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Learning to Model Graph Structural Information on
MLPs via Graph Structure Self-Contrasting

Lirong Wu, Haitao Lin, Guojiang Zhao, Cheng Tan, and Stan Z. Li†, Fellow, IEEE

Abstract—Recent years have witnessed great success in han-
dling graph-related tasks with Graph Neural Networks (GNNs).
However, most existing GNNs are based on message passing to
perform feature aggregation and transformation, where the struc-
tural information is explicitly involved in the forward propagation
by coupling with node features through graph convolution at each
layer. As a result, subtle feature noise or structure perturbation
may cause severe error propagation, resulting in extremely poor
robustness. In this paper, we rethink the roles played by graph
structural information in graph data training and identify that
message passing is not the only path to modeling structural infor-
mation. Inspired by this, we propose a simple but effective Graph
Structure Self-Contrasting (GSSC) framework that learns graph
structural information without message passing. The proposed
framework is based purely on Multi-Layer Perceptrons (MLPs),
where the structural information is only implicitly incorporated
as prior knowledge to guide the computation of supervision
signals, substituting the explicit message propagation as in GNNs.
Specifically, it first applies structural sparsification to remove
potentially uninformative or noisy edges in the neighborhood,
and then performs structural self-contrasting in the sparsified
neighborhood to learn robust node representations. Finally,
structural sparsification and self-contrasting are formulated as
a bi-level optimization problem and solved in a unified frame-
work. Extensive experiments have qualitatively and quantitatively
demonstrated that the GSSC framework can produce truly en-
couraging performance with better generalization and robustness
than other leading competitors. Codes are publicly available at:
https://github.com/LirongWu/GSSC.

Index Terms—Graph Neural Networks, Contrastive Learning,
Graph Sparsification, Graph Structure Learning.

I. INTRODUCTION

Recently, the emerging Graph Neural Networks (GNNs)
have demonstrated their powerful capability in handling graph-
related tasks [1–6]. Despite their great success, most existing
GNNs are based on message passing, which consists of two
key computations: (1) AGGREGATE: aggregating messages
from its neighborhood, and (2) UPDATE: updating node
representation from its representation in the previous layer
and the aggregated messages. Due to the explicit coupling
of node features and graph structural information in the
AGGREGATE operation, subtle feature noise or structure per-
turbation may cause severe error propagation during message
passing, resulting in extremely poor robustness [7–10]. There
has been some pioneering work [11, 12] delving into the
necessity of message passing for modeling graph structural
information. These methods adopt a pure MLP architecture
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that is free from feature-structure coupling, where structural
information is only implicitly used to guide the computation
of downstream supervision. For example, Graph-MLP [11]
designs a neighborhood contrastive loss to bridge the gap
between GNNs and MLPs by implicitly utilizing the adja-
cency information. Besides, LinkDist [12] directly distills self-
knowledge from connected node pairs into MLPs without the
need for aggregating messages. Despite their great progress,
these MLP-based models still cannot match the state-of-the-
art GNNs in terms of classification performance due to the
underutilization of graph structural information. Therefore,
“how to make better use of graph structural information
without message passing” is still a challenging problem.

The quality of graph structural information plays a very
key crucial in various graph learning algorithms, making
graph sparsification techniques, such as DropEdge [13], STR-
Sparse [8] and GAUG [14], etc., emerge as a common means
to improve performance. The goal of graph sparsification
is to filter out noisy structural information, i.e., finding an
informative subgraph from the input graph by removing noisy
edges. However, most existing graph sparsification methods
are tailored for general GNNs, and they jointly optimize
graph sparsification and GNN training by back-propagation of
downstream supervision in an end-to-end manner. However,
such an optimization may work for GNNs but is hard to
be extended directly to MLP-based models, where structural
information has been used to guide the computation of down-
stream supervision, and it is not feasible to use downstream
supervision in turn to optimize the structural sparsification.

The differences between the two cases of using graph
sparsification techniques for GNNs and MLP-based models
are illustrated in Fig. 1, where the key point is whether graph
structural information is used explicitly or implicitly. For GNN
models, the structural information G is explicitly involved in
the forward propagation, coupled with node features through
graph convolution at each layer, and thus we can directly
obtain the gradients, i.e., the derivative of supervision loss
w.r.t the sparsification parameters. As a result, the parameters
of GNN and graph sparsification can be jointly optimized by
downstream supervision. In contrast, MLP-based models only
implicitly utilize structural information G to guide the compu-
tation of downstream supervision signals (denoted as a dashed
line), and thus the derivative of supervision loss w.r.t the
sparsification parameters is not available, which prevents the
sparsification network from being directly optimized through
downstream supervision (denoted as a red cross). As an
alternative, this paper proposes a homophily-oriented objective
to guide the optimization of the sparsification network.
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https://github.com/LirongWu/GSSC.
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Fig. 1: A comparison between two cases of using graph
sparsification for GNNs and MLP-based models. X denotes
the input features, H denotes the hidden features, and G is the
sparsified subgraph. The forward and backward propagation
are marked as black and red lines, respectively.

In this paper, we propose a simple yet effective Graph
Structural Self-Contrasting (GSSC) framework, which consists
of two main networks: (i) Structural Sparsification (STR-
Sparse) and (ii) Structural Self-Contrasting (STR-Contrast). In
the proposed GSCC framework, we first apply the STR-Sparse
network on the input graph to remove potentially uninforma-
tive or noisy edges in the neighborhood and then perform
STR-Contrast in the sparsified neighborhood by imposing
structural smoothness constraints between connected nodes.
Specifically, the STR-Contrast network is based on MLPs,
where structural information is only implicitly used to guide
the computation of supervision signals but does not involve the
forward propagation. Finally, we formulate structural sparsifi-
cation and self-contrasting as a bi-level optimization problem
and optimize the two networks using a tailor-made homophily-
oriented objective and downstream supervision, respectively.
Extensive experiments have shown that GSSC can produce
truly encouraging performance with better generalization and
robustness than other state-of-the-art competitors. To our best
knowledge, we are the first work to explore the applicability
of graph sparsification to (non-GNN) MLP-based models.

II. RELATED WORK

A. Graph Representation Learning

Recent years have witnessed the great success of GNNs in
graph learning [15–19]. There are two categories of GNNs:
spectral GNNs and spatial GNNs. The spectral-based GNNs
define convolution kernels in the spectral domain based on
the graph signal processing theory. For example, ChebyNet
[20] uses the polynomial of the Laplacian matrix as the
convolution kernel to perform message passing, and GCN is
its first-order approximation. The spatial-based GNNs focus
on the design of aggregation functions directly. For example,
GraphSAGE [21] employs a generalized induction framework
to efficiently generate node embeddings for previously unseen

data by aggregating known node features. GAT [22], on the
other hand, adopts the attention mechanism to calculate the
coefficients of neighbors for better information aggregation.
We refer interested readers to the recent survey [2] for more
GNN variants, such as SGC [23], APPNP [24] and DAGNN
[1]. However, the above GNNs all share the de facto design
that structural information is explicitly utilized for message
passing to aggregate node features from the neighborhood.

