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USTEP: Spatio-Temporal Predictive Learning
Under a Unified View

Cheng Tan
Siyuan Li

Abstract—Spatio-temporal predictive learning plays a crucial
role in self-supervised learning, with wide-ranging applications
across a diverse range of fields. Previous approaches for temporal
modeling fall into two categories: recurrent-based and recurrent-
free methods. The former, while meticulously processing frames
one by one, neglect short-term spatio-temporal information redun-
dancies, leading to inefficiencies. The latter naively stack frames
sequentially, overlooking the inherent temporal dependencies. In
this paper, we re-examine the two dominant temporal modeling
approaches within the realm of spatio-temporal predictive learn-
ing, offering a unified perspective. Building upon this analysis, we
introduce USTEP (Unified Spatio-TEmporal Predictive learning),
an innovative framework that reconciles the recurrent-based and
recurrent-free methods by integrating both micro-temporal and
macro-temporal scales. Extensive experiments on a wide range
of spatio-temporal predictive learning demonstrate that USTEP
achieves significant improvements over existing temporal modeling
approaches, thereby establishing it as a robust solution for a wide
range of spatio-temporal applications.

Index  Terms—Self-supervised learning, spatiotemporal
predictive learning, convolutional neural networks, computer
vision.

I. INTRODUCTION

N AN era where data is continually streaming in, there is
I an increasing demand to not only understand the present
but to also predict the future. By leveraging historical video
data, spatio-temporal predictive learning strives to forecast sub-
sequent sequences in an unsupervised manner [1], [2], [3], [4],
[5], [6], [7], [8], [9]. With real-world applications extending
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Fig. 1. Frame-by-frame MSE/MAE comparison between the representative
recurrent-based method PredRNN and the recurrent-free method SimVP on the
extended frame task using the KTH dataset. The plot illustrates the differences
in performance across individual frames.

from forecasting weather patterns [10], [11], [12], [13], [14]
to predicting traffic flows [15], [16] and simulating physical
interactions [1], [17], the ramifications of advancements in this
promising domain are profound.

The path to achieving accurate spatio-temporal predictions
has been fraught with challenges. Traditional approaches have
typically oscillated between two primary temporal modeling
methodologies: recurrent-based and recurrent-free methods.
The recurrent-based methods [10], [16], [18], [19], [20], [21],
[22], [23], [24] meticulously process frames one by one,
ensuring that temporal relationships across each timestep are
captured. Yet, they often grapple with inefficiencies arising
from the redundant short-term spatio-temporal information and
challenges in preserving global information from preceding
time steps. Conversely, the recurrent-free methods [25], [26],
[27], [28], while alleviating the inefficiencies of their recurrent
counterparts, fall short in capturing the inherent temporal
dependencies. By stacking frames in a naive manner, these
models may overlook the intricate dance of cause and effect
played out over time, risking missing the subtle interplay. As
shown in Fig. 1, a frame-by-frame MSE/MAE comparison on
the KTH dataset illustrates the strengths and weaknesses of these
two approaches. Although the overall average performance
metrics for the recurrent-based method PredRNN [18] and the
recurrent-free method SimVP [26] are nearly identical (MSE
41.07 versus 41.11, MAE 380.6 versus 397.1), a more granular,
frame-by-frame analysis reveals critical insights. PredRNN
outperforms SimVP in the initial frames, highlighting its
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effectiveness in capturing short-term dependencies. However,
in the latter frames, SimVP shows superior performance,
underscoring its ability to handle long-term dependencies.
The frame-by-frame comparison thus emphasizes the
complementary nature of these two approaches. PredRNN’s
strength in modeling short-term dependencies and SimVP’s
capability to manage long-term dependencies highlight the
inherent trade-offs in choosing one method over the other. This
observation underscores the necessity for a unified framework
that integrates the advantages of both methodologies, addressing
their shortcomings.

In this work, we revisit the foundational principles of
temporal modeling in spatio-temporal predictive learning,
dissecting the merits and demerits of the prevailing approaches.
We introduce the concept of a temporal segment, defined as
a subsequence encompassing a series of continuous frames.
To refine our understanding further, we formally identify
and delineate two temporal scales: the micro-temporal scale,
which focuses on immediate, sequential dependencies, and
the macro-temporal scale, which encapsulates long-range
global patterns. Recurrent-based methods primarily concentrate
on micro-temporal scales, adeptly capturing instantaneous
interactions but often lacking in long-term insight. Conversely,
recurrent-free methods excel in considering macro-temporal
scales, effectively capturing broader temporal patterns, but
their neglect of immediate temporal dependencies results in a
loss of richness in the predicted sequences. This discrepancy
between the two paradigms highlights a significant gap in
current methodologies. The key challenge is reconciling the
redundant per-frame processing of recurrent-based methods
with the naive stacking of recurrent-free methods into a unified
spatio-temporal learning framework that can effectively model
both micro- and macro-temporal scales.

To bridge this gap, we introduce USTEP (Unified
Spatio-TEmporal Predictive learning), a novel framework
that takes into account both micro- and macro-temporal scales.
By doing so, USTEP achieves a balanced trade-off between
predictive performance and computational efficiency. The
architecture of USTEP is designed to integrate seamlessly the
strengths of both recurrent-based and recurrent-free methods,
while also introducing new mechanisms that enhance the
model’s ability to generalize across various spatio-temporal
scales. As illustrated in Fig. 2, recurrent-based methods
focus solely on the micro-temporal scale, processing one
frame at a time; recurrent-free methods consider only the
macro-temporal scale, treating the entire sequence as a single
unit. USTEP defines micro-temporal segments as several
consecutive frames and considers the entire input sequence as a
macro-temporal segment, maintaining long-range dependencies
as context. This dual-scale approach allows USTEP to learn and
update both short-term and long-term temporal relationships
dynamically. We conduct a diverse range of spatio-temporal
predictive tasks and the experimental results demonstrate its
superior performance, not just in terms of accuracy but also
in computational efficiency. We find that USTEP achieves
state-of-the-art performance with moderate computational
resources. Such efficiency and effectiveness establish USTEP
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Fig. 2. Temporal modeling comparison between recurrent-based, recurrent-
free and our unified temporal modeling.

as an exceptionally powerful solution, particularly suited to ad-
dressing the multifaceted challenges of real-world applications.

A preliminary version of this work was published in [25],

focusing on advancing temporal attention, and on the explo-
ration of open-source software for spatiotemporal learning [28]
(github.com/chengtan9907/0OpenSTL). This current journal pa-
per extends them in the following aspects:

1) Leveraging insights gained from the comprehensive spa-
tiotemporal benchmark in OpenSTL [28], this paper pro-
vides an in-depth review of prevailing approaches to
spatiotemporal predictive learning. A novel perspective
is introduced by categorizing these methods according
to their operational scales—specifically, micro-temporal
and macro-temporal scales. This classification enables a
nuanced analysis of their limitations and strengths, fos-
tering a more coherent understanding of the landscape of
spatiotemporal predictive learning.

2) Addressing the dichotomy between recurrent-based and
recurrent-free learning paradigms, we propose USTEP—a
novel, integrated framework designed to harmonize these
methodologies by incorporating both micro-temporal and
macro-temporal considerations. Using TAU [25] as the
basic unit, USTEP represents a significant methodological

Authorized licensed use limited to: Westlake University. Downloaded on January 06,2026 at 07:44:41 UTC from IEEE Xplore. Restrictions apply.



7066

advancement, offering a versatile and robust platform
for spatiotemporal predictive analysis that transcends the
limitations of existing approaches.

3) The efficacy and efficiency of USTEP are rigorously vali-
dated across a broad spectrum of spatiotemporal predictive
learning tasks. Our experimental investigations encom-
pass tasks with equal frame, extended frame, and reduced
frame requirements, demonstrating USTEP’s superior per-
formance and adaptability across varying temporal dy-
namics and spatial configurations.

II. RELATED WORK
A. Recurrent-Based Method

Recurrent-based models have made significant strides in
spatio-temporal predictive learning. Drawn inspiration from re-
current neural networks [29], VideoModeling [30] incorporates
language modeling techniques and employs quantization of
patches into a dictionary for recurrent units. ConvLSTM [10]
leverages convolutional neural networks to model the LSTM
architecture. PredNet [19] persistently predicts future video
frames using deep recurrent convolutional neural networks with
bottom-up and top-down connections. PredRNN [18] proposes
a Spatio-temporal LSTM (ST-LSTM) unit that extracts and
memorizes spatial and temporal representations simultaneously,
and its following work PredRNN++ [20] further introduces
gradient highway unit and Casual LSTM to capture temporal
dependencies adaptively. E3D-LSTM [22] designs eidetic mem-
ory transition in recurrent convolutional units. PredRNN-v2 [21]
has expanded upon PredRNN by incorporating a memory de-
coupling loss and a curriculum learning technique. However,
these models struggle with capturing long-term dependencies.
Moreover, they tend to be computationally intensive, especially
when scaled to high-dimensional data, limiting their practical
applicability.

