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End-to-end cryo-EM complex structure 
determination with high accuracy and 
ultra-fast speed

 

While cryogenic-electron microscopy yields high-resolution density maps 
for complex structures, accurate determination of the corresponding 
atomic structures still necessitates significant expertise and labour-intensive 
manual interpretation. Recently, artificial intelligence-based methods have 
emerged to streamline this process; however, several challenges persist. 
First, existing methods typically require multi-stage training and inference, 
causing inefficiencies and inconsistency. Second, these approaches often 
encounter bias and incur substantial computational costs in aligning predicted 
atomic coordinates with sequence. Last, due to the limitations of available 
datasets, previous studies struggle to generalize effectively to complicated 
and unseen test data. Here, in response to these challenges, we introduce 
end-to-end and efficient CryoFold (E3-CryoFold), a deep learning method 
that enables end-to-end training and one-shot inference. E3-CryoFold uses 
three-dimensional and sequence transformers to extract features from density 
maps and sequences, using cross-attention modules to integrate the two 
modalities. Additionally, it uses an SE(3) graph neural network to construct 
atomic structures based on extracted features. E3-CryoFold incorporates a 
pretraining stage, during which models are trained on simulated density maps 
derived from Protein Data Bank structures. Empirical results demonstrate 
that E3-CryoFold improves the average template modelling score of the 
generated structures by 400% as compared to Cryo2Struct and significantly 
outperforms ModelAngelo, while achieving this huge improvement using 
merely one-thousandth of the inference time required by these methods. Thus, 
E3-CryoFold represents a robust, streamlined and cohesive framework for 
cryogenic-electron microscopy structure determination.

Since the invention of the microscope, scientists have sought to observe 
protein complexes with greater clarity to elucidate their structures 
and functions and how they affect biological processes1. Over cen-
turies of technological advancements within the structural biology 
community, cryogenic-electron microscopy (cryo-EM)2, which was 
awarded the Nobel Prize in 2017, has emerged as a pivotal technique. 
Cryo-EM is capable of producing nearly atomic-resolution density 
maps that reveal the shapes and interactions of macromolecules3–5 

without the requirement for crystallization and the damage to samples. 
Interpreting these three-dimensional (3D) density maps to atomic 
structural models is a critical step for researchers aiming to understand 
macromolecular behaviour, however, this process is inherently chal-
lenging6. It necessitates high levels of expertise to guide interpretation 
and incurs significant computational costs associated with computer 
graphics programs7,8, primarily due to the high dimensionality of the 
density maps. Furthermore, the absence of accurate templates can 
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Results
Overall framework
Figure 1 illustrates the overall framework of E3-CryoFold. Initially, 
we preprocess the density maps and sequences to align the data and 
expedite the training process. The density maps and sequences are 
then input into 3D and sequence transformers, respectively, while 
a cross-attention module is used to integrate spatial and sequential 
information from both modalities. Subsequently, an equivariant GNN 
is constructed to generate atomic structures based on the combined 
spatial-sequential features. Unlike previous approaches, E3-CryoFold 
facilitates end-to-end training, allowing users to input the complete 
cryo-EM density map and sequence (or use the model without sequence 
information) to directly obtain the atomic structure through a single 
model. Further details are provided in Methods.

Comparison on a standard cryo-EM structure determination 
dataset
We initially assessed the modelling performance of E3-CryoFold in 
comparison to other baseline methods using a standard test dataset 
from Cryo2StructData28, where the detailed introduction and filtering 
process of this dataset is presented in Supplementary Information 
Section 1.

For our comparisons, we selected Cryo2Struct and Phenix29 as 
reference methods. Both E3-CryoFold and Cryo2Struct use the Cryo-
2StructData for training, and Cryo2Struct represents the most recent 
related work, being the only openly available source. Structures gen-
erated by Phenix were downloaded from its official website for com-
parison. We evaluated the structural models constructed for 128 test 
cryo-EM maps against the corresponding true structures in the PDB 
to assess their quality. The evaluation results, based on four metrics, 
are presented in Fig. 2.

Consistency of E3-CryoFold’s modelling improves accuracy. 
Figure 3b illustrates the relationship between sequence matching 
precision and length for E3-CryoFold and Cryo2Struct. E3-CryoFold 
directly models atomic structures in a sequential manner, thereby 
ensuring high accuracy in sequence matching. In contrast, Cryo-
2Struct uses an algorithm that aligns the predicted Cα atom coordi-
nates with the sequence. This approach introduces substantial bias in 
sequence matching that can strictly impair the quality of the generated 
structures.