Recently, there are some recent attempts to train graph data
by combining contrastive learning and knowledge distillation
[25, 26] with MLPs. For example, Graph-MLP [11] designs a
neighborhood contrastive loss to bridge the gap between GNNs
and MLPs by implicitly utilizing the adjacency information.
Instead, LinkDist [12] directly distills self-knowledge from
connected node pairs into MLPs without the need to aggregate
messages. Despite their great progress, they still cannot match
the state-of-the-art GNN models in terms of classification
performance, more importantly, they ignore the potential noise
in the graph structure. Another MLP-based model is Graph
MLP-Mixer [27], which generalizes ViT/MLP-Mixer to graph
data and have achieved promising results.

Graph transformers (GTs) is another research area closely
related to graph representation learning. For example, [28] is
the first work that generalizes Transformer to graphs, which
uses Laplacian position encoding to preserve local structural
information. GraphiT [29] utilizes relative position encoding to
enhance attention mechanism. Recently, GRIT [30] proposes
a novel structural encoding called relative random walk prob-
abilities (RRWP) to enhance local structure expressive power.
Besides, Graph Transformers (SGFormer) [31] simplifies and
empowers Transformers, which requires none of positional
encodings, feature/graph pre-processing, or augmented loss.
For more GT architectures, please refer to recent survey [32].

B. Graph Sparsification

The robust learning on graphs includes adversarial training
[9, 33, 34], label denoising [35], structure learning [36–38],
etc., among which the closest one to ours is graph sparsifica-
tion, which aims to find a small subgraph from the input graph
that best preserve some desired properties. Existing graph
sparsification techniques can be divided into two categories:
unsupervised and supervised. The unsupervised sparsifica-
tion techniques, such as Spectral Sparsifier (SS) [39] and
Rank Degree (RD) [40], mainly deal with simple graphs by
some pre-defined graph metrics, e.g., node degree distribution,
clustering coefficient, etc. Besides, DropEdge [13] randomly
removes a fraction of edges according to the pre-defined
probability before each training epoch to get sparsified graphs.
In contrast, supervised sparsification directly parameterizes
the sparsification process and optimizes it end-to-end along
with GNN parameters under downstream supervision. For
example, Learning Discrete Structure (LDS) [41] works under
a transductive setting and learns Bernoulli variables associated
with individual edges. Besides, GAUG [14] first optimizes the
graph structure learning and GNN parameters in an end-to-end
manner and then directly removes some low-importance edges
during training. Moreover, NeuralSparse [8] proposes a general



3

framework that simultaneously learns to remove task-irrelevant
edges and node representations by downstream supervision.
Furthermore, L2A [42] unifies graph sparsification (augmen-
tation) and GNN training in a variational inference framework,
which is applicable to both homophily and heterophily graphs.
However, these supervised sparsification techniques may be
hard to be directly extended to existing MLP-based models.

C. Graph Structure Learning

Recent advances in Graph Structure Learning (GSL) provide
new insights into reducing the dependency on the given graph
structure. The primary goal of graph structure learning is to
infer an underlying graph structure from node features and
then apply a GNN classifier to the inferred graph [43]. For
example, [43] proposes Homophily-Enhanced Self-supervision
for Graph Structure Learning (HES-GSL), a method that
provides additional self-supervision for learning an underlying
graph structure. Similarly, [44] proposes a novel method called
Homophily-enhanced structure Learning for graph clustering
(HoLe), based on the observation that subtly enhancing the de-
gree of homophily within the graph structure can significantly
improve GNNs and clustering outcomes. To address the under-
supervision problem, Simultaneous Learning of Adjacency and
GNN Parameters with Self-supervision (SLAPS) [45] proposes
a feature reconstruction-based pretext task to provide more
self-supervision for graph structure learning. Besides, RDGSL
[46] proposes dynamic graph structure learning, where dy-
namic graph filters are designed to address the noise dynamics
issue. Moreover, CGI [47] proposes a contrastive graph struc-
ture learning via information bottleneck for recommendation,
which adaptively learns whether to drop an edge or node to
obtain optimized structures in an end-to-end manner. We refer
interested readers to a recent survey [48] for more methods.

III. METHODOLOGY

Used Notations. Given a graph G = (V, E), where V is the
set of N nodes with features X = [x1,x2, · · · ,xN ] ∈ RN×d

and E denotes the edge set. Each node vi ∈ V is associated
with a d-dimensional features vector xi, and each edge ei,j ∈
E denotes a connection between node vi and vj . The graph
structure can also be denoted by an adjacency matrix A ∈
[0, 1]N×N with Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E .
Node classification is a typical node-level task where only a
subset of node VL with corresponding labels YL are known,
and we denote the labeled set as DL = (VL,YL) and unlabeled
set as DU = (VU ,YU ), where VU = V\VL. The task of node
classification aims to learn a mapping p(Y | X,A) on labeled
data DL, so that it can be used to infer the label Y ∈ YU .

A. Theoretical Justification

From the perspective of statistical learning, the key of node
classification is to learn a mapping p(Y | X,A) based on
node features X and adjacency matrix A. However, instead
of directly working with the original graph, we would like
to leverage sparsified subgraphs to remove task-irrelevant

information and learn more robust representations. In other
words, we are interested in the variant as follows

p(Y | X,A) =
∑
g∈SG

p(Y | X, g)p(g | X,A), (1)

where g ∈ SG is a sparsified subgraph of original graph G.
In practice, the distribution space size of SG is 2|E|, and it
is intractable to enumerate all possible g as well as estimate
the exact values of p(Y | X, g) and p(g | X,A). Therefore,
we turn to approximate the distributions by two tractable
parameterized functions qθ(·) and qϕ(·), as follows

p(Y | X,A) =
∑
g∈SG

qθ(Y | X, g)qϕ(g | X,A), (2)

where qθ(·) and qϕ(·) are approximation functions for p(Y |
X, g) and p(g | X,A). Moreover, to make the above graph
sparsification process differentiable, we employ the commonly
used reparameterization tricks [49] to transform the discrete
combinatorial optimization problem to a continuous proba-
bilistic generative model, as follows∑
g∈SG

qθ(Y | X, g)qϕ(g | X,A) ∝
∑

g′∼qϕ(g|X,A)

qθ(Y | X, g′),

(3)
where g′ is a subgraph sampled from qϕ(g | X,A).

To optimize Eq. (3), a bi-level optimization framework
is adopted to alternate between learning qϕ(g | X,A) and
qθ(Y | X, g′). In addition to the downstream supervision for
learning qθ(Y | X, g′), another objective function H(·) is
required to optimize qϕ(g | X,A). Intuitively, H(·) should
be an unsupervised metric to evaluate the quality of the
sparsified graph g′. Graph homophily, as an important graph
property, may be a desirable option for H(·).

Introduction on Graph Homophily: The graph homophily is
defined as the fraction of inter-class edges in a graph,

r =
|{(i, j) : ei,j ∈ E ∧ yi = yj}|

|E|
. (4)

The homophily ratio of the sparsified subgraph g′ may be a
desirable option for H(·) for the following three reasons: (1)
Most common graphs adhere to the principle of homophily,
i.e., “birds of a feather flock together”, which suggests
that connected nodes often belong to the same class, e.g.,
friends in social networks often share the same interests or
hobbies. (2) It has been shown in previous work [50] that
common GNN classifiers, such as GCN and GAT, usually
perform better on datasets with higher homophily ratios. (3)
When downstream supervision is not accessible, the prior
knowledge of graph homophily can serve as strong guidance
for searching the suitable sparsified subgraph.