B. Recurrent-Free Method

Instead of employing computationally intensive recurrent
methods for spatio-temporal predictive learning, alternative
approaches such as PredCNN [31] and TrajectoryCNN [32]
utilize convolutional neural networks for temporal modeling.
SimVP [26], [27] represents a seminal work that incorpo-
rates blocks of Inception modules within a UNet architec-
ture. In parallel, the introduction of the TAU [25] represents
another leap forward. This innovation underscores the criti-
cal role of attention mechanisms in achieving more nuanced
and efficient temporal understanding in neural network mod-
els. Despite these advances, it is imperative to acknowledge
the inherent limitations that accompany these models, par-
ticularly in their ability to capture the intricacies of fine-
grained temporal dependencies. Additionally, a notable con-
straint arises from the models’ design philosophy concerning
output length. Predominantly, these architectures are configured
to produce outputs that mirror the length of their inputs, a design
choice that, while offering a measure of structural symmetry,
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introduces rigidity and inherently limits the models’ flexibility in
decoding.

C. Efficient Recurrent Neural Network

In sequence modeling, RWKYV [33] and RetNet [34] revis-
ited the potential of RNNs and propose RNN architectures
that can achieve performance comparable to Transformers [35].
Mega [36] proposes a chunk-wise recurrent design, using the
moving average equipped gated attention mechanics to cap-
ture long-range dependencies in sequential data across various
modalities. This design is particularly adept at capturing long-
range dependencies across a diverse array of data modalities,
highlighting the evolving capabilities of recurrent models in
managing complex sequential information. While these prior
works demonstrate that well-designed recurrent architectures
can be both effective and efficient, USTEP goes a step further by
synergizing recurrent and recurrent-free paradigms. This hybrid
approach allows USTEP to capture both micro- and macro-
temporal scales, offering a nuanced and robust framework for
spatio-temporal predictive learning.

III. BACKGROUND

We formally define the spatio-temporal predictive learning
problem, inspired by existing works [26], [28]. Consider an
observed sequence of frames X" = {x’}! ;. | ata specific
time ¢, comprising the past 7" frames. Our objective is to forecast
the subsequent 7" frames, denoted as Y+ = {x?}!T7" Each
frame x; is generally an image in RE*#*W with C being
the number of channels, H the height, and W the width. In
the tensorial representation, the observed and predicted se-
quences are represented as Xt7 € RT*CxHxW apd pt+1.T" ¢
RT’ xCxH W

Given a model with learnable parameters ©, we seek to
find a mapping Fo : X*7 — Y17 This mapping is realized
through a neural network model that captures both spatial and
temporal dependencies within the data. The model is trained to
minimize a loss function £ that quantifies the discrepancy be-
tween the predicted and ground-truth future frames, formulated
as:

mgnc(f@(xtf),yt“f’), (1)

where L is chosen to evaluate the quality of the predictions in
both spatial and temporal dimensions. With the formal prob-
lem definition in place, the key challenges in spatio-temporal
predictive learning lie in the effective modeling of temporal
dependencies, which can be summarized as:
® Short-term redundancies removal: Recurrent-based meth-
ods process frames one by one, ensuring that temporal
relationships across each timestep are captured. However, it
often leads to inefficiencies due to redundant processing of
short-term spatio-temporal information. These redundan-
cies can cause unnecessary computational overhead and
hinder the model’s ability to focus on significant temporal
changes.
® [ong-term context preservation: Maintaining global infor-
mation from preceding time steps is crucial for accurate
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long-term predictions. Recurrent-based methods struggle
with this as they tend to lose global context. Conversely,
recurrent-free methods, which stack frames in a sequence,
are more efficient but fail to capture the intricate temporal
dependencies necessary for understanding long-term con-
text. This can result in predictions that miss the nuanced
interplay of events over time, leading to less accurate
forecasts.

To address these challenges, we define a temporal segment as
a basic unit comprising a series of continuous frames. We intro-
duce two distinct temporal scales to differentiate between short-
term dynamics and long-term context: the micro-temporal scale
and the macro-temporal scale. The micro-temporal scale focuses
on individual basic temporal segments, capturing fine-grained
and immediate interactions. In contrast, the macro-temporal
scale encompasses the context with the entire input sequence
length, providing a broader context and capturing long-term
dependencies. The detailed definitions of them are as follows.

Definition A (Temporal Segment): A temporal segment is
defined as a contiguous subsequence of frames extracted from
a given spatio-temporal sequence for the purpose of efficient
temporal modeling. Formally, let U; = {z' g+m71, where t;
is the starting time of the segment and At is the length of the
segment measured in time units or number of frames.

By focusing on temporal segments, we aim to capture essen-
tial temporal features while mitigating spatio-temporal redun-
dancies that often occur in short-term sequences.

Definition B (Micro-Temporal Scale): The micro-temporal
scale refers to the granularity at which a spatio-temporal se-
quence is partitioned into non-overlapping, contiguous tempo-
ral segments for the purpose of efficient and localized temporal
modeling. Formally, a sequence {xl}ﬁa_l is divided into N
micro-temporal segments U = {Uy,Us, ..., Un}.

The micro-temporal scale divides the spatio-temporal se-
quence into non-overlapping temporal segments, emphasizing
the independent nature of each segment. This approach cap-
tures fine-grained features within each segment while avoiding
overlap, thereby ensuring that the detailed information within
short-term sequences is accurately preserved and efficiently
processed.

Definition C (Macro-Temporal Scale): The macro-temporal
scale refers to the granularity at which a spatio-temporal
sequence is divided into large temporal segments, each en-
compassing the length of the entire input sequence. Formally,
a sequence {ml}if%;l is divided into M macro-temporal
segments V = {V1,Va,...,Vr}, where each segment V; =
{U;1,Uja, ..., Uji } consists of k micro-temporal segments, and
kAt = AT with AT =T > At.

The macro-temporal scale aims to capture long-term con-
text by encompassing segments that span the entire length of
the input spatio-temporal sequence. The initial macro-temporal
segment is equivalent to the recurrent-free approach, providing
a broad overview of the input sequence. Subsequent macro-
temporal segments advance with a step size equal to that of the
micro-temporal segments by updating the long-term context,
ensuring a comprehensive and continuous understanding of
long-term dependencies across the entire sequence.
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A. Recurrent-Based Temporal Modeling

In recurrent-based temporal modeling [10], [18], [37], there
exists a predominant focus on the intricacies of micro-temporal
scales, to the exclusion of broader, macro-temporal dynamics.
Formally, each micro-temporal segment U; consists solely of a
single frame {z'} with At = 1. The modeling approach can be
expressed as follows:

_ {f@(Ui7H,»1)7 ft-T+1<i<t,

Uip1 = Fo(U;,H;_1), otherwise,

where H,_; is the hidden state from the preceding frame. The
model operates in two distinct phases:

® Reconstruction Phase: For historical frames (t — T + 1 <
i < t), the model learns to reconstruct the next frame (71-+1
based on the current ground-truth frame U; and the hidden
state H;_; from the preceding frame.

e Prediction Phase: For future frames ¢ > t, the model _uses
the hidden state H;_; gnd the last predicted frame U; to
predict the next frame U, 1.

In both phases, the efficacy of the model for either recon-
structing or predicting frames is contingent upon the effective
and straightforward learning of the hidden state H;_; from the
preceding frame.

B. Recurrent-Free Temporal Modeling

In recurrent-free temporal modeling [25], [26], the focus
shifts entirely to the macro-temporal scale, bypassing any micro-
temporal segments. Specifically, each macro-temporal segment
V is defined as a sequence of T consecutive frames, with
AT = T. The recurrent-free temporal modeling approach can
be mathematically expressed as follows:

Vo = Fo(Vh), ?3)

where Vi = {z'}! . 41 is the historical frames, and V2 =
{21117 is the ground-truth future frames, Vs is the predicted
future frames by the model Fo. The model operates in a single
phase, where the model learns to predict the future frames Vo
based on the historical frames V3. It is worth noting that here the
output frames have the same length as the input frames.

