepCluster [68] and the
alignment mechanism as a self-checking mechanism, thus
providing stronger self-supervision. Specifically, a K-mean
clustering algorithm is performed on node representations
H(t) learned in the iteration step t (rather than X) and
the clustered pseudo-label Dt

N that matches the predic-
tion of the classifier in the last iteration step t − 1 will
added to the labeled set to obtain an updated labeled set
Dt+1

L = Dt
L

⋃
Dt

N . Finally, a fresh model will be trained on
the labeled set Dt+1

L with the objective defined as Equ. 70.
Cluster Preserving [17]. An important characteristic of

real-world graphs is the cluster structure, so we can consider
the cluster preservation as a self-supervised pretext task.
The unsupervised clustering algorithms are first applied to
group nodes in a graph into K non-overlapping clusters
{Ck}Kk=1, then the cluster prototypes can be obtained by
ck = AGGRATE({fθ(A,X)vi | vi ∈ Ck}). The mapping
function gω(·) is used to estimate the similarity of node vi
with the cluster prototype ck, e.g., the probability ŷi,k that
node vi belongs to cluster Ck is defined as follows,

ŷi,k =
exp

(
gω(fθ

(
A,X)vi , ck

))
∑K

k=1 exp
(
gω(fθ

(
A,X)vi

, ck
)) (73)

Finally, the objective of Cluster Preserving is defined as

Lssl (θ,A,X) = − 1

N

∑
vi∈V

K∑
k=1

yi,k log(ŷi,k) (74)

where the ground-truth label yi,k = 1 if node vi is grouped
into cluster Ck, otherwise yi,k = 0.

5.4 Domain Knowledge-based Prediction (DK)
The formation of real-world graphs usually obeys specific
rules, e.g., the links between atoms in molecular graphs
are bounded by valence bonding theory, while cross-cited
papers in citation networks generally have the same topic
or authors. Therefore, extensive expert knowledge can be
incorporated as a prior into the design of pretext tasks.

Contextual Molecular Property Prediction [76] incorpo-
rates domain knowledge about biological macromolecules
to design molecule-specific pretext tasks. Given a node vi,

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

15

Graph
SSL

Generative Contrastive Predictive

AutoEncoding AutoRegressive

Local-Local Global-GlobalContext-Context Local-ContextLocal-Global Context-Global

Node Property
Prediction

Domain Knowledge-
basedSelf-trainingContext-based

Same-Scale
Contrasting

Cross-Scale
Contrasting

Augmentation Pretext Task Objective

Feature-based Structure-based Sampling-based AdaptiveFeature-based Structure-based Sampling-based DV Estimator JS Estimator InfoNCE Others

Fig. 6. An summary of graph self-supervised learning (SSL) methods. We categorize them into three branches: contrastive, generative, and
predictive. For contrastive methods, they contrast different views and deal with data-data pairs (inter-data) information, and we further categorize it
from three aspects: augmentation strategy, pretext task, and objective. In terms of augmentation strategy, it can be divided into four major categories:
feature-based augmentation, structure-based augmentation, sampling-based augmentation, and adaptive augmentation. From the perspective of
pretext tasks, it can be divided into same-scale contrasting and cross-scale contrasting. The same-scale contrasting includes Local-Local (L-L),
Context-Cotext (C-C), and Global-Global (G-G) methods, while the cross-scale contrasting includes the Local-Global (L-G), Local-Cotext (L-C),
and Context-Global (C-G) methods. For generative methods, they focus on the intra-data information and can be divided into Autoencoding and
Autoregressive methods. For predictive methods, it handles the data-label relationship, which can be further divided into four major categories:
Node Property Prediction (NP), Content-based Prediction (CP), Self-Training (ST), and Domain Knowledge-based Prediction (DK).

it samples its k-hop neighborhood nodes and edges as a
local subgraph and then extracts statistical properties of this
subgraph. Specifically, it counts the number of occurrence of
(node, edge) pairs around the center node vi and then list all
the node-edge count terms in alphabetical order, which con-
stitutes the final property, e.g., C N-DOUBLE1 O-SINGLE1
in Fig. 5 (d). With plenty of context-aware properties P =
{pk}Kk=1 pre-defined, the contextual property prediction can
be defined as a multi-class prediction problem with one class
corresponds to one contextual property, as follows

Lssl (θ,A,X) =
1

N

∑
vi∈V

ℓ
(
fθ(A,X)vi , yi

)
(75)

where ℓ(·) denotes the cross entropy loss, and yi = k if the
molecular property of node vi is pk.