Problem Statement: In this paper, the three important issues
on framework design can be summarized as:

• Implementing sparsification network qϕ(g | X,A) that
takes node features X and adjacency matrix A as inputs
to generate a sparsified subgraph g′. (Sec. III-B)

• Implementing self-contrasting network qθ(Y | X, g′) that
takes node features X and the sparsified subgraph g′ as
inputs to make predictions Y . (Sec. III-C)
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Fig. 2: Illustration of the proposed structural sparsification network, which consists of three main components: (1) Estimate
Λ = {λi,j |i ∈ V, j ∈ Ni} by sparsification distribution qϕ (λi,j | X,A); (2) Obtain the sparsification strategy M by the
weighted fusion; (3) Sample a sparsified subgraph g′ from sparsification strategy M through Gumbel-Softmax sampling.

• Formulating the sparsification and self-contrasting in
a bi-level optimization framework and proposing a
homophily-oriented objective function (Sec. III-D)

B. Structural Sparsification Network

The sparsification network aims to generate a discrete spar-
sified subgraph g′ for graph G as shown in Fig. 2, serving as
the approximation function qϕ(g | X,A). Therefore, we need
to answer three questions about the sparsification network:
(1) How to model the sparsification distribution? (2) How
to differentiably sample discrete sparsified subgraphs from
the learned sparsification distribution? (3) How to optimize
the sparsification distribution and subgraph sampling process?
Next, we first answer Question (1)(2) and defer the discussion
of optimization strategy until Sec. III-D.

1) Sparsification Distribution: To model the sparsification
distribution, we introduce a set of latent variables Λ =
{λi,j |ei,j ∈ E}, where λi,j ∈ [0, 1] denotes the sparsifica-
tion probability between node vi and vj . We can estimate
λi,j directly with distribution qϕ (λi,j | µi,j) prameterized by
µi,j ∈ RF . However, directly fitting each qϕ (λi,j | µi,j)
locally involves solving |E|F parameters, which increases the
over-fitting risk given the limited labels in the graph. Thus,
we consider the amortization inference [51], which avoids
the optimization of parameter µi,j for each local probability
distribution qϕ (λi,j | µi,j) and instead fits a shared neural
network to model parameterized posterior. Specifically, we
first transform the input to a low-dimensional hidden space,
done by multiplying the features of input nodes with a shared
parameter matrix W ∈ RF×d, that is, zi = Wxi. Then, we
parameterize the sparsification distribution λi,j as follows:

qϕ (λi,j | X,A) = σ
(
ziz

T
j

)
, (5)

where σ(·) is an element-wise sigmoid function.
2) Subgraph Sampling: To sample discrete sparsified

subgraphs from the learned sparsification distribution and
make the sampling process differentiable, we adopt Gumbel-
Softmax sampling [49], which can be formulated as follows

g′i,j =

⌊
1

1 + exp−
(
logMi,j+G

)
/τ

+
1

2

⌋
, where i ∈ V, j ∈ Ni

(6)
where Mi,j = (1 − α)qϕ (λi,j | X,A) + αAi,j is defined
as the learned structural sparsification strategy. In addition,

α ∈ [0, 1] is the fusion factor, which aims to prevent the
sampled sparsified subgraph g′ from deviating too much from
the original graph. Besides, τ is the distribution temperature,
and G ∼ Gumbel(0, 1) is a gumbel random variate.

Next, we will discuss in detail how to model the STR-
Contrast network qθ(Y | X, g′) based on the node features
X and the sampled sparsified subgraph g′. Without loss of
generality, we can denote the edge set of the sparsified graph
g′ as E ′

g to distinguish E of the original graph G.

C. Structural Self-Contrasting Network

Not involving any explicit message passing, the structural
self-contrasting network treats the structural information im-
plicitly as prior to guide the computation of supervision
signals. In this section, we introduce the structural self-
contrasting network from the following three aspects: (1)
backbone architecture design, including an MLP and two
prediction heads; (2) objective function design, how to self-
contrast between the target node vi and its neighboring node
vj ∈ Vi; (3) optimization difficulty and strategy, including
how to properly sample negative samples and support batch-
style training. A high-level overview of the proposed GSSC
framework is shown in Fig. 3.

1) Architecture: The structural self-contrasting network is
based on a pure MLP architecture, with each layer composed
of a linear transformation, an activation function, a batch
normalization, and a dropout function, formulated as:

H(l) = Dropout
(
BN

(
σ
(
H(l−1)W(l−1)

)))
, H(0) = X

(7)
where 1 ≤ l ≤ L, σ = ReLu(·) denotes an activation
function, BN(·) is the batch normalization, and Dropout(·)
is the dropout function. W(0) ∈ Rd×F and W(l) ∈ RF×F

(1 ≤ l ≤ L − 1) are layer-specific weight matrices with the
hidden dimension F . Furtheromore, we define two additional
prediction heads: yi = fω(h

(L)
i ) ∈ RC and zj = gγ(h

(L)
j ) ∈

RC , where C is the number of categories.
2) Structural Smoothness Constraint: The structural

smoothness assumption indicates that connected nodes should
be similar, while disconnected nodes should be far away. With
such motivation, we propose a structural smoothness constraint
that enables the model to learn the graph connectivity and dis-
connectivity without explicit message passing. Given a target
node vi, we first generate an augmented node vi→j between
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Fig. 3: Illustration of the proposed GSSC framework, consisting of a structural sparsification network, a multilayer perceptron,
two label prediction heads (fω(·) and gγ(·)), a structural self-contrasting network, as well as two optimization losses.

node vi and its neighboring node vj ∈ Ni by learnable
interpolation, with its node representation gi→j defined as

gi→j = gγ
(
βi,jh

(L)
j + (1− βi,j)h

(L)
i

)
,

where βi,j = sigmoid
(
aT

[
h
(L)
i ∥h(L)

j

]) (8)

where βi,j is defined as learnable interpolation coefficients
with the shared weight a. Then, we take the generated
augmented node vi→j as a positive sample and other non-
neighboring nodes as negative samples and define the con-
straint between nodes vi, vj as follows

li,j = log
eD(yi,gi→j)∑

ei,k /∈E′
g
eD(yi,zk)

= D (yi,gi→j)− log
∑

ei,k /∈E′
g

eD(yi,zk),
(9)

where yi = fω(h
(L)
i ), zk = gγ(h

(L)
k ), and D : RC ×

RC → R is a discriminator that maps two representations
to an agreement score and taken as Mean Square Error
(MSE) in our implementation by default. The motivations
why we adopt learnable interpolation to augment nodes is
based on the following judgment: compared with those non-
neighboring nodes, the number of neighboring nodes is much
smaller, which makes the model overemphasize the differences
between the target and non-neighboring nodes, resulting in
imprecise class boundaries. We have demonstrated the benefits
of node augmentation and negative samples in Table. I.

The total structural smoothness constraints over the edge set
E ′
g of the sparsified subgraph g′ can be defined as

Lsmooth =
1

N

N∑
i=1

∑
ei,j∈E′

g

(
D (yi,gi→j)− log

∑
ei,k /∈E′

g

eD(yi,zk)
)
.