By working with macro-temporal segments, recurrent-free
temporal modeling exhibits computational advantages, as it
can process multiple frames in parallel. It excels in capturing
global patterns over the entire temporal window by taking the
macro-temporal segment into account. However, it falters in han-
dling intricate temporal dependencies, primarily because it lacks
micro-temporal granularity. The fixed size of macro-temporal
segments is inflexible and limits the practical applicability.

C. Summary

In summary, we have dissected the foundational princi-
ples underlying temporal modeling in both recurrent-based
and recurrent-free methodologies. These approaches are distin-
guished by their primary operational focus on different temporal
scales—namely, the micro-temporal and macro-temporal scales.
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While recurrent-based temporal modeling focuses on micro-
temporal scales, recurrent-free temporal modeling shifts focus
to the macro-temporal scale, processing sequences of frames as
a whole.

IV. USTEP: UNIFIED SPATIO-TEMPORAL PREDICTIVE
LEARNING

To overcome the limitations inherent in both recurrent-based
and recurrent-free modeling, we propose USTEP, a unified
framework designed to harmoniously integrate micro- and
macro-temporal scales, aiming to maximize the effectiveness
of spatio-temporal predictive learning.

A. Temporal Scale Sets

The initial stage in USTEP involves dividing the input frame
sequence into two separate sets, corresponding to the micro-
temporal and macro-temporal scales, which are denoted as U/
and V, respectively, as illustrated in 3. In the micro-temporal
scale set U, each temporal segment U; is constructed to con-
tain a few consecutive frames, facilitating the capture of fine-
grained spatio-temporal information. The length of each Uj; is
determined by At, which is chosen to balance the trade-off
between temporal granularity and computational efficiency. For
the macro-temporal scale set V, we employ a sliding window
approach to construct larger temporal segments. Each macro-
temporal segment V; contains multiple non-overlapping seg-
ments U;. The sliding window moves in steps of size At,
ensuring that the macro-temporal segments are constructed in
a manner consistent with the micro-temporal scale. As shown in
Fig. 4(a), the macro-temporal segments are constructed using
both the previous and the current micro-temporal segments,
enabling the model to eliminate short-term redundancies while
preserving long-term context. This hierarchical approach en-
sures that the model can effectively capture both immediate and
long-term temporal dependencies.
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B. Single Segment-Level Temporal Modeling

Upon segmenting the input frame sequence into the micro-
and macro-temporal sets, {/ and V), the next step is to perform
temporal modeling at the single-segment level. This division
engages in temporal modeling at an individual segment level,
with a concerted effort to achieve a harmonious representation
across both temporal dimensions. The core ambition of this
phase is to derive hidden states from each temporal segment that
are not only compatible across the micro- and macro-temporal
scales but are also cohesively aligned within the same feature
space that maintains uniform dimensionality in a recurrent-free
manner.

To facilitate this objective, temporal segments U, and V;,
representative of both the micro and macro scales, respectively,
are transposed into a shared feature domain, articulated with di-
mensions C' x H x W. This transposition is executed through
the deployment of two specialized recurrent-free modules, de-
noted as Fyy and F, . Bach module is parameterized with a
set of learnable parameters 61, 65. These modules transform the
original segments to corresponding hidden states, denoted as
U;, Vi € REXHXW “according to the following equations:

Ui=F(U), Vi=Fy (Vi) @

By congruently aligning both micro- and macro-temporal seg-
ments within the same feature dimension C’, we establish a
unified representation space where the hidden states from both
temporal scales can be directly integrated. Such a unified feature
space enables us to leverage the complementary strengths of
micro- and macro-temporal modeling, thus enhancing the over-
all performance. Analogous to the concept of channel mixing in
MetaFormer [38], single segment-level temporal modeling can
be viewed as channel mixing at the micro- and macro-temporal
scales individually. This approach allows for the independent
processing of fine-grained and broad contextual information.

C. Cross Segment-Level Temporal Modeling

Once the unified hidden states are obtained from both micro-
and macro-temporal segments, the next challenge is to harmo-
niously integrate these at the cross-segment level. Our approach
is to leverage the advantages of both micro- and macro-temporal
scales, capturing fine-grained detail while maintaining a global
perspective, to enhance the predictive capability of our model,
USTEP.

The macro-temporal scale hidden states, V,, are processed
using a gating mechanism as follows:

g =c(W, xV;+b,),

R/ =V,+g,0h!,, (5)

where o(-) denotes the Sigmoid activation function, * and ©®
represent the convolution operator and the Hadamard product,
respectively. The parameters W, and b, are the convolution
weights and bias. The context gate, g, controls the flow of histor-
ical macro-temporal scale information and preserves long-term
context by regulating the integration of new information with the
previously accumulated macro-temporal scale hidden states.
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Ilustration of USTEP’s unified spatio-temporal predictive learning framework. (a) Temporal segment partition: USTEP constructs macro-temporal

segments using both the previous and the current micro-temporal segments. This approach allows the model to eliminate short-term redundancies while preserving
long-term context. (b) Detailed architecture of USTEP: The framework consists of two specialized recurrent-free modules, Feli and Fe‘g , which handle channel

mixing for micro- and macro-temporal scales, respectively. Hidden states from both scales are integrated through a gating mechanism and cross-segment-level

temporal modeling, ensuring comprehensive spatio-temporal predictive learning.

Subsequently, the micro-temporal scale and the processed
macro-temporal hidden states are then integrated:

m; =o(W, *U; +b,),
Cc; = O'(WC *ﬁl + bc),

where W,,, W,,b,, and b, are the convolution weights and
biases. The historical gate m; controls the integration of
the historical micro-temporal information, ensuring that the
model effectively utilizes past micro-temporal hidden states.
The cross-segment gate c¢; manages the incorporation of the
macro-temporal hidden state, ensuring that long-term context is
integrated with the immediate temporal features. This dual-gate
mechanism ensures that the model leverages both short-term and
long-term dependencies, enhancing its predictive capabilities
and overall performance.

The detailed schematic illustration of the temporal model-
ing learning process within USTEP is depicted in Fig. 4(b).
For every single segment, regardless of whether it belongs to
the micro-temporal or macro-temporal scale, a recurrent-free
approach is employed to swiftly capture coarse temporal depen-
dencies. In contrast, when considering the relationships across
segments, a recurrent-based approach is sequentially applied to
discern finer temporal dependencies. Notably, during this stage,
temporal dependencies from different scales are harmoniously
fused, ensuring a comprehensive temporal understanding. This
hierarchical and integrative approach allows USTEP to achieve a

delicate balance between capturing immediate temporal nuances
and understanding broader temporal patterns.

In the training phase, our proposed USTEP method adopts a
partitioning approach to divide the input sequences into = and
y, which aligns with the training strategy typically employed
by recurrent-based methods. However, USTEP offers a flexible
approach compared to traditional methods, which often use a
fixed time step of At = 1. The flexibility in USTEP allows
for different time step sizes, accommodating various temporal
resolutions and capturing temporal dependencies at different
granularities. During the inference phase, the model engages in
iterative operations for a predetermined number of steps. These
steps encompass both those required for observing sequences x
and the actual steps required for generating the predictions.

The algorithmic structure for the training process of our
proposed USTEP is presented in Algorithm 1, providing a
comprehensive roadmap for its implementation. Notably, the
partition function supports to handle with videos with flexible
lengths by adding up a pad.

During the inference phase, USTEP engages in a series of iter-
ative operations spanning a pre-defined number of steps, which
include both the observation of sequence x and the execution of
steps necessary for generating forward-looking predictions. This
iterative approach ensures a dynamic and responsive prediction
process, tailored to the temporal characteristics of the input
data.

The essence of this inference process is captured within the
pseudocode provided in Algorithm 2 below. This algorithm is not
justa sequence of steps but a manifestation of the USTEP frame-
work’s core capabilities, illustrating its approach to integrating
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Algorithm 1. Pseudocode of Training.

delta_t, delta_T):
:—delta_t]

delta_t:]

micro and macro sets
delta_t, delta_T)

def train(data,
X datal:,
y datal:,
# partition:
u, v = partition(x,

# single segment-level: recurrent-free

u, v =f_u(u), f_v(v)
# cross segment-level: recurrent-based
pred = []
h_v, h_u=20, 0
for i in range(len(u)-1):
h_v = macro_func(v[i], h_v)
h_u = micro_func(ul[i+1l], h_u, h_v)

pred.append (h_u)

loss = loss_func (pred, vy)
return loss

and operationalizing the micro and macro temporal scales in a
seamless and efficient manner.