Graph-level Motif Prediction [76]. Motifs are recurrent
sub-graphs among the input graph, which are prevalent
in molecular graphs. One important class of motifs in
molecules are functional groups, which encodes the rich do-
main knowledge of molecules and can be easily detected by
professional softwares, such as RDKit. Suppose considering
the presence of K motifs {mk}Kk=1 in the molecular data,
then for one specific molecule graph gi = (Ai,Xi) ∈ G,
it detects whether each motif shows up in gi and use it as
the label yi ∈ RK . Specifically, if mk shows up in gi, the
k-th elements yi,k will be set to 1, otherwise 0. Formally, the
learning objective of the motif prediction task is formulated
as a multi-label classification problem, as follows

Lssl (γ,G) =
1

|G|
∑
gi∈G

ℓ
(
fγ(Ai,Xi),yi

)
(76)

where ℓ(·) deontes the binary cross entropy loss.

6 SUMMARY OF THE IMPLEMENTATION

A summary of the surveyed works is presented in Fig. 6, and
Appendix D lists their properties, including graph prop-
erty, pretext task, augmentation, objective function, training

strategy, and publication year. Furthermore, we show in
Appendix E the implementation details of surveyed works,
such as downstream tasks, evaluation metrics, and datasets.

6.1 Downstream Tasks
The graph SSL methods are generally evaluated on three
levels of graph tasks: node-level, link-level, and graph-level.
Among them, the graph-level tasks are usually performed
on multiple graphs in the form of inductive learning. Com-
monly used graph-level tasks include graph classification
and graph regression. The link-level tasks mainly focus on
link prediction, that is, given two nodes, the objective is to
predict whether a link (edge) exists between them. On the
other hand, the node-level tasks are generally performed on
a large graph in the form of transductive learning. Depend-
ing on whether labels are provided, it can be divided into
three categories: node regression, node classification, and
node clustering. The node classification and node regression
are usually performed with partial known labels. Instead,
the node clustering is performed in a more challenging
unsupervised manner and adopted when the performance
of the node classification is not sufficiently distinguishable.

6.2 Evaluation Metrics
For graph classification tasks, the commonly used evalua-
tion metrics include ROC-AUC and Accuracy (Acc); while
for graph regression tasks, Mean Absolute Error (MAE)
is used. In terms of link prediction tasks, ROC-AP, ROC-
PR, and ROC-AUC are usually used as evaluation metrics.
Besides, node regression tasks are usually evaluated by
metrics including MAE, Mean Square Error (MSE), and
Mean Absolute Percentage Error (MAPE). In addition to
Accuracy, node classification tasks also adopt F1-score for
single-label classification and Micro-F1 (or Macro-F1) for
multi-label classification. Moreover, node clustering tasks
often adopt the same metrics used to evaluate the unsuper-
vised clustering, such as Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), Accuracy, etc.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

16

6.3 Datasets

The statistics of a total of 41 datasets are available in
Appendix F. Commonly used datasets for graph self-
supervised learning tasks can be divided into five cate-
gories: citation networks, social networks, protein networks,
molecule graphs, and others. (1) Citation Networks. In cita-
tion networks, nodes usually denote papers, node attributes
are some keywords in papers, edges denote cross-citation,
and categories are topics of papers. Note that nodes in
the citation networks may also sometimes indicate authors,
institutions, etc. (2) Social Networks. The social network
datasets consider entities (e.g., users or authors) as nodes,
their interests and hobbies as attributes, and their social in-
teractions as edges. The widely used social network datasets
for self-supervised learning are mainly some classical graph
datasets, such as Reddit [8], COLLAB [77]. (3) Molecule
Graphs. In molecular graphs, nodes represent atoms in the
molecule, the atom index is indicated by the node attributes,
and edges represent bonds. Molecular graph datasets typi-
cally contain multiple graphs and are commonly used for
tasks such as graph classification and graph regression,
e.g., predicting molecular properties. (4) Protein Networks.
The protein networks can be divided into two main cat-
egories - Protein Molecule Graph and Protein Interaction
Network - based on the way they are modeled. The Protein
Molecule Graph is a particular type of molecule graph,
where nodes represent amino acids, and an edge indicates
the two connected nodes are less than 6 angstroms apart.
The commonly used datasets include PROTEINS [78] and
D&D [78], used for chemical molecular property prediction.
The other branch is Protein Interaction Networks, where
nodes denote protein molecules, and edges indicate their
interactions. The commonly used dataset is PPI [79], used
for graph biological function prediction. (5) Other Graphs.
In addition to the four types of datasets mentioned above,
there are some datasets that are less common or difficult to
categorize, such as image, traffic, and co-purchase datasets.