(10)
3) Optimization Difficulty and Strategy: Directly opti-

mizing Eq. (10) is computationally expensive for two tricky
optimization difficulties: (1) it treats all non-neighboring nodes
as negative samples, which suffers from both data redundancy
and huge computational burden; and (2) it performs the
summation over the entire set of nodes, i.e, requiring a large
memory space for keeping the entire graph. To address these
problems, we adopt the edge sampling strategy [52] for batch-
style training. More specifically, we first sample a mini-batch
of edges from the entire edge set E ′

g to construct a mini-batch
Eb ∈ E ′

g . Then we randomly sample negative nodes from a

pre-defined negative sample distribution Pk(v) for each edge
ei,j ∈ Eb instead of enumerating all non-neighboring nodes as
negative samples. Finally, we can rewrite Eq. (10) as follows

Lsmooth =
1

B

B∑
b=1

∑
ei,j∈Eb

(
D (yi,gi→j)+D (yj ,gj→i)

− Evk∼Pk(v)

(
log eD(yi,zk) + log eD(yj ,zk))), (11)

where B is the batch size, and vk is a random sample drawn
from the pre-defined negative sample distribution Pk(vi) =
di
|E′

g|
for each node vi, where di is the degree of node vi.

Similarly, we can formulate the cross-entropy loss on the
labeled node set VL as a classification loss, as follows

Lcla =
1

B

B∑
b=1

∑
i∈VL∩Vb

(
CE(yi, ŷi)+

∑
ei,j∈Eb

CE(yi, ẑj)
)
, (12)

where Vb = {vi, vj |ei,j ∈ Eb} is all the sampled nodes in
Eb, ŷi = softmax(yi) ∈ RC , and ẑj = softmax(zj) ∈ RC .
Besides, CE(·) is the cross-entropy loss, and yi is the ground-
truth label of node vi. The total training loss is defined as:

Ltotal (g′(ψ), θ) = Lsmooth + Lcla. (13)

Note that Eq. (13) is defined for node classification and needs
some minor modifications to be extended to graph-level tasks.
Since there are no node labels in graph-level tasks, it requires
replacing Lcla in Eq. (13) with another loss Lgraph. Therefore,
we aggregate the node embeddings in a graph into a graph
embedding by average pooling, and then compute the loss
between it and the graph label, e.g., MSE for a regression task,
or cross-entropy for a classification task. The total training loss
for graph-level tasks is Ltotal (g′(ψ), θ) = Lsmooth+Lgraph.

D. Optimization Strategy
1) Problem Statement: Since the structural information g′

is not explicitly involved in the forward propagation in the
STR-Contrast network in Eq. (11), we have ∂Lsmooth

∂g′(ψ) = 0,
i.e., the parameter ψ of the sparsification network cannot be
directly optimized end-to-end through downstream supervision
as many existing sparsification methods have done. A very
straightforward idea is to directly modify Eq. (11) as follows

L′
smooth =

1

B

B∑
b=1

∑
ei,j∈Eb

g′i,j

(
D (yi,gi→j)+D (yj ,gj→i)

− Evk∼Pk(v)

(
log eD(yi,zk) + log eD(yj ,zk))) (14)
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where Eq. (14) allows structural information g′ to be explicitly
involved in the computation of the supervision signal, so the
sparsification network can now be directly optimized by loss
L′
smooth(·). However, optimizing Eq. (14) may result in trivial

solutions, i.e., L′
smooth(·) reaches a minimum by forcing g′i,j

close to 0 rather than minimizing li,j , and thus an empty
edge set E ′

g is learned. The experimental results in subsection
IV-D confirm the potential trend towards trivial solutions.
Therefore, we turn to another more sophisticated design by
formulating structural sparsification and self-contrasting as a
bi-level optimization problem, as follows

max
ψ

H (g′(ψ), θ∗)) , s.t. θ∗=argmin
θ

Ltotal (g′(ψ), θ) (15)

where lower-level objective Ltotal(g′(ψ), θ) is defined in
Eq. (13), and upper-level objective H (g′(ψ), θ∗)) denotes the
quality measure for the sparsified subgraph g′. However, as
discussed earlier, we cannot directly employ the downstream
performance to measure the sparsified subgraph, so we need
an unsupervised quality measure H(·) to evaluate the quality
of the sparsified subgraph g′. In a nutshell, one of the most
critical optimization difficulties is how to construct a proper
optimization objective for structural sparsification without the
direct access to downstream supervision.

2) Homophily-oriented Objective: Inspired by the discus-
sions on homophily in Sec. III-A, we design a homophily-
oriented objective and used it as a measure for the quality
of the sparsified graph. The homophily-oriented objective is
defined as follows

max
ψ

H (g′(ψ), θ∗)) =

∑
i

∑
j∈E′

g
g′i,j · I(si = sj)

|E ′
g|

(16)

where I(·) is an indicator function, si = argmax(yi) and
sj = argmax(yj) are the pseudo-labels obtained from self-
contrasting network qθ∗(Y | X, g′). Extensive experiments
have been provided in Sec. IV-D to demonstrate the effec-
tiveness of the homophily-oriented objective in Eq. (16).

3) Bi-level optimization: We adopt the alternating
gradient descent (AGD) algorithm [53] to optimize Eq. (15),
alternating between upper-level maximization and lower-level
minimization, with the pseudo-code outlined in Algorithm 1.

Updating lower-level θ. The lower-level minimization follows
the conventional gradient descent procedure given the sampled
sparsified subgraph g′(ψ(n−1)), represented as:

θ(n) = θ(n−1) − αθ∇θLtotal
(
g′(ψ(n−1)), θ(n−1)

)
(17)

Updating upper-level ψ. After updating parameter θ(n), we
perform the upper-level maximization and update ψ(n−1) as:

ψ(n) = ψ(n−1) + αψ∇ψH
(
g′(ψ(n−1)), θ(n)

)
(18)

where αθ ∈ R>0 and αψ ∈ R>0 are the learning rates.

E. Discussion and Comparison

1) Discuss on Structural Self-contrasting Network: Dif-
ferent from existing GNNs, such as GCN and GAT, that guide
the feature aggregation among neighbors through powerful

Algorithm 1 AGD for bi-level optimization

1: Initialize sparsification network parameter ϕ(0) and neigh-
borhood self-contrasting network parameter θ(0).

2: for n ∈ {1, · · · , N} do
3: Generate sparsified subgraph g′(ψ(n−1)) by Eq. (5-6).
4: Compute Ltotal

(
g′(ψ(n−1)), θ(n−1)

)
by Eq. (13);

5: Lower-level maximization: Fix parameter ψ(n−1),
and update parameter θ(n) by Eq. (17).

6: Compute H
(
g′(ψ(n−1)), θ(n)

)
by Eq. (16);

7: Upper-level minimization: Fix parameter θ(n), and
update parameter ψ(n) by Eq. (18).

8: end for
9: return Predicted labels YU and optimized paramter θ(N)

message passing, the structural self-contrasting network is
based purely on a multilayer perceptron where structural
information is only implicitly used as prior in the computation
of supervision signals, but does not explicitly involve in the
forward propagation. Another research topic that is close to us
is graph contrastive learning [54, 55], but we differ from them
in the three aspects: (1) learning objective, graph contrastive
learning aims to learn transferable knowledge from abundant
unlabeled data in an unsupervised setting and then generalize
the learned knowledge to downstream tasks. Instead, the
structural self-contrasting network works in a semi-supervised
setting, i.e., the partial label information is available during
training. (2) augmentation, graph contrastive learning usually
requires multiple types of sophisticated augmentation to obtain
different views for contrasting [56–58]. However, we augment
nodes only by simple linear interpolation. (3) We remove
those noisy edges by the sparsification network, which can
be considered as an “adaptive” edge-wise self-contrasting.