V. EXPERIMENTS

We evaluate the efficacy of USTEP across three prevalent
types of spatiotemporal prediction tasks:

® FEqual Frame Task: The number of output frames matches
that of the input frames. This task type inherently favors
recurrent-free temporal modeling approaches due to its
structured nature.

o Extended Frame Task: The count of output frames sub-
stantially surpasses that of the input frames. This type of
task is generally more compatible with recurrent-based
temporal modeling approaches, allowing for more flexible,
frame-by-frame predictions.

® Reduced Frame Task: Diverging from the former, this task
necessitates fewer output frames than the input frames. By
mitigating the impact of cumulative errors, this task di-
rectly evaluates the model’s capability in learning historical
frames.

Datasets: To rigorously assess the performance and appli-
cability, we undertake a comprehensive quantitative evaluation
across a diverse range of datasets, meticulously curated to en-
compass both synthetic and real-world scenarios:

® Moving MNIST [39] is a synthetic dataset consisting of two
digits moving within the 64 x 64 grid and bouncing off
the boundary. It is a standard benchmark in spatiotemporal
predictive learning.

® Human 3.6 M [40] is a 3D human motion capture dataset
for fitness, close human interactions, and self-contact. This
dataset contains 3.6 million human poses and correspond-
ing images, 11 professional actors (6 male, 5 female), and
17 scenarios (discussion, smoking, taking photos, talking
on the phone, etc.).

o Weather Benchmark [12] This dataset contains various
types of climatic data from 1979 to 2018. The raw data is
regrind to low resolutions, we here choose 5.625° (32 x 64
grid points) resolution for our data. Since the complete
data is very large and includes massive climatic attributes
like geopotential, temperature, and other variables, we
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Algorithm 2. Pseudocode of Inference.

def inference (x,
#

delta_t, delta_T, n_step):

# x: Bx T xCx H=xW
# partition: micro and macro sets
u, v = partition(x, delta_t, delta_T)

# single segment-level: recurrent-free

u, v =£f_u(u), f_v(v)
# cross segment-level: recurrent-based
pred = []
h_v, h_.u=20, 0
for i in range(n_step-1):
h_v = macro_func(v[i], h_v)
h_u = micro_func(ul[i+1l], h_u, h_v)

# practical prediction
if 1 >= len(u):
pred.append (h_u)

return pred

specifically chose the global temperature prediction task
in evaluation.

® Caltech Pedestrian is a driving dataset focusing on de-
tecting pedestrians. It consists of approximately 10 hours
of 640 x 480 videos taken from vehicles driving through
regular traffic in an urban environment. We follow the pro-
tocol of PredNet [19] and CrevNet [41] for pre-processing,
training, and evaluation.

e SEVIR [42]is acomprehensive storm event imagery dataset
comprising over 10,000 weather events. Each event is
represented by image sequences covering a spatial extent
of 384 km x 384 km and spanning a temporal duration of
4 hours.

e UCF Sports [43] is a dataset featuring a collection of hu-
man actions performed in various sports scenarios. These
actions are typically recorded from footage broadcast on
television channels.

e KTH [44] contains 25 individuals performing six types
of actions. Following [22], [45], we use persons 1-16 for
training and 17-25 for testing. Models are trained to predict
the next 20 frames from the previous 10 observations.

We summarize the statistics of the above datasets in Table I,
including the number of training samples N4, and the number
of testing samples Nyq;.

Baselines: We choose the following baselines for compari-
son: (i) Recurrent-based methods including ConvLSTM [10],
SV2P [46], SAVP [47], PredRNN [18], PredRNN++ [20],
MIM [16], E3D-LSTM [22], and PredRNNv2 [21]; (ii)
Recurrent-free methods including SimVP [26], TAU [25],
Uniformer [48], MLP-Mixer [49], ConvNeXt [50] and
TAMA4VP [14]. For USTEP, we utilize TAU, SimVP, and Uni-
former as the single segment-level temporal modeling modules
F(,({ and Fg‘: to demonstrate the robustness and versatility of
our method. Notably, in USTEP, these modules retain the same
architecture as their original models but are configured with
fewer channels to ensure a fair comparison under similar com-
putational complexity.

Measurement: We employ Mean Squared Error (MSE), Mean
Absolute Error (MAE), Structure Similarity Index Measure
(SSIM), and Peak Signal to Noise Ratio (PSNR) to evaluate
the quality of predictions. MSE and MAE estimate the absolute
pixel-wise errors, SSIM measures the similarity of structural
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TABLE I
THE STATISTICS OF DATASETS

Nirain Niest (C, H, W) T T
MMNIST 10,000 10,000 (1, 64, 64) 10 10
Human 3.6M 73,404 8,582 (3, 256, 256) 4 4
WeatherBench 2,167 706 (1,32, 64) 12 12
Kitti&Caltech 3,160 3,095 (3,128, 160) 10 1
SEVIR 35,718 12,159 (1,384, 384) 13 12
UCEF Sports 6,288 752 (3, 480, 720) 4 1
KTH 4,940 3,030 (1,128, 128) 10 20/40
The training or testing set has N, or N, samples, composed by 7 or 7" images with the
shape (C.H,W).

information within the spatial neighborhoods, and PSNR is an
expression for the ratio between the maximum possible power
of a signal and the power of distorted noise. LPIPS [51] is a per-
ceptual similarity metric that computes the distance between two
images’ feature representations in a pre-trained deep network.
FVD score [52] is also included to evaluate the performance on
the KTH dataset.

Implementation details: We implement the proposed method
with the Pytorch framework and conduct experiments on a single
NVIDIA-V100 GPU. The AdamW optimizer is utilized with a
learning rate of 0.01 and a weight decay of 0.05. The learning rate
is chosen from a set of values, {1e 2, 5e73, 1e=3 5e 4 1le 1},
and the best result for each experiment is reported. It is worth
noting that the experimental results in TAU [25] replicate the
experimental settings from the previous baselines, which are not
fully rigorous. For consistency and comparability, we adhere to
the same settings as OpenSTL [28].

A. Equal Frame Task

Under the experimental setup of the Equal frame task
paradigm, we meticulously conducted a comprehensive
evaluation of the model’s performance on three distinct datasets.
These datasets, namely Moving MNIST [39], Human3.6M [40],
and WeatherBench [12], were judiciously chosen for their inher-
ent property of symmetrical frame sequences, where the number
of output frames precisely mirrors that of the input frames. This
characteristic facilitates a rigorous assessment of the model’s ca-
pacity to generate temporally coherent and contextually accurate
predictions over varying domains and complexity levels.

The Moving MNIST dataset requires the model to forecast 10
subsequent frames based on an equivalent number of preceding
frames. This task challenges the model to understand and predict
the dynamics of two moving digits within a frame, encapsulating
the complexity of motion patterns and interactions. Similarly, the
Human3.6 M dataset, derived from a rich repository of human
activities, mandates the prediction of 4 future frames from 4
given frames. This dataset serves as a crucible for evaluating the
model’s proficiency in capturing and forecasting human mo-
tion dynamics. The WeatherBench dataset introduces a unique
challenge: predicting 12 future temperature patterns from 12
preceding snapshots. This scenario tests the model’s ability to
grasp and anticipate complex meteorological evolutions over
time. The detailed results are summarized in Table II.
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In the Moving MNIST dataset, USTEP w/TAU outperforms
the previously top-ranked recurrent-based model, PredRNN++,
not only in predictive accuracy but also in computational ef-
ficiency. Remarkably, USTEP achieves these superior results
while requiring only half the number of parameters and a mere
tenth of the FLOPs compared to PredRNN++. In a direct com-
parison with the leading recurrent-free model, TAU, USTEP not
only operates within a comparable range of FLOPs but does so
with approximately 42% of TAU’s parameters, thereby demon-
strating significant improvements across various performance
metrics. This leap in efficiency and effectiveness is illustrated
through a compelling visualization example presented in Fig. 5,
highlighting USTEP’s prowess in generating highly accurate
predictions in the Moving MNIST challenge.