6.4 Codes in Github

The open-source codes are beneficial to the development
of the deep learning community. A summary of the open-
source codes of 71 surveyed works is presented in Appendix
G, where we provide hyperlinks to their open-source codes.
Most of these methods are implemented on GPUs based
on Pytorch or Tensorflow libraries. Moreover, we have cre-
ated a GitHub repository https://github.com/LirongWu/
awesome-graph-self-supervised-learning to summarize the
latest advances in graph SSL, which will be updated in real-
time as more papers and their codes become available.

6.5 Experimental Study

To make a fair comparison, we select two important down-
stream tasks, node classification and graph classification,
and provide the classification performance of various clas-
sical algorithms on 15 commonly used graph datasets in
Appendix H. Due to space limitations, please refer to the
appendix for more experimental results and analysis.

7 DISCUSSION

We begin with some discussion and summary of the con-
nections and developments between various methods. To
present a clearer picture of the development lineage of
various graph SSL methods, we provide a complete timeline
in Appendix I, listing the publication dates of some key
milestones. Besides, we provide the inheritance connections
between methods to show how they are developed. Fur-
thermore, we provide short descriptions of contributions to
some seminal works to highlight their importance.

DGI [9] is a pioneering work for graph contrastive learn-
ing, originally designed specifically for node classification
on attribute graphs, and later extended to other types of
graphs, resulting in new variants such as HDGI [31] for het-
erogeneous graphs, STDGI [28] for spatial-temporal graphs,
DMGI [80] for multiplexed graphs, and BiGI [37] for bipar-
tite graphs. Besides, InfoGraph [49] extends DGI to global-
context contrasting, achieving state-of-the-art performance
on multiple graph classification datasets. With the focus
shifted from local nodes and global graphs to subgraphs,
GCC [38] proposes the first subgraph-level context-context
contrasting framework, where subgraphs sampled from the
same graph are considered as the positive pair.

Different from DGI, GRACE [26] focuses on contrasting
views at the node-level by generating multiple augmented
graphs through handcrafted augmentations and then en-
couraging consistency between the same nodes in different
views. GCA [40] adopts a similar framework to GRACE,
but focuses on designing the adaptive augmentation strat-
egy. Similarly, GROC [43] claims that gradient information
can be used to guide data augmentation and proposes a
gradient-based graph topology augmentation that further
improves the performance of GRACE and GCA. The same
local-local contrasting as GRACE, but BGRL [27] is inspired
by BYOL [81] and explores for the first time whether nega-
tive samples are a must for graph contrastive learning.

The focus on three different levels of nodes, edges, and
structures has led to different generative methods such as
Graph Completion [12], Edge Feature Masking [11], and Ad-
jacency Matrix Reconstruction [14], respectively. Moreover,
due to their simplicity and effectiveness, these methods
have been widely used in algorithms such as GPT-GNN [32]
and recommendation applications such as Pretrain-Recsys
[82]. In terms of predictive methods, the basic difference
between methods is how to obtain pseudo-labels, and there
are three main means: (1) numerical statistics, such as Node
Property Prediction and PairwiseAttrSim [10]; (2) prediction
results from the previous training stage, such as CAGNN
[74] and M3S [75]; (3) domain knowledge, such as Molecular
Property Prediction and Global Motif Prediction [76].

Discussion on Pros and Cons. Next, we will discuss the
advantages and disadvantages of some classical algorithms
on four aspects: innovation, accessibility, effectiveness (per-
formance), and efficiency, based on which we divide existing
algorithms into four categories: (1) Pioneering work. Repre-
sentative works include DGI [9], InfoGraph [49], HDGI [31],
STDGI [28], etc. These methods, for the first time, apply
contrastive learning to a novel downstream task or graph
type, showing promising innovations and inspiring many
follow-up researches. However, as early attempts, they often

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LirongWu/awesome-graph-self-supervised-learning
https://github.com/LirongWu/awesome-graph-self-supervised-learning

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

17

perform relatively poorly on downstream tasks and with
high computational complexity, compared to some subse-
quent works. (2) Knowledge-based work. There are some
works that combine self-supervised learning techniques
with prior knowledge to obtain excellent performance on
downstream tasks. For example, Molecular Property Pre-
diction [76] combines domain knowledge, i.e., molecular
properties, while LCC [45] introduces label information into
the computation of supervision signals. These knowledge-
based methods usually achieve fairly good performance due
to the introduction of additional information, but this also
limits their applicability to other tasks and graph types. (3)
There is some work aimed at building on existing work
and pursuing state-of-the-art performance on a variety of
datasets, among which representative works include K2SL
[83], BGRL [27], and SUGAR [84]. While these works have
achieved state-of-the-art performance on a variety of down-
stream tasks, they are largely incremental contributions to
previous seminal work (e.g., DGI) and are relatively weak
on innovation and accessibility. (4) Most generative and pre-
dictive methods are less effective than contrastive methods,
but are generally very simple to implement, easy to com-
bine with existing frameworks, have lower computational
complexity, and exhibit better applicability and efficiency.