2) Discuss on the structural sparsification network:
Different from existing graph sparsification methods that
are either attention-based or gradient-based, our STR-Sparse
formulates graph sparsification learning as a two-stage pro-
cess based on a probabilistic generative model, where (1)
in the first stage, learning the sparsification distribution and
modeling the sparsification strategy; (2) in the second stage,
sampling sparsified subgraphs from the learned sparsification
strategy through Gumbel-Softmax sampling, which transforms
the problem from a discrete combinatorial optimization to a
continuous subgraph generation problem.

IV. EXPERIMENTS

A. Experimental setups

The experiments aim to answer the following six questions:
(Q1) How effective is GSSC compared to those GNNs, graph

sparsification, and MLP-based models?
(Q2) Is GSSC robust to label noise and structure noise?
(Q3) How effective is the homophily-oriented objective?
(Q4) Is STR-Sparse applicable to other GNNs and MLP-based

models? How does STR-Contrast perform with other
existing graph sparsification methods?

(Q5) How efficient is the model in terms of inference time?
(Q6) How do hyperparameters affect performance?
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TABLE I: Classification accuracy ± std (%) of general GNNs, graph sparsification, graph transformer, and MLP-based models,
where the metrics marked in bold, underline, and gray are the top results for rank 1, 2, and 3 (same for Table. IV and Table. I).

Type Method Cora Citeseer Coauthor-CS Coauthor-Phy ogbn-arxiv ogbn-proteins

GNNs

GCN [22] 81.28±0.42 71.06±0.44 88.66±0.48 92.14±0.34 71.74±0.29 72.51±0.35
GAT [64] 83.02±0.45 72.56±0.51 89.28±0.63 92.40±0.52 73.65±0.11 73.44±0.41
GraphSAGE [21] 82.22±0.80 71.22±0.58 89.18±0.45 91.54±0.54 69.83±0.25 72.81±0.46
SGC [23] 80.88±0.47 71.84±0.72 88.56±0.60 90.92±0.62 67.79±0.27 70.31±0.23
APPNP [24] 83.28±0.33 71.74±0.27 89.72±0.59 92.54±0.59 71.14±0.28 73.17±0.40
DAGNN [1] 84.30±0.51 73.14±0.62 90.20±0.61 93.02±0.72 71.91±0.23 73.75±0.36

Graph Sparsification

SS/RD [39, 40] 79.42±0.64 70.43±0.52 87.89±0.64 91.75±0.47 67.27±0.23 72.13±0.45
DropEdge [13] 82.23±0.51 72.14±0.63 88.95±0.57 92.43±0.63 71.84±0.24 72.78±0.54
LDS [41] 83.14±0.56 72.34±0.70 89.24±0.48 92.72±0.38 - -
NeuralSparse [8] 83.78±0.54 73.19±0.56 89.63±0.50 92.88±0.43 71.45±0.26 73.54±0.39
GAUG [14] 83.53±0.38 72.86±0.33 89.90±0.45 93.23±0.36 72.12±0.25 74.13±0.51

Graph Transformer NAGformer [65] 84.24±0.68 72.45±0.46 89.37±0.46 92.71±0.79 70.10±0.28 73.64±0.71
SGFormer [63] 84.50±0.90 72.60±0.20 90.42±0.51 93.46±0.74 72.63±0.13 79.53±0.38

MLP-based Model

MLP 61.86±0.43 59.76±0.51 83.12±0.53 86.24±0.66 55.50±0.23 72.04±0.48
Graph-MLP [11] 81.45±0.52 72.87±0.70 89.80±0.68 91.85±0.49 OOM OOM
LinkDist [12] 76.70±0.47 65.19±0.55 89.56±0.58 92.36±0.70 69.24±0.26 72.45±0.42
GSSC (ours) 85.28±0.42 73.74±0.48 91.00±0.40 94.40±0.86 72.90±0.25 79.25±0.31

w/o Augmentation 84.12±0.48 73.10±0.53 90.27±0.51 93.39±0.90 72.70±0.24 78.90±0.35
w/o Negative Samples 83.42±0.63 72.64±0.55 89.80±0.62 92.76±0.78 72.26±0.22 78.34±0.42

1) Datasets: The experiments are conducted on ten real-
world datasets. For the four small-scale datasets, namely Cora
[59], Citeseer [60], Coauthor-CS, and Coauthor-Phy [61], we
follow [1, 22] to select 20 nodes per class to construct a
training set, 500 nodes for validation, and 1000 nodes for
testing. For the ogbn-arxiv and ogbn-proteins datasets, we use
the public data splits provided by the authors [62]. For the
four heterophily graphs, namely Actor, Squirrel, Chameleon,
and Deezer, we follow the data splitting strategy by [63].

2) Baseline: We consider the following six general GNN
models: GCN [22], GAT [64], GraphSAGE [21], SGC [23],
APPNP [24], and DAGNN [1]. Besides, we compare the pro-
posed framework with Graph-MLP [11] and LinkDist [1], both
of which are based on a pure MLP architecture. Furthermore,
two current state-of-the-art graph transformers, SGFormer [63]
and NAGformer [65], are also included in the comparison.
Besides, six graph sparsification methods are included as
baselines: Spectral Sparsifier (SS) [39], Rank Degree (RD)
[40], DropEdge [13], LDS [41], STR-Sparse [8], and GAUG
[14]. When not mentioned specifically, we default to taking the
experimental settings of the original paper for implementing
these six methods and adopting GCN as the backbone. Each
set of experiments is run five times with different random
seeds, and the averages and standard deviations are reported.

3) Hyperparameter: The following hyperparameters are set
the same for all datasets: Adam optimizer with learning rate αθ
= αψ = 0.01 and weight decay decay = 5e-4; Epoch E = 200;
Layer number L = 2. The other dataset-specific hyperparame-
ters are determined by an AutoML toolkit NNI with the search
spaces as: hidden dimension F = {256, 512, 1024}; batch size
B = {512, 1024, 4096}, fusion factor α = {0.1, 0.3, 0.5};
temperature τ = {0.1, 0.5, 0.8, 1.0}. Moreover, we follow [14]
to first warm-up the structural self-contrasting network with
the loss Ltotal for 100 epochs in the original graph G.

TABLE II: Classification accuracy ± std (%) on 4 heterophily
graphs, where the results of various baselines come from [63].

Method Actor Squirrel Chameleon Deezer

GCN 30.1±0.2 38.6±1.8 41.3±3.0 62.7±0.7
GAT 29.8±0.6 35.6±2.1 39.2±3.1 61.7±0.8
SGC 27.0±0.2 39.3±2.3 39.0±3.3 62.3±0.4
APPNP 31.1±1.5 35.3±1.9 38.4±3.5 66.1±0.6

H2GCN [50] 34.4±1.7 35.1±1.2 38.1±4.0 66.2±0.8
SIGN [66] 36.5±1.0 40.7±2.5 41.7±2.2 66.3±0.3
GloGNN [67] 36.4±1.6 35.7±1.3 40.2±3.9 65.8±0.8
SGFormer [63] 37.9±1.1 41.8±2.2 44.9±3.9 67.1±1.1
GSSC (ours) 37.5±0.5 43.1±1.5 45.7±3.6 67.6±0.9

B. Performance for Node&Graph Classification (Q1)
To answer Q1, we conduct experiments on six real-world

datasets in comparison to other baselines, where SS/RD is the
combinational method of Spectral Sparsifier (SS) and Rank
Degree (RD). It can be seen from Table. I that (1) While
Graph-MLP and LinkDist can achieve comparable perfor-
mance with GCN on a few datasets, they still lag far behind the
state-of-the-art GNN models, such as APPNP and DAGNN,
and cannot even match the performance of GraphSAGE and
GAT on some datasets. (2) More importantly, the performance
of Graph-MLP and LinkDist is hardly comparable to that
of graph sparsification methods except for SS/RD, which
indicates that these MLP-based models have no advantage in
terms of classification performance on clean data. (3) Instead,
our model consistently achieves the best overall performance
on 5 of 6 datasets, significantly outperforming other GNN
models and graph sparsification methods, and is even compa-
rable to two state-of-the-art graph transformers. For example,
our model obtains the best performance on two large-scale
ogbn-arxiv and ogbn-proteins datasets, and more notably, it
outperforms DAGNN by 0.99% and 5.50%, respectively.