On the Human3.6 M, a complex dataset capturing a wide
array of human activities, USTEP w/TAU continues to demon-
strate superior performance. Notably, it employs one-third of
the parameters required by its closest competitor, Uniformer,
and operates with approximately 12% fewer FLOPs. Moreover,
USTEP w/Uniformer stands out as the leading model in all eval-
uated metrics with about 30% fewer parameters. This significant
reduction in computational resources, without a compromise in
performance, underscores USTEP’s capability to predict human
motion with remarkable efficiency.

The assessment on WeatherBench, a challenging dataset for
meteorological prediction, further solidifies USTEP’s position
as a versatile and potent model in the arena of spatiotemporal
forecasting. USTEP w/TAU obtains impressive advancements
over existing models across a spectrum of metrics. It maintains
FLOPs close to the premier recurrent-free model, TAU, while
its parameter count is merely 29% of TAU’s. Furthermore, when
juxtaposed with the leading recurrent-based model, PredRNN,
USTEP’s parameter efficiency becomes even more pronounced,
with its parameters constituting a mere 15% of those required
by PredRNN. Among these datasets, USTEP demonstrates
significant improvements over TAU, SimVP, and Uniformer in
performance metrics. Notably, it achieves these enhancements
with a lower parameter count and similar FLOPs, showcasing its
robustness and versatility across diverse domains. Through these
rigorous evaluations, USTEP showcases its prowess in precise
and efficient prediction across various datasets under the equal
frame task setting.

B. Extended Frame Task

In the exploration of spatiotemporal predictive models’ capa-
bilities, particularly in the context of forecasting a greater num-
ber of frames than those observed, the KTH dataset emerges as a
pivotal benchmark. The intricacies of this task lie in its demand
for models to not only understand and internalize short-term
sequences but also to extrapolate these observations into longer,
future sequences, thereby amplifying the challenge of accurate
prediction.

Upon a detailed examination, as presented in Table III, a dis-
tinct pattern emerges. Recurrent-free models, though commend-
able for their efficiency in terms of both parameters (Params)
and computational complexity (FLOPs), tend to fall short in
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TABLE II
THE QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON THE EQUAL FRAME TASK

Dataset | Metric Method
ConvLSTM PredRNN PredRNN++ MIM E3DLSTM
MSE 29.80 23.97 22.06 22.55 35.97
MAE 90.64 72.82 69.58 69.97 78.28
SSIM (x10~2) 92.88 94.62 95.09 94.98 93.20
PSNR 22.10 23.28 23.65 23.56 21.11
Params 15.0 23.8 38.6 38.0 51.0
FLOPs 56.8 116.0 171.7 179.2 298.9
1 PredRNNv2  MLP-Mixer Uniformer SimVP TAU
Z MSE 24.13 29.52 30.38 32.15 24.60
P MAE 73.73 83.36 85.87 89.05 71.93
=y SSIM (x10~2) 94.53 93.38 93.08 92.68 94.54
'g PSNR 23.21 22.13 22.78 21.84 23.19
S Params 23.9 44.8 46.8 58.0 447
FLOPs 116.6 16.5 16.5 194 16.0
ConvNeXt IAM4VP USTEP w/Uniformer USTEP w/SimVP  USTEP w/TAU
MSE 26.94 27.04 28.51 187 30.04(2.11 21.84 7
MAE 77.23 79.70 82.43( 3 44) 85.92( 513 63.21( 57
SSIM (x10~2) 93.97 93.95 94.32 41 24) 93.59 (4091 95.38(10.84)
PSNR 22.22 2219 23.28(+0_50) 22.11(+0_27) 24'06(+0.87)
Params 373 354 @(-61.97%) 24.4(_57_93%) 18.9(_57_72«:/“)
FLOPs 14.1 142 16.8(11.80%) 21.9(112.80%) 17.7 (110.63%)
ConvLSTM PredRNN PredRNN++ MIM E3DLSTM
MSE 125.5 113.2 110.0 112.1 143.3
MAE 1566.7 1458.3 1452.2 1467.1 14425
SSIM (x10~2) 98.13 98.31 98.32 98.29 98.03
PSNR 33.40 33.94 34.02 33.97 32.52
Params 15.5 24.6 39.3 47.6 60.9
FLOPs 347.0 704.0 1033.0 1051.0 542.0
= PredRNNv2  MLP-Mixer Uniformer SimVP TAU
G} MSE 114.9 116.3 108.4 115.8 113.3
pe MAE 1484.7 1497.7 1441.0 1511.5 1390.7
g SSIM (x10~2) 98.27 98.24 98.34 98.22 98.39
=] PSNR 33.84 33.76 34.08 33.73 34.03
e Params 24.6 27.7 11.3 41.2 37.6
FLOPs 708.0 211.0 74.6 197.0 182.0
ConvNeXt TAM4VP USTEP w/Uniformer USTEP w/SimVP  USTEP w/TAU
MSE 113.4 114.7 106.1 (3 109.8 (6.0 109535
MAE 1469.7 1489.9 1415.3 557 1472.7 (388 1380.5.10.2)
SSIM (x10~2) 98.28 98.26 98.42,0.05) 98.38.0.16) 98.45,0,0¢)
PSNR 33.86 33.74 34.20(,0.19) 34.11 (4039 34.35(,3
Params 314 102.0 3.4 (.69.91%) 4.5 (.89.08%) 3.7 (-90.16%)
FLOPs 157.0 978.0 76.6(12.68%) 63.2(_67.92%) 66.2.63.63%)
ConvLSTM PredRNN PredRNN++ MIM E3DLSTM
MSE 1.521 1.331 1.634 1.784 1.592
MAE (x10~2) 79.49 72.46 78.83 87.16 80.59
RMSE 1.233 1.154 1.278 1.336 1.262
Params 15.0 23.6 38.3 37.8 51.1
FLOPs 136.0 278.0 413.0 109.0 169.0
PredRNNv2  MLP-Mixer Uniformer SimVP TAU
5 MSE 1.545 1.255 1.204 1.238 1.162
£ MAE (x10~2) 79.86 70.11 68.85 70.37 67.07
) RMSE 1.243 1.119 1.097 1.113 1.078
£ Params 23.6 111 12.0 14.7 12.2
54 FLOPs 279.0 5.9 7.5 8.0 6.7
= ConvNeXt TAM4VP USTEP w/Uniformer USTEP w/SimVP  USTEP w/TAU
MSE 1.277 1.988 1.190(.0.019) 1.215(9 023 1150012
MAE ( X 1072) 7220 9643 6732(_1 _53) 6911 (_] .26) 65.83(_] _24)
RMSE (>< 1072) 1130 1410 1.087(_0_0]0) 1.102(_0_01]) 1'072(-0.006)
Params 10.1 12.9 3.3(72.50%) 4.4 70.07%) 3.6(.70.49%)
FLOPs 5.7 24 7.7 (+2.67%) 9.9 (+23.75%) 8.2(12230%)

The units for Params and FLOPs are M and G. The results of the USTEP series that underperform the default are in blue while outperforming those are in red.
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Fig. 5. The qualitative visualization on Moving MNIST.
TABLE IIT
THE QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE KTH DATASET (10 — 20 FRAMES)
Method Param FLOPs MSE | MAE | SSIM 1 PSNR 1 LPIPS | FVD |
ConvLSTM 14.9 1368.0 47.65 445.5 0.8977 26.99 26.69 640.78
PredRNN 23.6 2800.0 41.07 380.6 0.9097 27.95 21.89 436.26
PredRNN++ 38.3 4162.0 39.84 370.4 0.9124 28.13 19.87 394.63
MIM 39.8 1099.0 40.73 380.8 0.9025 27.78 18.81 1105.97
E3DLSTM 53.5 217.0 136.40 892.7 0.8153 21.78 48.36 1998.82
PredRNNv2 23.6 2815.0 39.57 368.8 0.9099 28.01 21.48 500.30
SV2p 8.3 468.0 64.88 687.2 0.8524 27.77 27.60 433.19
SAVP 17.6 641.0 124.53 867.8 0.8192 26.00 23.41 685.70
MLP-Mixer 20.3 66.6 57.74 5174 0.8886 25.72 28.80 761.58
ConvNeXt 12.5 63.9 45.48 428.3 0.9037 26.96 26.25 569.33
Uniformer 11.8 78.3 44.71 404.6 0.9058 27.16 24.17 543.40
SimVP 12.2 62.8 41.11 397.1 0.9065 27.46 26.50 567.72
TAU 15.0 73.8 45.32 421.7 0.9086 27.10 22.86 530.62
USTEP w/Uniformer 12.0(;169%) 101.0(:2899%) 40.23( 448y 377.5(27.1) 0.9140(:00082) 28.55(:139) 20.15(402 420.30(-123.10)
USTEP w/SimVP 16.4(_,_34'43%) 137-0(+118.15%) M(-l,%) 372.4(_24.7) 0.9135(4_0.0070) 28.47(_,_1.01) 20‘35(-6,15) 410.80(_156.92)
USTEP w/TAU 1281567 107.0(ss00%) 3955057 3649505 0.9165,0007 28.98(1s5 19960500 393131370