Pretext Tasks for Complex Types of Graph. Most of
the existing work is focused on the design of pretext tasks,
especially on attribute graphs, with little effort to other
more complex graph types, such as spatial-temporal and
heterogeneous graphs. Moreover, these pretext tasks usually
utilize only node-level or graph-level features, limiting their
ability to exploit richer information, such as temporal infor-
mation in spatial-temporal graphs and relation information
in heterogeneous graphs. As a result, how to design more
suitable pretext tasks can be considered from three aspects:
(1) designing graph type-specific pretext tasks that adaptively
pick the most suitable tasks depending on the type of graph;
(2) incorporating temporal or heterogeneous information (in
the form of prior knowledge) into the pretext task design;
(3) taking the automated design of pretext tasks as a new
research topic from the perspective of automatic learning.

Lack of Theoretical Foundation. Despite the great suc-
cess of graph SSL on various tasks, they mostly draw on the
successful experience of SSL on CV and NLP domains. In
other words, most existing graph SSL methods are designed
with intuition, and their performance gains are evaluated
by empirical experiments. The lack of sufficient theoretical
foundations behind the design has led to both performance
bottlenecks and poor explainability. Therefore, we believe
that building a solid theoretical foundation for graph SSL
from a graph theory perspective and minimizing the gap
between the theoretical foundation and empirical design is
also a promising future direction. For example, an important
problem for graph SSL is whether mutual information max-
imization is the only means to achieve graph contrastive
learning? Such problems have been explored in [54] for
image data, but how to extend them to the graph domain is
not yet available. In Sec. 3.4, in addition to MI estimators
such as InforNCE, we have introduced some contrastive
objectives that are not based on mutual information, such
as triplet margin and quadruplet loss. However, how to
theoretically analyze the connection between these losses

and mutual information needs to be further explored.
Insufficient Augmentation Strategy. Recent advances in

the field of visual representation learning [2, 3] are mainly
attributed to a variety of data augmentation strategies,
such as resize, rotation, coloring, etc. However, due to the
inherent non-Euclidean nature of graph data, it is difficult
to directly apply existing image-based augmentation to
graphs. Moreover, most augmentation strategies on graphs
are limited to adding/removing nodes and edges or their
combination to achieve the asserted SOTA. To further im-
prove the performance of SSL on graphs, it is a promising
direction to design more efficient augmentation strategies.
More importantly, the design of the augmentation strategy
should follow some well-designed guidelines instead of re-
lying entirely on subjective intuition. In summary, we argue
that the design of graph augmentation should be based
on the following four guidelines: (1) Applicability, graph
augmentation should ideally be a plug-and-play module
that can be easily combined with the existing self-supervised
learning frameworks. (2) Adaptability, some work [10, 27]
have pointed out that different datasets and task types
may require different augmentations, so how to design the
date-specific and task-specific augmentation strategy is a
potential research topic. (3) Efficiency, data augmentation
should be a lightweight module that does not bring a
huge computational burden to the original implementation.
(4) Dynamic, with the ability to dynamically update the
augmentation strategy as the training proceeds.

Inefficient Negative Sampling Strategy. The selection
of high-quality negative samples is a crucial issue. The
most common sampling strategy is uniform sampling, but
this has been shown to be very informative [85–87]. The
problem of how to better obtain negative samples has been
well explored in the field of computer vision. For example,
[85] presents the debiased contrastive learning that directly
corrects the sampling bias of negative samples. Besides, [86]
takes advantage of mixup techniques to directly synthesize
hard negative samples in the embedding space. Moreover,
[87] develops a family of unsupervised sampling strategies
for user-controllable negative sample selection. Despite the
great success, these methods, specifically designed for im-
age data, may be difficult to apply directly to non-Euclidean
graph data. More importantly, accurate estimation of hard
negative samples becomes more difficult when label infor-
mation is not available. Therefore, how to reduce the gap
between ideal and practical contrastive learning by a decent
negative sampling strategy requires more exploration.