Furthermore, to evaluate the effectiveness of node aug-
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TABLE III: Classification accuracy ± std (%) on 4 graphs for
molecular property prediction, where all baselines use GCN
as the backbone by default, and their results come from [68].

Method BBBP Tox21 MUV HIV

GPT-GNN [69] 65.3±1.5 74.3±0.7 75.6±1.8 74.8±1.4
GraphCL [70] 69.9±1.6 75.1±0.8 75.1±1.5 74.5±0.6
GraphLoG [71] 66.4±2.8 73.9±1.4 73.5±1.0 75.5±0.5
G-Motif [72] 70.3±1.5 73.1±0.4 74.5±0.6 76.0±1.3
GraphMAE [73] 66.3±0.7 68.8±0.5 71.8±0.3 73.5±0.8
SimGRACE [74] 66.7±0.6 74.3±0.2 74.3±0.8 74.4±1.0
GraphMVP [75] 67.9±1.0 74.6±0.3 75.5±1.6 76.2±0.8
GSSC (ours) 70.8±0.7 75.8±0.6 76.3±1.0 77.9±1.1

mentation and negative samples described in Sec. III-C, we
perform the ablation study without negative samples and
augmentation (fixing βi,j = 1), respectively. It can be observed
from Table. I that both negative samples and augmentation
contribute to improving classification performance. In addi-
tion, the performance improvements brought by negative sam-
ples outweigh the node augmentation across various datasets.

To evaluate how well GSSC handles heterophily graphs, we
compare GSSC with four models specializing in heterophily
graphs, i.e., H2GCN [50], SIGN [66], GloGNN [67], and
SGFormer [63]. The experimental results in Table. II show that
GSSC achieves the best performance on 3 of the 4 datasets,
and is second only to SGFormer on the Actor dataset.

We further evaluate how well GSSC handles the graph
classification task by molecular property prediction. There are
four datasets, BBBP, Tox21, MUV, and HIV [62] are con-
sidered. Besides, seven classical graph self-supervised models
are included as baselines for comparison. Table. III shows that
GSSC outperforms the other baselines on all four datasets,
demonstrating the potential of GSSC for graph-level tasks.

C. Evaluation on Robustness (Q2)

To demonstrate the model’s robustness, we evaluate the
model under different ratios of (1) label noise and (2) structure
perturbations on the Cora and Citeseer datasets.

1) Performance with Noisy Labels: The performance with
various label noise ratios r ∈ {20%, 40%, 60%} is reported
in Table. IV for two types of label noise: symmetric and
asymmetric [76, 77]. The symmetric noise indicates that label
i (0 ≤ i ≤ C − 1) of each training sample changes inde-
pendently with probability r

|C|−1 to another class j (j ̸= i),
but with probability 1−r preserved as label i; the asymmetric
noise indicates that label i flips independently with probability
r to fixed class j (j = (i+1)%C), but with probability 1− r
preserved as label i. It can be seen from Table. IV that (1) The
Graph-MLP, as a classical MLP-based model, significantly
outperforms various GNN models under extremely high label
noise, but it slightly falls behind DAGNN and GAUG at low-
noise settings. (2) GSSC performs most robustly under various
label noise types and ratios, especially with asymmetric noise
and high noise ratios. For example, with r = 60% asymmetric
noise, our model outperforms DAGNN by 4.55% and 7.19%
on the Cora and Citeseer datasets, respectively.

2) Performance with Corrupted Structures: The classi-
fication performance under different structural perturbation
ratios r ∈ {10%, 20%, 30%} is reported in Table. V, where
the corrupted structures are obtained by randomly removing
and adding r · |E| edges from the original graph for training.
It can be seen from Table. V that (1) MLP-based models,
such as Graph-MLP, are more advantageous at extremely high
ratios of structural perturbations. (2) GSSC is more robust than
other baselines under various structural perturbation ratios,
especially under severe perturbations. For example, when
r = 30%, GSSC outperforms NeuralSparse by 1.55% and
3.06% on the Cora and Citeseer datasets, respectively.

To further demonstrate the advantages of GSSC in terms of
robustness, we select a few baselines that perform well on two
large-scale datasets, ogbn-arxiv and obgn-proteins, as shown
in Table. I. We compare the performance of GSSC with these
baselines under structural perturbations in Table. VI. It can be
seen that GSSC is only comparable to those traditional GNNs
and GTs on clean data without structural noise. However,
models that work well on clean data, e.g., GAT and SGFormer,
may fail on noisy data; for example, GAT performs poorer
than GCN on the obgn-arxiv dataset. By contrast, our GSSC
performs best under noisy data, showing superior robustness.

D. Evaluation on Homophily Objective (Q3)
To evaluate the effectiveness of homophily-oriented objec-

tive H(·), we conduct a more in-depth analysis through the
following two sets of experiments: (1) correlation analysis
between the homophily ratio of the sparsified graph and the
downstream performance and (2) evolution curves of the edge
number, homophily ratio (in the learned sparsified graph), and
downstream performance during the training process.

1) Correlation Analysis: We randomly remove a fraction
of edges from the original graph to obtain a set of can-
didate subgraphs with different homophily ratios and then
train a structural self-contrasting network from scratch on
each candidate subgraph. The homophily ratio of the candi-
date sparsified subgraphs and their corresponding downstream
performance are visualized in Fig. 4, from which we can
observe that the downstream performance tends to be better
on the sparsified subgraph with a higher homophily ratio. The
tight correlation between homophily ratio and classification
accuracy inspires us that homophily ratio may be a desirable
option for evaluating the quality of sparsified subgraphs.
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Fig. 4: Correlation between accuracy and homophily ratio.

2) Training Evolution Visualization: We visualize in
Fig. 5(a) the evolution of edge number, homophily ratio (in the
learned sparsified graph), and downstream performance during
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TABLE IV: Classification accuracy ± std (%) with different label noise types and ratios.