The results of the USTEP series that underperform the default are in blue while outperforming those are in red.

achieving the high-performance benchmarks set by their
recurrent-based counterparts. However, within this competitive
landscape, USTEP distinctly outperforms the previously estab-
lished frontrunner, PredRNN++, both in terms of predictive
accuracy and computational efficiency. USTEP not only aligns
itself with the efficiency metrics typically seen in recurrent-free

models but also surpasses them in performance. This juxtapo-
sition is illustrated in Fig. 6, where USTEP w/TAU predicts
notably more realistic and sharply defined compared to those
of other methods. While TAU, a recurrent-free model, exhibits
commendable performance, it struggles to replicate the nuanced
details that USTEP w/TAU manages to capture. By integrating
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Fig. 6. The qualitative visualization on KTH.

Uniformer, SimVP, and TAU as the basic modules, USTEP
consistently improves their baseline models across a range of
evaluation metrics, showcasing its robustness and versatility in
this setting. For example, USTEP w/TAU achieves an SSIM of
0.9165 and an FVD of 393.13, outperforming both its recurrent-
free and recurrent-based counterparts.

To push the boundaries of predictive modeling further, we
extended the challenge on the KTH dataset to encompass a
longer prediction horizon, specifically from 10 observed frames
to forecasting 40 future frames. The results of this ambitious
undertaking are meticulously compiled in Table IV. USTEP
w/TAU not only maintains but also amplifies its lead over
competing models, delivering outstanding performance across
a suite of evaluation metrics. This impressive feat underscores
USTEP’s exceptional capability to generate long sequences of
future frames with high fidelity, thereby affirming its robustness
and versatility for a broad spectrum of real-world scenarios. In
particular, USTEP w/TAU achieves an MSE of 54.68, which is
significantly lower than the baseline models, and an SSIM of
0.8832, indicating superior structural similarity in the predicted
frames. Furthermore, USTEP w/TAU also demonstrates a no-
table reduction in FVD scores, highlighting its enhanced ability
to produce visually coherent and temporally consistent predic-
tions. These improvements are not limited to one configuration;
USTEP variants with Uniformer and Sim VP also show consider-
able improvements, showcasing the framework’s flexibility and
effectiveness across different underlying architectures.

Such comprehensive evaluations serve not only to benchmark
the current state of spatiotemporal predictive modeling but also

to illuminate the path forward. While traditional recurrent-based
methods like PredRNN struggle to maintain performance over
longer prediction horizons, and recurrent-free methods like
SimVP tend to overlook short-term dependencies, USTEP man-
ages to harness the strengths of both, setting a new standard
in scenarios demanding the prediction of extended future se-
quences.

C. Reduced Frame Task

Within the scope of the Reduced Frame Task, our objective
was to rigorously evaluate the model’s adeptness at learning
from a limited set of observed frames and its effectiveness in
minimizing accumulated prediction errors. This evaluation is
critical, as it tests the model’s capability to infer future states
from sparse temporal data, a common scenario in real-world
applications. The Caltech Pedestrian dataset, known for its com-
plexity and real-life relevance, served as the foundation for this
assessment. The dataset’s diverse and dynamic pedestrian scenes
provide a robust testbed for spatio-temporal prediction models.
The results from this evaluation are systematically presented in
Table V.

Recurrent-based methods such as PredRNN and PredRNN++
exhibit strong overall performance with balanced metrics, in-
dicating their proficiency in handling temporal dependencies.
However, these methods tend to have higher computational costs
in terms of parameters and FLOPs. Recurrent-free methods like
SimVP and TAU demonstrate low computational costs but at
the expense of higher prediction errors, suggesting limitations in
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TABLE IV
QUANTITATIVE RESULTS ON THE KTH DATASET (10 — 40 FRAMES)

Method Params FLOPs MSE | MAE | SSIM 1 PSNR 1 LPIPS | FVD |
ConvLSTM 14.9 2312.0 63.60 512.2 0.8677 25.42 36.98 1893.45
PredRNN 23.6 4730.0 61.42 499.0 0.8753 25.49 34.26 1711.06
PredRNN++ 38.3 7032.0 74.21 554.1 0.8615 24.53 38.44 1482.15
MIM 39.8 1864.0 60.92 520.3 0.8645 25.42 35.14 1578.64
E3DLSTM 53.5 498.0 192.83 11245 0.7843 19.87 68.43 3995.82
PredRNNv2 23.6 4757.0 70.27 516.7 0.8554 25.12 37.43 1500.34
SV2P 8.3 638.0 85.14 907.1 0.8011 24.08 38.24 1681.09
SAVP 17.6 1084.0 156.43 1198.6 0.8042 24.32 39.90 1691.11
MLP-Mixer 20.3 133.2 81.44 681.0 0.8397 23.36 42.55 2148.75
ConvNeXt 12.5 127.8 58.57 502.1 0.8760 25.59 36.77 1648.97
Uniformer 11.8 156.6 63.04 561.0 0.8601 24.98 39.32 1543.23
SimVP 12.2 125.6 68.63 603.5 0.8555 25.10 39.23 1501.04
TAU 15.0 147.6 62.22 511.1 0.8689 25.47 35.77 1500.63
USTEP w/Uniformer  12.0(,160%) 202.0(.2809%) 54.84(520) 440501205 0879800197 26100112 32450657  945.24(507.09)
USTEP w/SimVP 16.4(3043%) 274.0(411815%) 95.23(13.40) 445.6(15709) 0.8783(100208) 26.05(1095) 32.81( 642 1095.72( 40532
USTEP w/TAU 12.8 1679 214.0(14a99%)  54.68( 751  433.2(779) 0.8832(,00143 26.22(.075 31.28(449) 849.16(.651.47)
The results of the USTEP series that underperform the default are in blue while outperforming those are in red.
TABLE V
QUANTITATIVE RESULTS ON THE CALTECH PEDESTRIAN DATASET (10 — 1 FRAME)
Method Params FLOPs MSE | MAE | SSIM 1 PSNR 1 LPIPS |
ConvLSTM 15.0 595.0 139.6 1583.3 0.9345 27.46 8.58
PredRNN 237 1216.0 130.4 1525.5 0.9374 27.81 7.40
PredRNN++ 38.5 1803.0 125.5 1453.2 0.9433 28.02 13.21
MIM 49.2 1858.0 125.1 1464.0 0.9409 28.10 6.35
E3DLSTM 54.9 1004.0 200.6 1946.2 0.9047 25.45 12.60
PredRNNv2 23.8 1223.0 147.8 1610.5 0.9330 27.12 8.92
MLP-Mixer 22.2 83.5 207.9 1835.9 0.9133 26.29 7.75
ConvNeXt 12.5 80.2 146.8 1630.0 0.9336 27.19 6.99
Uniformer 11.8 104.0 135.9 1534.2 0.9393 27.66 6.87
SimVP 8.6 60.6 160.2 1690.8 0.9338 26.81 6.76
TAU 15.0 92.5 131.1 1507.8 0.9456 27.83 549
USTEP w/ Uniformer 4.7 60.17%) 79.6(.23.46%) 123812y 1421.2 413 0.9471 (10.0078) 28.3210.66) 5.50(137)
USTEP w/SimVP 6.3 (:26.74%) 105.0(473.27%) 144.6(.15) 1532.0(.158.8) 0.9465.0.0127) 28.09(1.28) 5.65(.1.11)
USTEP w/TAU 5.1 66.00%) 85.3 (7.78%) 123.6( 75 1407.9 99,9 0.9477 (.0.0021) 28.37 (1054 4.94 55

The results of the USTEP series that underperform the default are in blue while outperforming those are in red.

capturing detailed temporal dependencies. In contrast, USTEP
w/TAU delivers the best overall performance, achieving the
lowest MSE and MAE, highest SSIM and PSNR, and lowest
LPIPS, all while significantly reducing computational require-
ments. This highlights USTEP’s ability to balance accuracy and
efficiency effectively. Additionally, USTEP variants with Uni-
former and SimVP also exhibit notable improvements over their
baseline models, demonstrating significant reductions in param-
eters and FLOPs while maintaining or enhancing performance
metrics. These results underscore the efficacy of the USTEP

framework in integrating the strengths of both recurrent-based
and recurrent-free methods.