Lack of Explainability. Though existing graph SSL
methods have achieved excellent results on various down-
stream tasks, we still do not know exactly what has been
learned from self-supervised pretext tasks. Which of the
feature patterns, significant structures, or feature-structure
relationships has been learned by self-supervision? Is this
learning explicit or implicit? Is it possible to find inter-
pretable correspondences on the input data? These are
important issues for understanding and interpreting model
behavior but are missing in current graph SSL works. There-
fore, we need to explore the interpretability of graph SSL
and perform a deep analysis of model behavior to improve
the generalization and robustness of existing methods for
security- or privacy-related downstream tasks.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

18

Margin from Pre-training to Downstream Tasks. Pre-
training with self-supervised tasks and then using the pre-
trained model for specific downstream tasks, either by
fine-tuning or freezing the weights, is a common training
strategy in graph SSL [82, 88, 89]. However, how shall we
transfer the pre-trained knowledge to downstream tasks?
Though numerous strategies have been proposed to address
this problem in the CV and NLP domains [90], they are
difficult to apply directly to graphs due to the inherent non-
Euclidean structure of graphs. Therefore, it is an important
issue to design graph-specific techniques to minimize the
margin between pre-training and downstream tasks.

8 CONCLUSION

A comprehensive survey of the literature on graph self-
supervised learning techniques is conducted in this paper.
We develop a unified mathematical framework for graph
SSL. Moreover, we summarize the implementation details in
each work and show their similarities and differences. More
importantly, we are the first survey to provide a detailed
experimental study on self-supervised learning, setting the
stage for the future development of graph SSL. Finally, we
point out the technical limitations of the current research
and provide promising directions for future work on graph
SSL. We hope this survey will inspire follow-up researchers
to focus on other important but easy-to-miss details such
as theoretical foundations, explainability, etc., in addition to
model performance on downstream tasks.

REFERENCES

[1] X. Liu, F. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang,
and J. Tang, “Self-supervised learning: Generative or con-
trastive,” arXiv preprint arXiv:2006.08218, vol. 1, no. 2, 2020.

[2] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2020, pp. 9729–9738.

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A
simple framework for contrastive learning of visual repre-
sentations,” in International conference on machine learning.
PMLR, 2020, pp. 1597–1607.

[4] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G.
Azar et al., “Bootstrap your own latent: A new approach to
self-supervised learning,” arXiv preprint arXiv:2006.07733,
2020.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding,” arXiv preprint arXiv:1810.04805,
2018.

[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multi-
task learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[7] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut, “Albert: A lite bert for self-supervised
learning of language representations,” arXiv preprint
arXiv:1909.11942, 2019.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” arXiv preprint
arXiv:1706.02216, 2017.

[9] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio,
and R. D. Hjelm, “Deep graph infomax.” in ICLR (Poster),
2019.

[10] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and
J. Tang, “Self-supervised learning on graphs: Deep insights
and new direction,” arXiv preprint arXiv:2006.10141, 2020.

[11] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande,
and J. Leskovec, “Strategies for pre-training graph neural
networks,” arXiv preprint arXiv:1905.12265, 2019.

[12] Y. You, T. Chen, Z. Wang, and Y. Shen, “When does
self-supervision help graph convolutional networks?” in
International Conference on Machine Learning. PMLR, 2020,
pp. 10 871–10 880.

[13] F. Manessi and A. Rozza, “Graph-based neural network
models with multiple self-supervised auxiliary tasks,”
arXiv preprint arXiv:2011.07267, 2020.

[14] Q. Zhu, B. Du, and P. Yan, “Self-supervised train-
ing of graph convolutional networks,” arXiv preprint
arXiv:2006.02380, 2020.

[15] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only
attention is needed for learning graph representations,”
arXiv preprint arXiv:2001.05140, 2020.

[16] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and
J. Huang, “Graph representation learning via graphical
mutual information maximization,” in Proceedings of The
Web Conference 2020, 2020, pp. 259–270.

[17] Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun, “Pre-
training graph neural networks for generic structural fea-
ture extraction,” arXiv preprint arXiv:1905.13728, 2019.

[18] K. Hassani and A. H. Khasahmadi, “Contrastive multi-
view representation learning on graphs,” in International
Conference on Machine Learning. PMLR, 2020, pp. 4116–
4126.

[19] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu,
“Sub-graph contrast for scalable self-supervised graph
representation learning,” arXiv preprint arXiv:2009.10273,
2020.

[20] Y. Xie, Z. Xu, Z. Wang, and S. Ji, “Self-supervised learning
of graph neural networks: A unified review,” arXiv preprint
arXiv:2102.10757, 2021.