Figure 2a,e shows the global normalized TM scores of the atomic 
models constructed by the three methods. The TM score is a standard 
metric for measuring the similarity between a model and its corre-
sponding known structure, ranging from 0 to 1, where higher scores 
indicate better alignment. We calculated the TM scores using the 
TM-align24 program, a widely adopted tool for structural comparison. 
To ensure a fair comparison of the models built by Cryo2Struct and 
Phenix, which often differ in residue count, the global TM scores were 
normalized to the length of the experimental structure. The average 
global normalized TM score for E3-CryoFold is 0.815, significantly 
exceeding that of Cryo2Struct (average TM score of 0.2) and Phe-
nix (average TM score of 0.087). Furthermore, across all test density 
maps, E3-CryoFold consistently achieves higher TM scores than both 
methods, demonstrating the superior accuracy and stability of the 
predicted structures.

Figure 2b,f presents the root-mean-square deviations (r.m.s.d.) 
of atomic models constructed by the three methods. After aligning 
the structures, r.m.s.d. measures the Euclidean distance between 
corresponding atoms in the two models. The average r.m.s.d. for 
E3-CryoFold is 1.888 Å, which is considerably lower than Cryo-
2Struct’s average of 9.093 Å and Phenix’s average of 8.372 Å. Nota-
bly, E3-CryoFold consistently demonstrates a lower r.m.s.d. than 
Cryo2Struct across all evaluated density maps, and it outperforms 
Phenix in 149 out of 150 maps.

severely compromise both the accuracy and efficiency of the structural 
determination9,10.

In recent years, the integration of artificial intelligence (AI) meth-
ods has emerged as a promising approach to address challenges in 
various fields, including the determination of cryo-EM structures11–13. 
One notable example is DeepTracer14, a classical deep learning method 
that uses multiple U-Net architectures15 to predict the structure of 
protein complexes. It uses the travelling salesman problem16 algo-
rithm to connect the predicted alpha carbon (Cα) atoms. Another 
approach, ModelAngelo17, enhances structure prediction by incor-
porating a sequence module and aligning predicted structures with 
sequences using a hidden Markov model (HMM)18. DeepMainmast19 
integrates AlphaFold2 (ref. 20) with a density tracing protocol, signifi-
cantly improving the quality of atomic models derived from cryo-EM 
maps. The latest advance, Cryo2Struct21, uses a 3D Transformer-U-Net 
architecture22 for protein structure determination, also using HMM for 
mapping predicted Cα atoms to sequences. Despite the advances made 
by these methods in facilitating accurate and expertise-free cryo-EM 
structure determination, several challenges remain: (1) multiple train-
ing and inference stages introduce inefficiency and inconsistency. 
For example, DeepTracer requires the training of four U-Net models 
and involves five inference steps. ModelAngelo necessitates the train-
ing of convolutional and graph neural networks (GNNs), compris-
ing three inference stages. Similarly, Cryo2Struct trains models for 
residue and atom predictions and introduces three inference stages. 
The multi-stage processes used in these existing methods can intro-
duce bias due to inconsistency, and result in run-time inefficiency. (2) 
There is alignment bias of predicted atom coordinates and sequence. 
Existing methods, including DeepTracer, Cryo2Struct and ModelAn-
gelo, use convolutional neural networks to obtain atomic coordinates, 
subsequently using non-parametric algorithms such as the travelling 
salesman problem or HMMs for alignment with sequence data. This 
alignment approach often leads to inaccuracies and incurs significant 
computational costs due to the extensive search space, which gener-
ally requires tens of minutes or even hours to predict one sample. (3) 
There is insufficient ability to generalize. Although the number of new 
cryo-EM structures in the Electron Microscopy Data Bank23 is increasing 
exponentially, fewer than 13,000 cryo-EM structures with resolutions 
better than 4 Å have been determined so far, many of which are redun-
dant. Consequently, the limited scale of available cryo-EM density maps 
constrains the ability of deep learning methods to generalize effectively 
to a broader range of real-world samples.