Dataset Flipping-Rate GCN GAT GraphSAGE APPNP DAGNN DropEdge LDS NeuralSparse GAUG Graph-MLP LinkDist GSSC (ours)

Cora

symmetric 20% 77.77±0.62 79.75±0.92 78.38±0.68 79.53±0.56 80.76±0.59 78.16±0.65 78.90±0.70 79.64±0.62 79.94±0.66 79.21±0.64 77.21±0.59 81.36±0.59
symmetric 40% 69.39±0.70 72.69±0.78 71.33±0.81 74.38±0.76 75.23±0.86 70.48±0.74 72.25±0.81 73.10±0.93 73.38±0.78 75.57±0.76 72.66±0.81 76.98±0.40
symmetric 60% 52.17±0.93 55.16±0.81 53.99±0.89 58.87±1.04 63.10±0.88 53.72±0.75 56.45±0.94 57.71±1.03 56.78±0.77 64.35±0.90 57.21±1.06 67.38±0.72
asymmetric 20% 71.97±0.97 73.63±0.83 73.58±1.05 74.53±0.69 76.50±0.92 72.62±0.97 73.80±1.10 74.55±0.85 74.78±0.85 74.59±0.70 72.48±0.84 79.72±0.69
asymmetric 40% 64.07±0.58 64.24±0.78 63.86±0.68 65.99±0.69 67.18±0.66 64.59±0.75 66.20±0.72 67.36±0.68 66.84±0.81 67.85±0.94 66.31±0.80 69.40±1.16
asymmetric 60% 38.47±0.95 39.38±0.99 39.49±0.78 40.39±1.01 42.61±0.81 38.74±1.14 40.18±0.92 40.87±1.03 41.52±0.88 43.54±1.00 41.52±1.16 47.16±1.18

Citeseer

symmetric 20% 66.91±0.58 67.61±0.59 67.34±0.43 68.20±0.48 71.25±0.61 67.30±0.54 68.84±0.68 69.22±0.64 69.10±0.47 70.53±0.50 62.51±0.58 72.66±0.48
symmetric 40% 61.65±0.59 63.88±0.46 62.21±0.58 65.61±0.58 69.32±0.77 62.85±0.59 64.58±0.65 65.84±0.73 65.64±0.70 69.52±0.69 61.23±0.80 71.68±0.75
symmetric 60% 54.83±0.63 55.26±0.90 54.20±0.58 55.84±0.56 59.36±0.77 55.05±0.74 57.25±0.64 58.29±0.69 58.46±0.81 61.79±0.78 57.35±0.73 65.06±0.82
asymmetric 20% 65.38±0.89 66.62±0.85 66.52±0.70 68.17±0.96 68.61±0.89 65.72±0.76 66.80±0.81 67.42±0.85 67.74±0.79 67.93±0.95 60.62±0.87 72.74±0.74
asymmetric 40% 55.70±1.07 56.42±0.81 56.60±0.99 57.63±0.79 60.39±0.86 56.10±0.77 57.86±0.90 58.65±0.83 58.93±0.70 61.76±0.83 54.30±1.02 67.32±0.78
asymmetric 60% 41.90±0.98 43.70±1.15 42.65±0.58 45.15±0.91 46.05±0.87 42.21±0.68 43.85±0.72 44.75±0.74 44.48±0.83 48.25±1.12 44.09±1.20 53.24±1.09

TABLE V: Classification accuracy ± std (%) under structure
perturbations on two small-scale datasets, Cora and Citeseer.

Method Cora Citeseer

10% 20% 30% 10% 20% 30%

GCN 74.19±0.96 68.69±0.67 63.82±0.54 64.84±0.69 62.87±0.93 60.51±0.73
GAT 75.01±0.97 69.62±0.51 64.76±0.74 63.35±0.89 61.81±0.96 58.57±1.23
GraphSAGE 74.72±0.69 69.02±0.50 64.14±0.94 63.38±0.67 62.80±0.66 59.54±0.77
APPNP 74.36±0.71 70.02±0.93 64.90±1.05 63.88±0.93 61.56±1.08 58.32±0.69
DAGNN 75.32±0.85 70.41±0.84 65.60±0.82 64.74±0.65 61.92±0.91 58.96±1.19

DropEdge 74.42±0.88 69.58±0.75 64.12±0.76 65.04±0.85 62.99±0.95 60.89±0.92
LDS 74.75±0.93 69.89±0.71 64.47±0.81 65.32±0.73 63.43±1.10 61.13±1.05
NeuralSparse 75.23±0.79 70.32±0.68 65.45±0.72 66.10±0.78 63.82±0.87 61.54±1.30
GAUG 75.46±0.90 70.73±0.80 64.83±0.85 65.70±0.80 63.65±0.84 61.90±0.88

Graph-MLP 75.23±0.74 70.90±0.78 65.74±0.83 65.78±0.80 64.20±1.21 62.65±1.10
LinkDist 73.92±0.80 69.30±0.88 64.36±0.98 64.55±0.75 61.37±1.05 58.47±0.94
GSSC (ours) 77.42±0.95 71.98±0.81 67.00±0.59 69.70±0.89 67.06±0.84 64.60±0.68

TABLE VI: Classification accuracy ± std (%) under structure
perturbations on two large-scale datasets, arxiv and proteins.

Method ogbn-arxiv ogbn-proteins

0% 20% 0% 20%

GCN 71.74±0.29 63.53±0.34 72.51±0.35 64.30±0.44
GAT 73.65±0.11 62.70±0.23 73.44±0.41 65.74±0.50
GraphSAGE 69.83±0.25 62.49±0.41 72.81±0.46 64.93±0.38
DAGNN 71.91±0.23 63.74±0.42 73.75±0.36 66.45±0.56

NeuralSparse 71.45±0.26 64.51±0.36 73.54±0.39 67.16±0.46
GAUG 72.12±0.25 65.04±0.21 74.13±0.51 67.47±0.64
NAGformer 70.10±0.28 63.40±0.35 73.64±0.71 66.21±0.51
SGFormer 72.63±0.13 64.28±0.38 79.53±0.38 69.55±0.43
GSSC (ours) 72.90±0.25 66.25±0.28 79.25±0.31 70.20±0.42

training. It is clear that the homophily-oriented objective H(·)
can effectively increase the homophily ratio while reducing
the number of edges, i.e., making the graph sparse. More im-
portantly, the downstream performance also improves steadily
as the homophily ratio increases until it finally converges.
To further analyze the role of homophily-oriented objective
H(·), we also train the model with the objective defined in
Eq. (14) instead of H(·) as a comparison. It can be seen that
Eq. (14) may result in trivial solutions, i.e., the number of
edges decreases sharply to a small value with the homophily
ratio unchanged as shown in Fig. 5(b). More importantly,
we observe that their downstream performance first improves
as the edge number decreases and then drops sharply on
the obtained over-sparsified graph, which suggests that over-
sparsification is harmful to model performance.

E. Analysis on STR-Sparse & STR-Contrast (Q4)
1) Evaluation on STR-Sparse: Table. VII evaluates

whether STR-Sparse is applicable to other models, where
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(a) Training w/ homophily-oriented objective H(·)
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Fig. 5: Visualization of the training process with (Top) and
without (Bottom) homophily-oriented objective H(·).

six GNN models are jointly optimized with STR-Sparse by
downstream supervision and three MLP-based models are
optimized by the proposed homophily-oriented objective H(·)
in Eq. 16. We make the following observations: (1) STR-
Sparse consistently improves performance across various mod-
els compared to the results reported in Table. I; (2) MLP-based
models benefit more from STR-Sparse than GNNs.

TABLE VII: Accuracy ± std (%) of GNNs and MLP-based
models with Structural Sparsification (STR-Sparse).