[21] Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu,
“Graph self-supervised learning: A survey,” arXiv preprint
arXiv:2103.00111, 2021.

[22] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A comprehensive survey on graph neural networks,”
IEEE transactions on neural networks and learning systems,
2020.

[25] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen,
“Graph contrastive learning with augmentations,” Ad-
vances in Neural Information Processing Systems, vol. 33,
2020.

[26] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep
graph contrastive representation learning,” arXiv preprint
arXiv:2006.04131, 2020.

[27] S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veličković,
and M. Valko, “Bootstrapped representation learning on
graphs,” arXiv preprint arXiv:2102.06514, 2021.

[28] F. L. Opolka, A. Solomon, C. Cangea, P. Veličković, P. Liò,
and R. D. Hjelm, “Spatio-temporal deep graph infomax,”
arXiv preprint arXiv:1904.06316, 2019.

[29] K. Ma, H. Yang, H. Yang, T. Jin, P. Chen, Y. Chen, B. F.
Kamhoua, and J. Cheng, “Improving graph representa-
tion learning by contrastive regularization,” arXiv preprint
arXiv:2101.11525, 2021.

[30] B. Jing, C. Park, and H. Tong, “Hdmi: High-order deep
multiplex infomax,” arXiv preprint arXiv:2102.07810, 2021.

[31] Y. Ren, B. Liu, C. Huang, P. Dai, L. Bo, and J. Zhang,

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

19

“Heterogeneous deep graph infomax,” arXiv preprint
arXiv:1911.08538, 2019.

[32] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-
gnn: Generative pre-training of graph neural networks,”
in Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2020, pp.
1857–1867.

[33] H. Zhang, S. Lin, W. Liu, P. Zhou, J. Tang, X. Liang, and
E. P. Xing, “Iterative graph self-distillation,” arXiv preprint
arXiv:2010.12609, 2020.

[34] J. Zeng and P. Xie, “Contrastive self-supervised learning
for graph classification,” arXiv preprint arXiv:2009.05923,
2020.

[35] Z. T. Kefato and S. Girdzijauskas, “Self-supervised graph
neural networks without explicit negative sampling,”
arXiv preprint arXiv:2103.14958, 2021.

[36] Q. Zhu, Y. Xu, H. Wang, C. Zhang, J. Han, and
C. Yang, “Transfer learning of graph neural networks
with ego-graph information maximization,” arXiv preprint
arXiv:2009.05204, 2020.

[37] J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B. Wang, “Bipartite
graph embedding via mutual information maximization,”
in Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, 2021, pp. 635–643.

[38] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding,
K. Wang, and J. Tang, “Gcc: Graph contrastive coding for
graph neural network pre-training,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 1150–1160.

[39] S. Zhang, Z. Hu, A. Subramonian, and Y. Sun, “Motif-
driven contrastive learning of graph representations,”
arXiv preprint arXiv:2012.12533, 2020.

[40] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph
contrastive learning with adaptive augmentation,” arXiv
preprint arXiv:2010.14945, 2020.

[41] P. Bonacich, “Power and centrality: A family of measures,”
American journal of sociology, vol. 92, no. 5, pp. 1170–1182,
1987.

[42] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web.”
Stanford InfoLab, Tech. Rep., 1999.

[43] N. Jovanović, Z. Meng, L. Faber, and R. Wattenhofer, “To-
wards robust graph contrastive learning,” arXiv preprint
arXiv:2102.13085, 2021.

[44] T. N. Kipf and M. Welling, “Variational graph auto-
encoders,” arXiv preprint arXiv:1611.07308, 2016.

[45] Y. Ren, J. Bai, and J. Zhang, “Label contrastive coding
based graph neural network for graph classification,”
arXiv preprint arXiv:2101.05486, 2021.

[46] J. Yu, H. Yin, M. Gao, X. Xia, X. Zhang, and N. Q. V. Hung,
“Socially-aware self-supervised tri-training for recommen-
dation,” arXiv preprint arXiv:2106.03569, 2021.

[47] X. Wang, N. Liu, H. Han, and C. Shi, “Self-supervised
heterogeneous graph neural network with co-contrastive
learning,” arXiv preprint arXiv:2105.09111, 2021.

[48] C. Mavromatis and G. Karypis, “Graph infoclust: Leverag-
ing cluster-level node information for unsupervised graph
representation learning,” arXiv preprint arXiv:2009.06946,
2020.

[49] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph:
Unsupervised and semi-supervised graph-level represen-
tation learning via mutual information maximization,”
arXiv preprint arXiv:1908.01000, 2019.