Here we present our method, end-to-end and efficient Cryo-
Fold (E3-CryoFold), which effectively addresses these challenges. 
E3-CryoFold is an end-to-end training and one-shot inference model 
that eliminates redundant multi-stage processes, resulting in sig-
nificantly improved efficiency and accuracy, achieving inference times 
and template modelling (TM) scores24 that are one-thousandth and 
400% those of existing multi-stage methods, such as Cryo2Struct, and 
significantly outperforms ModelAngelo. E3-CryoFold concurrently 
uses 3D and sequence transformers to extract features from both 
the density map and the sequence. It uses cross-attention25 modules 
to integrate spatial information into the sequence features. These 
spatial-sequence features are then input into an equivariant GNN26,27 
to construct 3D atomic models. This approach circumvents alignment 
loss between structure and sequence by directly infusing spatial fea-
tures into the sequence representation. Notably, we have established 
a training dataset of simulated cryo-EM density maps derived from 
163,284 Protein Data Bank (PDB) structures, which enhances model 
generalization through pretraining. We validate the generalization 
capability of E3-CryoFold across two test datasets, encompassing dif-
ferent resolutions and lengths, and compare its performance against 
other robust baselines. Our results demonstrate that E3-CryoFold 
offers an approach for simpler, more efficient and more robust cryo-EM 
structure determination.
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Figure 2c,g illustrates the angle loss of atomic models constructed 
by the three methods. Angle loss quantifies the average difference in 
angles among all residues within a complex structure, measuring the 
disparity between corresponding residues in two different structures: 
a lower angle loss indicates better alignment. The angle loss can meas-
ure the quality of generated structures at the angle level. E3-CryoFold 
exhibits an average angle loss of 0.2386, significantly lower than that 
of Cryo2Struct (1.2186) and Phenix (1.7627).

Furthermore, Fig. 2d,h visualizes the bond loss of the atomic 
models generated by the three methods. Bond loss calculates the 
average difference in bond lengths among all residues, with lower 
values indicating improved accuracy. E3-CryoFold’s average bond loss 
is 0.3091, considerably lower than those of Cryo2Struct (1.4525) and 
Phenix (1.8285). Beyond this, Fig. 3d shows the LDDT (local distance 
difference test)30 metric for these atomic models. LDDT is used to 
compare the differences between predicted protein structures and 
experimentally obtained structures. It evaluates the accuracy of the 
model by calculating the difference in distances between localized 
atoms, which is similar to the bond loss metrics. E3-CryoFold’s average 

LDDT is 0.8746, also better than those of Cryo2Struct (0.2553) and Phe-
nix (0.2300). Across all test density maps, E3-CryoFold demonstrates 
lower angle, bond losses and higher LDDT metrics compared to the 
other two methods. These results indicate that E3-CryoFold not only 
produces superior overall predicted structures but also refines each 
residue with reduced bias.

We present a comparative analysis of DockQ31 metrics for three 
methods in Fig. 3c. DockQ serves as a scoring system for evaluating 
molecular docking results, providing a quantitative assessment of the 
accuracy of predicted protein-ligand binding patterns. It integrates 
contact density and geometric considerations into its evaluation.  
A DockQ score exceeding 0.8 indicates that the generated atomic mod-
els are of high quality. Notably, E3-CryoFold achieves an average DockQ 
score of 0.900, significantly surpassing the scores of Cryo2Struct 
(0.027) and Phenix (0.023). These findings illustrate that E3-CryoFold 
is significantly more effective at capturing the geometric relation-
ships among the complex chains and poses better modelling for the 
molecules’ interaction. Additionally, we introduce the Cα displace-
ment metric, which is calculated by Phenix’s chain_comparison tool29, 
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Fig. 1 | The architecture and pipeline of E3-CryoFold. a, The overall framework 
of E3-CryoFold. ‘Unknown sequence’ means that this sequence consists of 
[unk] token without residues prompt. A density map and sequence are input 
into 3D and sequence transformers, respectively, and a cross-attention module 

is used for the two modal representations to communicate. Subsequently, 
conditioning on the extracted features of sequence and density maps, a SE(3) 
GNN progressively refines the atomic structures. b, The complete workflow. L is 
the original dimension of the input density map.
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to assess the performance of three models presented in Fig. 3g. The 
average Cα displacements for E3-CryoFold, Cryo2Struct and Phenix 
are measured at 0.3163, 1.8237 and 1.2708, respectively. These results 
indicate a substantial improvement in the predictive accuracy of Cα 
atom positions. This further corroborates the accuracy of predictions 
made by E3-CryoFold.