The SEVIR dataset is particularly challenging due to the
highly dynamic and irregular nature of meteorological events. As
shown in Table VI, recurrent-based methods like PredRNN++
achieved strong results, with the highest Critical Success In-
dex (CSI) among non-USTEP models, but at high computa-
tional overhead cost. Recurrent-free methods such as SimVP
obtained exceptional computational efficiency, with the low-
est parameter and FLOP counts, but lagged behind in CSI.
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TABLE VI
QUANTITATIVE RESULTS ON THE SEVIR DATASET (13 — 12 FRAMES) AND UCF SPORTS (4 — 1 FRAME)
SEVIR UCF Sports
Method Params FLOPs CSIt RMSE| Params FLOPs PSNR+ LPIPS]

ConvLSTM 17.4 3097.0 0.4082 13.01 15.0 4017.0 25.90 29.33
PredRNN 27.9 6170.0 0.4288 12.82 23.8 8208.0 27.17 28.15
PredRNN++ 42.6 8706.0 0.4312 12.64 38.5 12171.0 27.26 26.80
Uniformer 19.6 408.0 0.3797 13.87 38.7 223.0 26.63 28.78
SimVP 12.8 171.0 0.3959 12.66 379 226.0 27.96 24.99
TAU 20.5 241.0 0.3941 12.73 38.2 236.0 28.10 24.55

USTEP W/Uniformer 12.2(_3775%) 253.0(_37_99%) 0.4091(“)‘0294) 13'06(-081) 5'6(-85.53%) 235'0(‘#5‘38%) 27'32(+U.69) 2691(-187)

USTEP w/SimVP 181234  267.0(45614%) 0-428900330) 12.62(.004) 6.1(g301%) 251.0(111.06%) 28.01(:005) 24.77( 020

USTEP w/TAU 13.5(3015%)  277.0(41493%) 0.4366(.0045 12100063 6.3(s351%) 262.0(111100) 28.48(1038) 24.23( 3

The results of the USTEP series that underperform the default are in blue while outperforming those are in red.
TABLE VII
ABLATION STUDY ON THE INFLUENCE OF DIFFERENT DESIGN CHOICES ON THE MOVING MNIST DATASET
Moving MNIST
Method Params FLOPs Training time Inference time MSE| MAE] SSIMT PSNR?T

USTEP (At = 5) 18.9 17.7 93 58 21.84 63.21 0.9538 24.06
USTEP (At =1) 18.8 52.5 600 1052 31.94 71.72 0.9416 23.36
USTEP (At = 2) 18.3 30.8 282 293 24.62 62.30 0.9525 24.46
USTEP (At = 10) 19.1 134 64 35 25.13 74.31 0.9440 23.02
USTEP (At =1,AT =1) 18.5 89.8 863 1449 37.21 86.51 0.9240 2221
w/o cross segment 17.4 13.1 82 52 24.01 67.65 0.9489 23.57
TAU 447 16.0 63 39 24.60 71.93 0.9454 23.19
PredRNN++ 38.6 171.7 511 373 22.06 69.58 0.9509 23.65

(At is default to 10). Training time is measured in seconds per epoch, while inference time is measured in seconds of the test set.

The TAU model provided a balance between accuracy and
efficiency, achieving competitive results. The USTEP frame-
work outperformed baselines on the SEVIR dataset. USTEP
w/TAU delivered the best performance, achieving the high-
est CSI and the lowest RMSE, while reducing parameters by
34.15% . The UCF Sports dataset was used to evaluate the
model’s ability to predict human actions in dynamic scenes.
USTEP demonstrated its adaptability and superior performance
on this dataset. USTEP w/TAU achieved the best overall re-
sults, with the highest PSNR and the lowest LPIPS, while
reducing parameters by 83.51% compared to recurrent-based
methods.

D. Ablation Study

To unravel the nuances that underpin the performance of
USTEP, an in-depth ablation study was undertaken. This meticu-
lous examination was directed towards understanding the reper-
cussions of various design decisions, with a particular focus on
the temporal stride (At) and the integration of a cross-segment
mechanism within the model’s architecture. For convenience,
we refer to USTEP w/TAU as simply USTEP. The findings
from this study succinctly encapsulated in Table VII, shed light
on the intricate balance between computational efficiency and
predictive accuracy.

The optimal performance is achieved when At is set to 5,
where USTEP records an MSE of 21.84 and an SSIM of 0.9538,
marking the zenith of its predictive accuracy. This particular
configuration of At underscores a harmonious balance between
capturing essential temporal dynamics and maintaining compu-
tational pragmatism. With considerable performance improve-
ments over TAU, USTEP only marginally sacrifices training
and inference time while still remaining significantly faster
than its recurrent-based counterparts. However, diminishing
the stride (At) heightens the model’s computational demand,
evidenced by an uptick in FLOPs, attributed to the increment
in computational occurrences necessitated by shorter temporal
intervals.

The role of the cross-segment mechanism emerges as pivotal
within this contextual framework. Its presence is instrumental,
acting as a crucial part of USTEP’s architecture that significantly
enhances spatiotemporal predictive performance. Disabling this
cross-segment mechanism results in noticeable performance
degradation, emphasizing its criticality in facilitating a nuanced
interplay between different temporal segments, thereby enrich-
ing the model’s predictive depth and accuracy.

We compare the convergence curves between USTEP and rep-
resentative recurrent-based method PredRNN++ and recurrent-
free method TAU in Fig. 7. While TAU benefits from fast
convergence in the earlier epochs, USTEP gradually catches
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Fig. 7. Convergence comparison between USTEP and strong baselines, Pre-
dRNN++ (recurrent-based) and TAU (recurrent-free).
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Fig. 8. Frame-wise comparison in MSE, MAE, SSIM and PSNR metrics.
For MSE and MAE metrics, lower values are preferable. For SSIM and PSNR
metrics, higher values are more desirable.

up and eventually surpasses TAU. PredRNN++ exhibits the
slowest convergence compared to USTEP. Moreover, while
USTEP achieves a similar MSE to PredRNN++, it significantly
outperforms PredRNN++ in terms of MAE. This suggests that
USTEP produces more accurate and visually coherent predicted
frames, effectively reducing larger prediction errors. USTEP not
only offers a compatible solution that bridges the gap between
recurrent-based and recurrent-free models but also provides
strong overall performance, making it a robust choice for spatio-
temporal predictive learning tasks.

Fig. 8 delineates that At =1 tends to overemphasize
local information, potentially leading to a lack of holistic
understanding. In contrast, At = 10 appears to overly prioritize
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Representative failure cases of USTEP on complex variants of Moving

global information, possibly at the expense of missing finer,
localized details. These insights underline the importance of
choosing an appropriate At in USTEP to balance local and
global temporal considerations, ensuring the holistic integrity
of the learned features and predictions.

E. Empirical Analysis and Practical Guideline

Our objective is to integrate the strengths of both recurrent-
based and -free approaches for spatiotemporal predictive learn-
ing. Using a fixed time step At is a simple yet effective way
to achieve this. As we have set AT as the length of the in-
put sequence in Definition 3.3, the only hyperparameter left
to be tuned is At. Empirically, we recommend using At =5
for long videos (T'+ T’ > 10) and At = 2 for short videos
(T +T" <10). As indicated in Table VIII, minor changes
were observed on KTH and WeatherBench. The other datasets
remained unchanged in terms of metrics since their optimal
At values were already aligned with our principle. In essence,
our empirical principle serves as a foundational guideline for
selecting the temporal stride At when processing video data
of varying lengths, guarantees good performance across a wide
range of applications.

In practice, At can also be adjusted based on the frame rate of
the video data. For low frame rates (e.g., 1-5 FPS), a smaller At is
preferable to ensure no critical temporal information is skipped.
For higher frame rates (e.g., 30 FPS or more), a larger At
can help improve computational efficiency while maintaining
performance. Our empirical findings suggest that setting At = 5
for long videos and At = 2 for short videos provides a default
configuration.