[50] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
A. Courville, and D. Hjelm, “Mutual information neural
estimation,” in International Conference on Machine Learning.
PMLR, 2018, pp. 531–540.

[51] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training
generative neural samplers using variational divergence
minimization,” arXiv preprint arXiv:1606.00709, 2016.

[52] M. Gutmann and A. Hyvärinen, “Noise-contrastive esti-
mation: A new estimation principle for unnormalized sta-
tistical models,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 297–304.

[53] K. Sohn, “Improved deep metric learning with multi-class
n-pair loss objective,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016,
pp. 1857–1865.

[54] M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly,
and M. Lucic, “On mutual information maximization for
representation learning,” arXiv preprint arXiv:1907.13625,
2019.

[55] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 815–823.

[56] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond
triplet loss: a deep quadruplet network for person re-
identification,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2017, pp. 403–412.

[57] M. Kemertas, L. Pishdad, K. G. Derpanis, and A. Fa-
zly, “Rankmi: A mutual information maximizing ranking
loss,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 14 362–14 371.

[58] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” science, vol.
313, no. 5786, pp. 504–507, 2006.

[59] Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q. Zheng,
“Self-supervised graph representation learning via global
context prediction,” arXiv preprint arXiv:2003.01604, 2020.

[60] J. Macqueen, “Some methods for classification and analy-
sis of multivariate observations,” in In 5-th Berkeley Sym-
posium on Mathematical Statistics and Probability, 1967, pp.
281–297.

[61] Z. Gao, H. Lin, S. Li et al., “Clustering based on graph of
density topology,” arXiv preprint arXiv:2009.11612, 2020.

[62] L. Wu, Z. Liu, Z. Zang, J. Xia, S. Li, S. Li et al., “Deep
clustering and representation learning that preserves geo-
metric structures,” arXiv preprint arXiv:2009.09590, 2020.

[63] S. Z. Li, L. Wu, and Z. Zang, “Consistent representa-
tion learning for high dimensional data analysis,” arXiv
preprint arXiv:2012.00481, 2020.

[64] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep
spectral clustering using dual autoencoder network,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4066–4075.

[65] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised
learning of deep representations and image clusters,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 5147–5156.

[66] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep
embedding for clustering analysis,” in International confer-
ence on machine learning, 2016, pp. 478–487.

[67] R. McConville, R. Santos-Rodriguez, R. J. Piechocki, and
I. Craddock, “N2d:(not too) deep clustering via clustering
the local manifold of an autoencoded embedding,” arXiv
preprint arXiv:1908.05968, 2019.

[68] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep
clustering for unsupervised learning of visual features,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 132–149.

[69] D. Hwang, J. Park, S. Kwon, K.-M. Kim, J.-W. Ha,
and H. J. Kim, “Self-supervised auxiliary learning with
meta-paths for heterogeneous graphs,” arXiv preprint
arXiv:2007.08294, 2020.

[70] P. Wang, K. Agarwal, C. Ham, S. Choudhury, and C. K.
Reddy, “Self-supervised learning of contextual embed-
dings for link prediction in heterogeneous networks,”
arXiv preprint arXiv:2007.11192, 2020.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3131584, IEEE
Transactions on Knowledge and Data Engineering

20

[71] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph
convolutional networks for semi-supervised learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[72] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefeb-
vre, “Fast unfolding of communities in large networks,”
Journal of statistical mechanics: theory and experiment, vol.
2008, no. 10, p. P10008, 2008.

[73] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain
to leiden: guaranteeing well-connected communities,” Sci-
entific reports, vol. 9, no. 1, pp. 1–12, 2019.

[74] Y. Zhu, Y. Xu, F. Yu, S. Wu, and L. Wang, “Cagnn: Cluster-
aware graph neural networks for unsupervised graph
representation learning,” arXiv preprint arXiv:2009.01674,
2020.

[75] K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised
learning for graph convolutional networks on graphs with
few labeled nodes,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5892–5899.

[76] Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, and
J. Huang, “Self-supervised graph transformer on large-
scale molecular data,” Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020.

[77] P. Yanardag and S. Vishwanathan, “Deep graph kernels,”
in Proceedings of the 21th ACM SIGKDD international confer-
ence on knowledge discovery and data mining, 2015, pp. 1365–
1374.

[78] P. D. Dobson and A. J. Doig, “Distinguishing enzyme
structures from non-enzymes without alignments,” Journal
of molecular biology, vol. 330, no. 4, pp. 771–783, 2003.