Figure 3e,f shows the performance of models predicted by 
E3-CryoFold in comparison to deposited models (target structures), 
assessed using the Q-score32 and Fourier shell correlation (FSC) met-
rics33. The Q-score quantifies the resolvability of individual atoms 
within cryo-EM maps, thereby reflecting the overall quality of the con-
structed model. A well-constructed model typically exhibits Q-scores 
that correlate with local resolution, which may vary across cryo-EM 
maps. FSC is a quantitative measure used to assess the resolution 
of 3D reconstructions from cryo-EM data. It evaluates the similarity 
between two independent reconstructions of the same specimen by 
comparing their Fourier transforms within specific spatial frequency 

shells. Additionally, we calculate the Q-scores using the MapQ tool32 
and determine the FSC using Servalcat34 after refining both models, 
focusing only on the residues present in E3-CryoFold and the deposited 
models. The average Q-scores for models generated by E3-CryoFold and 
the deposited models are 0.4470 and 0.5017, respectively. Similarly, 
the average FSC scores for the same models are 0.5127 and 0.5345. 
Although the models produced by E3-CryoFold do not outperform 
the deposited models in these metrics, it is important to consider that 
E3-CryoFold was trained using the deposited models as targets. These 
findings indicate that E3-CryoFold achieves performance comparable 
to that of the target structures, particularly in terms of the FSC metric. 
This suggests a strong alignment between the models generated by 
E3-CryoFold and the corresponding cryo-EM density maps.

Figure 3h,i,j presents a detailed analysis of LDDT metrics, angle 
and bond loss for each residue type. Bulky amino acids, particularly 
tryptophan (Trp), tyrosine (Tyr), arginine (Arg) and phenylalanine 
(Phe), exhibited minimal angle and bond loss, along with high LDDT 
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Fig. 2 | The analysis results of atomic structures on 150 test experimental 
density maps for E3-CryoFold against Cryo2Struct and Phenix in four metrics. 
In each panel of an evaluation metric, the score of the model built by E3-CryoFold 
for each map is plotted against that by contrasting the baseline for the same 
map. A dot above the 45° line indicates that E3-CryoFold has a higher score than 
the baseline for the map. The number at the top-left and bottom-right corners 
of a plot are the number of targets plotted above and below the diagonal line, 
respectively. The up or down arrow in the top-right corner indicates whether 
this higher or lower metric is better. a, The TM score of the atomic structures 
of E3-CryoFold against Cryo2Struct. The TM score of the atomic structures 
normalized by the length of the known structure. The normalized TM score 
is calculated by using TM-align to align the atomic models: the higher the TM 
score, the better. b, The r.m.s.d.49 of the atomic structures of E3-CryoFold against 

Cryo2Struct. The r.m.s.d. is also calculated by the TM-align program: the lower 
the r.m.s.d., the better. c, The angle loss of the atomic structures of E3-CryoFold 
against Cryo2Struct. The angle loss represents the angle difference between the 
two structures: the lower the angle loss, the better. d, The bond loss of the atomic 
structures of E3-CryoFold against Cryo2Struct. The bond loss represents the 
atom distance difference between the two structures: the lower the bond loss, the 
better. e, The TM score of the atomic structures of E3-CryoFold against Phenix. f, 
The r.m.s.d. of the atomic structures of E3-CryoFold against Phenix. g, The angle 
loss of the atomic structures of E3-CryoFold against Phenix. h, The bond loss of 
the atomic structures of E3-CryoFold against Cryo2Struct. i, The visualization 
examples of E3-CryoFold’s SE(3) GNN multi-layer predictions. The cryo-EM 
density map 8623 was released on 3 May 2017.
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scores. In contrast, negatively charged residues, such as glutamic acid 
(Glu) and aspartic acid (Asp), which are more susceptible to radiation 
damage35–37, demonstrated higher levels of angle and bond loss and 
lower LDDT scores. Notably, hydrophobic amino acids, which are less 
prone to radiation damage37, also exhibited lower angle and bond loss 
alongside higher LDDT values.