Model Cora Citeseer Actor Coauthor-CS Coauthor-Phy

GCN 81.28±0.42 71.06±0.44 24.84±0.56 88.66±0.48 92.14±0.34
+ STR-Sparse 83.45±0.60 72.96±0.52 25.89±0.70 89.52±0.64 92.84±0.49

GAT 83.02±0.45 72.56±0.51 26.28±0.45 89.28±0.63 92.40±0.52
+ STR-Sparse 83.92±0.61 73.30±0.68 27.88±0.56 89.82±0.79 93.13±0.65

GraphSAGE 82.22±0.80 71.22±0.58 26.54±0.70 89.18±0.45 91.54±0.54
+ STR-Sparse 83.70±0.79 73.05±0.63 28.05±0.86 90.08±0.61 92.63±0.69

SGC 80.88±0.47 71.84±0.72 25.24±0.55 88.56±0.60 90.92±0.62
+ STR-Sparse 82.61±0.54 72.62±0.56 26.42±0.71 89.37±0.66 91.90±0.73

APPNP 83.28±0.33 71.74±0.27 27.82±1.02 89.72±0.59 92.54±0.59
+ STR-Sparse 84.08±0.51 73.18±0.57 28.91±0.88 90.18±0.64 93.40±0.57

DAGNN 84.30±0.51 73.14±0.62 28.98±0.86 90.20±0.61 93.02±0.72
+ STR-Sparse 84.52±0.48 73.55±0.74 30.19±0.79 90.49±0.72 93.88±0.76

Graph-MLP 81.45±0.52 72.87±0.70 25.40±0.49 89.80±0.68 91.85±0.49
+ STR-Sparse 83.50±0.46 73.38±0.69 29.25±0.75 90.22±0.73 93.17±0.69

LinkDist 76.70±0.47 65.19±0.55 23.96±0.65 89.56±0.58 92.36±0.70
+ STR-Sparse 80.05±0.55 71.20±0.66 27.59±0.80 90.48±0.64 93.46±0.77

GSSC (w/o STR-Sparse) 83.16±0.50 71.89±0.78 27.96±0.76 89.41±0.48 92.65±0.49
+ STR-Sparse 85.28±0.42 73.74±0.48 31.24±1.09 91.00±0.40 94.40±0.86

2) Evaluation on STR-Contrast: Table. VIII evaluates the
applicability of different graph sparsification methods to STR-
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TABLE VIII: Accuracy ± std (%) of the STR-Contrast net-
work with other graph sparsification methods, where ”N/A”
denotes the results without any sparsification as a baseline.

Sparsifier Cora Citeseer Actor Coauthor-CS Coauthor-Phy

N/A (STR-Contrast) 83.16±0.50 71.89±0.78 27.96±0.76 89.41±0.48 92.65±0.49
+ SS/RD 80.50±0.76 69.74±0.81 24.26±0.69 86.32±0.62 89.58±0.76
+ DropEdge 83.42±0.62 72.81±0.52 28.69±0.54 89.73±0.47 93.96±0.58
+ LDS 83.56±0.54 72.75±0.44 28.90±0.62 89.84±0.49 93.17±0.61
+ NeuralSparse 84.08±0.42 73.22±0.47 29.82±0.68 90.18±0.55 93.44±0.51
+ GAUG 84.15±0.45 73.16±0.39 30.37±0.56 89.95±0.40 93.63±0.43
+ STR-Sparse 85.28±0.42 73.74±0.48 31.24±1.09 91.00±0.40 94.40±0.86

Contrast, where SS/RD is the combinational method of Spec-
tral Sparsifier (SS) and Rank Degree (RD). The three super-
vised sparsification methods, LDS, STR-Sparse, and GAUG,
are optimized by the homophily-oriented objective H(·) for
a fair comparison. We make the following observations: (1)
Compared with the vanilla STR-Contrast model (without
any sparsification, denoted as “N/A”), all graph sparsi-
fication methods except SS/RD can improve generalization;
(2) Compared with unsupervised sparsification methods, such
as DropEdge, STR-Sparse achieves up to 1.86% and 2.55%
improvements on the Cora and Actor datasets. Even when
compared to supervised sparsification methods, such as STR-
Sparse and GAUG, STR-Sparse still shows a huge advantage.

F. Evaluation on Complexity Analysis (Q5)

The time complexity of the GSSC framework mainly comes
from two main parts: (1) STR-Sparse O(|V|dF+|E|F ) and (2)
STR-Contrast O(|V|dF + |E ′

g|F ), with a total complexity of
O(|V|dF +(|E|+ |E ′

g|)F ), where |E| and |E ′
g| are the number

of edges in the original and sparsified graph. Due to graph
sparsification, we have |E ′

g| ≪ |E|, so the total complexity
is linear w.r.t the number of nodes |V| and edges |E|, which
is in the same order of magnitude as GCN. However, with
the removal of neighborhood-fetching latency, the inference
time complexity can be reduced from O(|V|dF + |E|F ) of
GCN to O(|V|dF ). The inference time (ms) averaged over
30 runs is reported in Fig. 6, where all methods use L = 2
layers and hidden dimension F = 16. Besides, all baselines
are implemented based on the standard implementation in the
DGL library [78] using the PyTorch 1.6.0 library on NVIDIA
v100 GPU. In a fair comparison, we observe that GSSC
achieves the fastest inference speed on all datasets.
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Fig. 6: Inference time (ms) for various methods.

G. Hyperparameter Sensitivity Analysis (Q6)

We evaluate the hyperparameter sensitivity with respect to
two key hyperparameters: fusion factor α and batch size B,
and the results are reported in Fig. 7 and Fig. 8, respectively.
In practice, we can determine α and B by selecting the model
with the highest accuracy on the validation set.

1) Fusion Factor: As can be observed in Fig. 7, fusion
factor α is crucial for the proposed framework. If we set
α = 1, i.e., removing the structural sparsification, the perfor-
mance is usually the poorest compared with other settings. In
practice, we find that setting α to a small value, e.g., α = 0.1
usually produces pretty good performance. However, a too-
small α may cause the sparsified subgraph to deviate too much
from the original graph on some datasets, resulting in poor
performance. For example, on the Coauthor-CS dataset, the
model achieves much better performance when setting α as
0.3 than 0.1. In our experiments, we have only tested with the
smallest α = 0.1, and further performance improvements are
expected by finer-grained hyperparameter search.
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Fig. 7: Parameter sensitivity analysis on fusion factor α.

2) Batch Size: Fig. 8 shows the performance of GSSC
trained with batch size B ∈ {256, 512, 1024, 2048, 4096},
from which we observe that B is a dataset-specific hyperpa-
rameter. For simple graphs with few nodes and edges, such
as Cora and Citeseer, a small batch size, B = 256 or 512,
can yield fairly good performance. However, for large-scale
graphs, such as Coauthor-CS and Coauthor-Phy, the perfor-
mance improves with the increase of batch size B.
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Fig. 8: Parameter sensitivity analysis on batch size B.

V. CONCLUSION

In this paper, we propose a novel Graph Structural Self-
Contrasting (GSSC) framework to train graph data without ex-
plicit message passing. The GSSC framework is based purely
on MLPs, where structural information is only implicitly
incorporated to guide the computation of supervision signals.
We formulate structural sparsification as a probabilistic gener-
ative model and then perform self-contrasting in the sparsified
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neighborhood to learn robust representations. To address the
problem that the sparsification process cannot be directly
optimized through back-propagation of downstream supervi-
sion, we propose a homophily-oriented objective to optimize
the structural sparsification. Finally, structural sparsification
and self-contrasting are formulated in a bi-level optimization
framework. Despite the great progress, limitations still exist;
for example exploring the applicability of the GSSC frame-
work to other graph types, such as temporal and heterogeneous
graphs, may be a promising direction for future work.
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