[79] M. Zitnik and J. Leskovec, “Predicting multicellular func-
tion through multi-layer tissue networks,” Bioinformatics,
vol. 33, no. 14, pp. i190–i198, 2017.

[80] C. Park, D. Kim, J. Han, and H. Yu, “Unsupervised at-
tributed multiplex network embedding,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 04,
2020, pp. 5371–5378.

[81] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny,
“Barlow twins: Self-supervised learning via redundancy
reduction,” arXiv preprint arXiv:2103.03230, 2021.

[82] B. Hao, J. Zhang, H. Yin, C. Li, and H. Chen, “Pre-training
graph neural networks for cold-start users and items rep-
resentation,” in Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, 2021, pp. 265–
273.

[83] L. Yu, S. Pei, C. Zhang, L. Ding, J. Zhou, L. Li, and
X. Zhang, “Self-supervised smoothing graph neural net-
works,” arXiv preprint arXiv:2009.00934, 2020.

[84] Q. Sun, H. Peng, J. Li, J. Wu, Y. Ning, P. S. Yu, and
L. He, “Sugar: Subgraph neural network with reinforce-
ment pooling and self-supervised mutual information
mechanism,” arXiv preprint arXiv:2101.08170, 2021.

[85] C.-Y. Chuang, J. Robinson, Y.-C. Lin, A. Torralba, and
S. Jegelka, “Debiased contrastive learning,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[86] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel,
and D. Larlus, “Hard negative mixing for contrastive
learning,” arXiv preprint arXiv:2010.01028, 2020.

[87] J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Con-
trastive learning with hard negative samples,” arXiv
preprint arXiv:2010.04592, 2020.

[88] J. Shang, T. Ma, C. Xiao, and J. Sun, “Pre-training of
graph augmented transformers for medication recommen-
dation,” arXiv preprint arXiv:1906.00346, 2019.

[89] J. Zhang, K. Chen, and Y. Wang, “Pre-training on dynamic
graph neural networks,” arXiv preprint arXiv:2102.12380,
2021.

[90] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, “A comprehensive survey on transfer learn-
ing,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

Lirong Wu received the B.S. degree from the the
Department of Information Science & Electronic
Engineering, Zhejiang University, Hangzhou,
China, in 2020. He is currently pursuing the
Ph.D. degree with the School of Engineering,
Westlake University, Hangzhou, China. His main
research interests include low-level vision, video
compression, deep clustering, graph learning,
self-supervised learning, and deep learning.

Haitao Lin received the B.S. degree in Mate-
rial Physics and Statistics from Sichuan Univer-
sity, Chengdu, China. He is currently pursuing
the Ph.D. degree with the School of Engineer-
ing, Westlake University, Hangzhou, China. His
main research interests include spatio-temporal
model, multivariate time series forecasting with
relational inference, and dynamic system in biol-
ogy and physics.

Cheng Tan received the B.S. degree from the
the College of Information Engineering, North-
west A&F University, Xianyang, China, in 2021.
He is currently pursuing the Ph.D. degree with
the School of Engineering, Westlake University,
Hangzhou, China. His main research interests
include self-supervised learning and spatiotem-
poral learning.

Zhangyang Gao received the B.S. degree from
the School of Automation, Central South Univer-
sity, Changsha, China, in 2020. He is currently
a Ph.D. candidate at the School of Engineering,
Westlake University, Hangzhou, China. His main
research interests include clustering, unsuper-
vised video tasks, and deep learning.

Stan Z. Li (Fellow, IEEE) received the B.Eng. de-
gree from Hunan University, China, the M.Eng.
degree from the National University of Defense
Technology, China, and the Ph.D. degree from
the University of Surrey, U.K. He is currently
a Professor and the Director of the Center for
Biometrics and Security Research (CBSR), In-
stitute of Automation, Chinese Academy of Sci-
ences (CASIA). From 2000 to 2004, he worked
at Microsoft Research Asia, as a Researcher.
Prior to that, he was an Associate Professor with

Nanyang Technological University, Singapore. He has published over
200 papers in international journals and conferences and authored and
edited eight books. His research interests include pattern recognition
and machine learning, image and vision processing, face recognition,
biometrics, and intelligent video surveillance. He was elevated to a fellow
of the IEEE, for his contributions to the fields of face recognition, pattern
recognition, and computer vision. He served as the Program Co-Chair
for the International Conference on Biometrics in 2007 and 2009, and
has been involved in organizing other international conferences and
workshops in the fields of his research interest.

Authorized licensed use limited to: Westlake University. Downloaded on July 27,2022 at 02:00:00 UTC from IEEE Xplore. Restrictions apply.