We observed that E3-CryoFold demonstrates significant 
advantages in all metrics. All the improved metrics indicate that the 
atomic models produced by E3-CryoFold exhibit greater rationality 
and similarity. These advantages stem from two key perspectives: 
(1) E3-CryoFold integrates spatial features from density maps into 
the sequence modality, thereby eliminating bias associated with the 
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alignment of sequences and predicted Cα atoms; and (2) E3-CryoFold 
predicts atomic models in an end-to-end manner, which mitigates 
the inconsistency typically encountered across multiple training and 
inference stages through gradient descent. Thus, E3-CryoFold is capa-
ble of generating more reasonable and high-quality structures. Fur-
thermore, we believe that enhancing the alignment of E3-CryoFold’s 
predicted structures with the coordinates of Cα atoms from density 
maps could yield additional improvements. Consequently, this posi-
tions E3-CryoFold as a valuable tool for structural biologists aiming to 
elucidate protein functions and interactions at an atomic level.

Figure 2i illustrates a high-quality visualization generated by 
E3-CryoFold alongside predictions from various SE(3) GNN layers. 
Our analysis reveals that higher layers generally yield more accurate 
and complete predictions compared to lower layers, demonstrating 
the progressive refinement of atomic structures by the SE(3) GNN. 
Additionally, we offer further example analyses of E3-CryoFold in 
comparison to Cryo2Struct and Phenix in Supplementary Informa-
tion Section 2.

The end-to-end model benefits efficiency considerably. Figure 3a 
depicts the relation of inference time and the length for E3-CryoFold 
and Cryo2Struct. On a single A100 graphical processing unit (GPU), the 
minimum inference time for E3-CryoFold is 0.5 s (Electron Microscopy 
Data Bank (EMDB) ID 6555; sequence length is 190), the maximum 
inference time is 10.7 s (EMDB ID 6270; sequence length is 13,224) 
and the average time is 3.1 s. Cryo2Struct’s minimum inference 
time is 137.85 s, maximum inference time is 10,398.8 s and the aver-
age time is 3,001.2 s. On average, E3-CryoFold is up to nearly 1,000 
times faster than Cryo2Struct, demonstrating the efficiency of the 
E3-CryoFold modelling method. We believe this prominent merit 
positions E3-CryoFold to be able to serve as a simpler, more efficient 
and more accurate tool to revolutionize the research community of 
cryo-EM structure determination.

Evaluation of E3-CryoFold on a new established test dataset
To evaluate the generalization of E3-CryoFold, we assess the perfor-
mance of E3-CryoFold on a large independent test dataset comprising 
500 new density maps. We remove the test samples in which the PDB 
structure only contains the asymmetric units and this results in 428 
density maps. The details of this new test dataset can be found in Sup-
plementary Information Section 1.

Comparing E3-CryoFold with ModelAngelo on 109 test samples. 
To evaluate the accuracy of E3-CryoFold predictions and thoroughly 
investigate the advantages and limitations of the proposed model, we 
conduct a comprehensive comparison with ModelAngelo, a prominent 
method in cryo-EM structure determination. Given that the density 
maps in the standard test set referenced in the section ‘Comparison 
on a standard cryo-EM structure determination dataset’ were normal-
ized before download, and considering ModelAngelo’s limitations 
with normalized density maps, we selected a dataset for comparing 
E3-CryoFold with ModelAngelo. In accordance with ModelAngelo’s 
approach, we removed structures containing insertion codes and other 
irregularities to minimize computational costs and structural biases, 
resulting in 109 test samples.

Figure 4a presents the TM scores of the predicted atomic struc-
tures from both methods. The average TM score for E3-CryoFold is 
0.863, whereas ModelAngelo achieves an average of 0.329. Notably, 
E3-CryoFold outperforms ModelAngelo in 97 out of 109 samples, 
indicating a significant advancement in TM-score performance.

Figure 4b illustrates the r.m.s.d. values for the predicted atomic 
structures. The average r.m.s.d. for E3-CryoFold is 1.508 Å, compared to 
1.849 Å for ModelAngelo. While E3-CryoFold’s predictions are superior 
in 44 out of 109 samples, its average r.m.s.d. is comparable to that of 
ModelAngelo, albeit with fewer instances of superior performance.

Figure 4c,d depicts the angle and bond loss metrics for the pre-
dicted atomic structures. The average angle loss for E3-CryoFold is 
0.1722, while ModelAngelo’s is 0.2199. The average bond loss for the 
two models is 0.2207 for E3-CryoFold and 1.4966 for ModelAngelo. 
E3-CryoFold outperforms ModelAngelo in 79 and 105 samples for angle 
and bond loss, respectively. These metrics reveal that E3-CryoFold 
exhibits superior average performance over ModelAngelo, although 
it demonstrates greater variance in angle loss, while ModelAngelo 
shows more significant variance in bond loss. This highlights the dif-
fering strengths of the two methods in predicting atomic angles and 
bond lengths.