F. Analysis Between USTEP and Representative Baselines

Recurrent-based models like PredRNN, PredRNN++, and
ConvLSTM excel at modeling temporal dependencies by pro-
cessing frames sequentially, but they suffer from the following
limitations:

® Redundant Frame-by-Frame Processing: Frame-by-frame

processing leads to significant computational overhead,
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TABLE VIII
EMPIRICAL At EFFECTS

Dataset At Length MSE| MAE] SSIM( x10-2) T PSNR?T
MMNIST 5 20 21.84(,000) 6321 (4000) 95.38,0.00) 24.06(,0.00)
KTH 5 30 39.91,0.30) 355.3(.9) 91.55(.9.10) 28.99(10.01)
Caltech 5 11 123.6(,0.00) 1407.9.0.00) 94.77 (20 00) 28.37(.000)
WeatherBench 5 24 11400 0.69 (+0.04) - -
Human 2 8 109.5(10.00) 1380.5(40.00) 98.45(40.00) 34.35(40.00)

The results that underperform the default are in blue while outperforming those are in red.

TABLE IX
RUNTIME COMPARISON ON THE KTH (10 — 40 FRAMES) DATASET

Device Model Training Time Inference Time

TAU 188 46

V100 PredRNN++ 6360 1551
USTEP 221 54
TAU 101 25
A100 PredRNN++ 3405 782
USTEP 121 31

TAU 10528 2510

CPU PredRNN++ 362520 88422

USTEP 12155 2968

Training time is measured in seconds per epoch, while inference time is measured in seconds
of the test set.

as short-term spatio-temporal redundancies are repeat-
edly processed. This inefficiency becomes even more pro-
nounced with longer input sequences. For example, in
Table II (Moving MNIST), the FLOPs of ConvLSTM,
PredRNN, and PredRNN++ are 56.8, 116.0, and 171.7
GFLOPs, respectively. This shows how the increased
complexity of recurrent-based models results in higher
computational costs, despite moderate improvements in
performance. PredRNN++ achieves better MSE (22.06)
compared to PredRNN (23.97) and ConvLSTM (29.80),
but the improvement comes at a significant cost in terms
of computational efficiency.

Complex Module Design: PredRNN introduces spatio-
temporal memory flow, enhancing its ability to capture
transitions between frames. PredRNN++ further builds on
this by designing more complicated recurrent modules, but
the added complexity doesn’t always translate to better
performance. For instance, in Table IV, PredRNN++’s
FLOPs (7032 GFLOPs) are much higher than ConvLSTM
(2312 GFLOPs) and PredRNN (4730 GFLOPs). However,
its MSE (74.21) is worse than PredRNN (61.42) and even
ConvLSTM in some cases. This suggests that the additional
complexity in PredRNN++ does not always yield better
results, particularly for long-term predictions.

Recurrent-free models such as SimVP and TAU offer an effi-
cient alternative by processing sequences in parallel. However,
their limitations include:

Loss of Fine-Grained Temporal Interactions: SimVP pro-
cesses sequences holistically, focusing on global patterns
but neglecting short-term temporal interactions between
consecutive frames. This makes it less effective for tasks
requiring precise frame-by-frame modeling. For instance,
on Moving MNIST (Table II), SimVP achieves an MSE of

32.15, which is significantly worse than PredRNN (23.97)
and PredRNN++ (22.00). Its performance gap demon-
strates its inability to capture fine-grained dependencies.

e Efficiency versus Performance Trade-off: TAU simplifies

SimVP by replacing the middle U-Net with plain temporal
attention units. TAU demonstrates exceptional efficiency
compared to recurrent-based models. For example, on
Table IV, TAU achieves a comparable MSE (62.22) with
only 147 GFLOPs, whereas PredRNN requires 4730
GFLOPs, and PredRNN++ requires 7032 GFLOPs. How-
ever, TAU’s focus on global context still limits its ability
to model short-term dynamics as effectively as recurrent-
based models. While TAU strikes a better balance, it still
prioritizes long-term global modeling at the expense of
short-term interactions.

USTEP combines the strengths of both recurrent-based and
recurrent-free models while addressing their individual limita-
tions. It achieves this through its hierarchical dual-scale frame-
work, which integrates micro-temporal (short-term) and macro-
temporal (long-term) modeling:

® Avoids Redundant Frame-by-Frame Processing and

Captures Fine-Grained Temporal Interactions: Unlike
recurrent-based methods, USTEP processes long-term de-
pendencies using macro-temporal segments in a recurrent-
free manner, reducing computational overhead while main-
taining global context. By incorporating micro-temporal
segments, USTEP explicitly models short-term dependen-
cies that recurrent-free models like SimVP and TAU ne-
glect.

® Dynamic Integration of Temporal Scales: USTEP employs

a dual-gate mechanism that dynamically integrates in-
formation from both micro- and macro-temporal scales.
USTEP achieves superior performance without incurring
the high computational costs of recurrent-based models.
For example: On Moving MNIST (Table II), USTEP
w/TAU achieves an MSE of 21.84 with 17.7 GFLOPs, out-
performing PredRNN++ (22.06 MSE with 171.7 GFLOPs)
at only about 10% additional computational cost compared
to TAU. On KTH (Table IV), USTEP w/TAU achieves the
best performance with an MSE of 54.68 at 214 GFLOPs,
significantly outperforming PredRNN (MSE 61.42, 4730
GFLOPs) and PredRNN++ (MSE 74.21, 7032 GFLOPs).
USTEP delivers this superior performance while using over
20x fewer FLOPs than recurrent-based models.

USTEP bridges the gap between recurrent-based and
recurrent-free methods by combining their strengths and
addressing their limitations. It avoids the inefficiencies of
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frame-by-frame processing in recurrent-based models and over-
comes the lack of fine-grained temporal modeling in recurrent-
free models. This unified approach ensures that USTEP can
handle both short-term and long-term dependencies dynami-
cally and efficiently. As demonstrated in Section V, USTEP
consistently achieves superior performance across benchmarks
while maintaining a balanced computational cost, making it an
effective and scalable solution for spatio-temporal predictive
learning.

G. Runtime Comparison on Different Devices

To further emphasize the computational efficiency of our
proposed framework, we conduct a detailed runtime comparison
across different hardware platforms, using the KTH dataset with
the extended frame prediction task (10 — 40 frames) as a bench-
mark. This setup not only provides a challenging long-horizon
forecasting scenario but also reveals the practical deployment
costs across a range of devices, including high-performance
GPUs (NVIDIA V100 32GB, NVIDIA A100 80GB) and a
representative CPU platform (Intel(R) Xeon(R) Platinum 8358
@ 2.60GHz). Table IX presents the training and inference times
of USTEP, PredRNN++, and TAU on different platforms. On
both GPU platforms, USTEP achieves nearly the same efficiency
as TAU. Moreover, USTEP demonstrates significantly faster
performance compared to PredRNN++.

VI. CONCLUSION AND LIMITATION

This paper introduced USTEP, a novel paradigm for spa-
tiotemporal prediction tasks, thoughtfully architected to unify
the strengths of both recurrent-based and recurrent-free models.
USTEP operates under a novel paradigm that offers a compre-
hensive view of spatiotemporal dynamics, facilitating a nuanced
understanding and representation of intricate temporal patterns
and dependencies. USTEP has proven its mettle across a variety
of spatiotemporal tasks, demonstrating exceptional adaptability
and superior performance in diverse contexts. It meticulously in-
tegrates local and global spatiotemporal information, providing
a unified perspective that enhances its performance.

To better understand USTEP’s limitations, we conducted an
in-depth failure analysis by designing three extended variants of
the Moving MNIST that introduce controlled complexities: (i)
Moving FashionMNIST: we replace digit characters with fash-
ion items, increasing object variability and deformability; (ii)
Moving MNIST-Dynamic: we introduce random Gaussian per-
turbations to the speed of each object, simulating non-uniform
motion patterns; (iii) Moving MNIST-CIFAR: we use natural
image backgrounds sampled from the CIFAR-10, introducing
substantial background clutter and color variation. These vari-
ants are specifically constructed to test USTEP under conditions
of occlusion, fast or irregular motion, and complex visual scenes.
As illustrated in Fig. 9, USTEP exhibits decreased predictions
in these cases, particularly when object motion is highly erratic
or when the foreground and background share similar textures
or color distributions. In such settings, the model may produce
blurred or temporally inconsistent predictions, revealing a sen-
sitivity to dynamic and context-heavy environments. We believe
these findings provide valuable insight into USTEP’s failure
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modes. In future work, we aim to address these challenges by
incorporating adaptive motion modeling and stronger attention
mechanisms for background-foreground separation.
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