Figure 4e displays the Cα displacements of the predicted atomic 
structures. E3-CryoFold’s average Cα displacement is 0.2769, sig-
nificantly better than ModelAngelo’s average of 0.7035. Moreover, 
E3-CryoFold surpasses ModelAngelo in 99 out of 109 samples. Unlike 
the comparable r.m.s.d. values, the Cα displacement metric clearly indi-
cates that E3-CryoFold generates models with superior local quality.

Figure 4f,g presents the Q-scores and FSC for the predicted atomic 
structures from both E3-CryoFold and ModelAngelo. The average 
Q-score for E3-CryoFold is 0.4413, while ModelAngelo exhibits a score 
of 0.5037. In terms of FSC, E3-CryoFold achieves an average of 0.5278 
compared to ModelAngelo’s 0.5699. Additionally, E3-CryoFold out-
performs ModelAngelo in 20 and 28 predictions, respectively. These 
findings indicate that ModelAngelo demonstrates superior alignment 
between predicted structures and density maps, as its atomic predic-
tions are directly derived from the density data.

Figure 4h illustrates the inference time comparison between the 
two methods. E3-CryoFold significantly reduces average inference time 
to 4.1 s, in stark contrast to ModelAngelo’s 4,536.2 s.

A comprehensive analysis of these results reveals key differences 
between the two methods.

Regarding efficiency, E3-CryoFold’s average inference time is sub-
stantially lower than that of ModelAngelo, demonstrating an efficiency 
increase of nearly 1,000 times.

Regarding accuracy, various metrics, including TM score, 
angle loss and bond loss, indicate a significant advancement in 
E3-CryoFold’s capabilities for sequential and global structure model-
ling. Furthermore, both r.m.s.d. and Cα displacement metrics show 
that E3-CryoFold matches or exceeds ModelAngelo’s performance 
in atomic position prediction. We observe that in some cases Model-
Angelo shows poor TM scores despite having low r.m.s.d. values. We 
attribute this phenomenon to the bias in Cα atom coordinate-sequence 
alignment in ModelAngelo, as well as the inherent differences between 
TM score and r.m.s.d. The r.m.s.d. focuses solely on the absolute dis-
tances between atoms in two structures without considering sequence 
similarity, whereas TM score emphasizes the overall folded structure, 
the relative positions of proteins and sequence similarity24. Conse-
quently, even if some predicted structures from ModelAngelo show 
very similar atomic coordinates to the ground truth, they may still yield 
poor TM scores if ModelAngelo fails to accurately align the predicted 
coordinates and sequences. Instead, E3-CryoFold maintains consist-
ency in TM score and r.m.s.d. due to the perfect Cα atom-sequence 
alignment of E3-CryoFold. We also provide two visualization examples 
of E3-CryoFold and ModelAngelo in Fig. 4i,j. In these two visualization 
examples, we observe that while ModelAngelo can generate overall 
structures similar to the ground truth, it produces many disconnected 
or additional chains that differ from the ground truth, therefore show-
ing more different colours of chains in the visualization. Additionally, 
the structure generated by ModelAngelo in Fig. 4j shows a poor TM 
score but a good r.m.s.d. These results further support our earlier 
conclusion that ModelAngelo struggles to accurately align the pre-
dicted Cα atoms with their corresponding sequences. In contrast, 
E3-CryoFold demonstrates high homogeneity with ground truth in 
chains and accurately generates structures, highlighting the superior 
performance of E3-CryoFold.
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Regarding structure-map alignment, in terms of Q-score and 
FSC metrics, E3-CryoFold shows a clear disadvantage compared to 
ModelAngelo. This discrepancy is expected, as E3-CryoFold relies 
on spatial-sequential features where sequence information is para-
mount, whereas ModelAngelo primarily uses density map data for 
atomic structure predictions, using sequence information as an 
auxiliary tool. These results underscore the potential for integrating 
both methods as a promising direction for future cryo-EM structure 
determination.

Evaluating E3-CryoFold on the whole test dataset. As Fig. 5 shows, 
on this newly established test dataset, E3-CryoFold demonstrates an 
average TM score of 0.854, r.m.s.d. of 1.632 Å, angle loss of 0.184 and 
bond loss of 0.2360. These figures represent improvements of 4.5, 13.2, 
21.6 and 22.4%, respectively, compared to the standard test dataset. In 

contrast, Cryo2Struct yields an average TM score of 0.213, r.m.s.d. of 
8.804 Å, angle loss of 1.107 and bond loss of 1.325. While E3-CryoFold 
maintains a leading TM score, angle loss and bond loss relative to 
Cryo2Struct, its results exhibit greater bias from the target structure 
due to a lack of constraints. This further underscores E3-CryoFold’s 
capacity to generate accurate atomic structures while highlighting the 
challenges associated with bias in the absence of stringent constraints.

Figure 5a illustrates the relationship between TM score and reso-
lution. While the TM scores of Cryo2Struct’s predicted structures 
decline as resolution decreases, E3-CryoFold shows enhanced quality 
of generated structures with increasing resolution. This suggests that 
E3-CryoFold is more robust to low resolution and less dependent on the 
quality of the density map. Additionally, the lower Pearson correlation 
for E3-CryoFold compared to Cryo2Struct supports this conclusion. 
Figure 5b,c,d depicts r.m.s.d., angle and bond loss versus resolution, 
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respectively. These results further reinforce the earlier conclusion that 
E3-CryoFold demonstrates improved structural quality with increased 
resolution. Collectively, these findings indicate that E3-CryoFold per-
forms competitively well with relatively low-resolution data.

Figure 6a–f presents a visual analysis of six metrics in relation to 
target structure length. All figures demonstrate that the atomic struc-
tures generated by E3-CryoFold experience a minor decline in perfor-
mance as the length of target structures increases. However, structures 
of considerable length still maintain good TM scores above 0.7 and 
r.m.s.d. values below 3.0 Å. These findings further affirm E3-CryoFold’s 
capability to handle test data comprising very long sequences, dem-
onstrating the significance of E3-CryoFold in biological structural 
analysis, particularly in addressing the complexities associated with 
extended sequence lengths.

Figure 6g–l presents an analysis of six metrics in relation to the 
maximum dimension of the target density map (for example, for a 

target density map with dimensions of (540, 500, 500), the maximum 
dimension is 540). Theoretically, resizing during preprocessing can 
lead to greater information loss as the dimensions of the target density 
map increase. Indeed, the figures indicate that the predicted structures 
generated by E3-CryoFold exhibit a slight decline in performance as the 
maximum dimension increases. However, the results remain consist-
ent with those observed for length, showing that the degradation is 
not pronounced, with TM scores consistently above 0.7 and r.m.s.d. 
values below 3.0 Å. This demonstrates that E3-CryoFold is robust 
against information loss resulting from resizing. Nevertheless, the 
issue of information loss is significant and warrants further investiga-
tion in future work.

Supplementary Fig. 13 illustrates several high-quality examples 
generated by E3-CryoFold on the test dataset, further demonstrating 
its capability to model diverse complexes with intricate structures 
and combinations.

Cryo2Struct
dc

e

a b

E3-CryoFold

E3-CryoFold Cryo2Struct E3-CryoFold Cryo2Struct

Cryo2StructE3-CryoFold

Cryo-EM density map
EMDB ID 44366
Resolution 3.5 Å

True structure
PDB ID 9b92
Length 1,168

E3-CryoFold prediction
TM score 0.973
r.m.s.d. 0.576 Å

TM
 s

co
re

An
gl

e 
lo

ss

Bo
nd

 lo
ss

r.m
.s

.d
. (

Å)

Resolution (Å)

Resolution (Å) Resolution (Å)

Resolution (Å)

1.0

0.8

0.6

0.4

0.2

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.002.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

3.0

2.5

2.0

1.5

1.0

0.5

0

3.0

2.5

2.0

1.5

1.0

0.5

0

10

8

6

4

2

0

Fig. 5 | The analysis results of atomic models built for 428 test experimental 
cryo-EM maps. The solid lines depict linear regression lines and the coloured 
area represents a 95% confidence interval. a, The TM score versus resolution; 
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Discussion
E3-CryoFold introduces a model for efficient, robust and generaliz-
able cryo-EM structure determination. It leverages a 3D and sequence 
transformer to extract information from cryo-EM density maps and 
sequences, using a cross-attention module to integrate these two 

modalities. Furthermore, an efficient SE(3) GNN is proposed to con-
struct the complete atomic structure, facilitating end-to-end training 
and inference.

We evaluated the performance of E3-CryoFold models on both 
standard and newly established test datasets. Our results demonstrate a 
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Fig. 6 | The analysis results of atomic models built for 428 test cryo-EM 
maps. The coloured area represents a 95% confidence interval. a, The 
TM score versus length; the regression equation, −4.91 × 10−6x + 0.8596; 
Pearson’s correlation, −0.128. b, The r.m.s.d. versus length; the regression 
equation, 3.59 × 10−5x + 1.5613; correlation, 0.123. c, The angle loss versus 
length; the regression equation, 6.89 × 10−6x + 0.1713; correlation, 0.145. d, 
The bond loss versus length; the regression equation, 9.78 × 10−6x + 0.2199; 
correlation, 0.164. e, The DockQ versus length; the regression equation, 
−1.89 × 10−6x + 0.9112; correlation, −0.052. f, The LDDT versus length; the 
regression equation, 1.53 × 10−7x + 0.8654; correlation, 0.0034. g, The TM score 

versus maximum (max.) dimension of density maps; the regression equation, 
−1.26 × 10−4x + 0.8911; Pearson’s correlation, −0.129. h, The r.m.s.d. versus 
max. dimension; the regression equation, 9.82 × 10−4x + 1.3059; correlation, 
0.152. i, The angle loss versus max. dimension; the regression equation, 
1.32 × 10−4x + 0.1390; correlation, 0.111. j, The bond loss versus max. dimension; 
the regression equation, 1.31 × 10−4x + 0.1853; correlation, −0.133. k, The 
DockQ versus max. dimension; the regression equation, −7.44 × 10−5x + 0.9301; 
correlation, −0.112. l, The LDDT versus max. dimension; the regression equation, 
−7.82 × 10−5x + 0.8921, correlation, −0.077.
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significant improvement in accuracy and efficiency, achieving accurate 
predictions with only one-thousandth of the inference time compared 
to previous methods, including ModelAngelo, Cryo2Struct and Phenix.

Despite these advancements, E3-CryoFold faces certain chal-
lenges. First, the irregular shapes of density maps necessitate resizing 
them to a uniform shape, which may introduce bias and lead to a loss 
of spatial information, particularly in larger maps. Second, because 
E3-CryoFold generates atom coordinates without constraints, the 
r.m.s.d. between predicted and target structures can be relatively 
volatile. We believe that combining E3-CryoFold predictions with the 
atom coordinates derived from density maps could effectively mitigate 
these issues. Last, E3-CryoFold currently supports only the modelling 
of the residue backbone, while the side chains, which are also critical, 
have not been considered. The modelling of side chains represents a 
significant extension and an important area for future development 
of E3-CryoFold.

Methods
Problem definition
E3-CryoFold is designed to predict the 3D atomic structure of a protein 
complex by leveraging both a cryo-EM density map and the correspond-
ing protein sequence. The cryo-EM density map is represented as a 3D 
voxel grid M ∈ ℝL×L×L, where L denotes the dimension of the density 
map. In practice, the density map is divided into cubic patches of size 
L′ × L′ × L′, resulting in ( L

L′
)
3

 smaller units that facilitate efficient pro-
cessing of the spatial data. The protein sequence consisting of N resi-
dues is denoted as S = (s1, s2, …, sN), where each residue si belongs to the 
set of amino acids 𝔸𝔸. It is important to highlight that, in our model, the 
specific types of amino acid in the sequence are not required; the pri-
mary role of the sequence input is to convey the number of residues. 
This allows E3-CryoFold to focus on reconstructing the protein’s struc-
ture based on spatial data from the density map while using the 
sequence primarily as a guide for residue count.

The goal of E3-CryoFold is to predict the 3D atomic structure of 
the protein backbone, which includes the spatial coordinates of four 
backbone atoms for each residue: nitrogen (N), alpha carbon (Cα), 
carbonyl carbon (C) and oxygen (O). The output is represented as a 
tensor X ∈ ℝN×4×3, where N is the number of residues, 4 corresponds to 
the four backbone atoms and 3 refers to the x, y, z spatial coordinates. 
The overarching objective is to learn a mapping function:

f(M, S) → X, (1)

which takes as input the cryo-EM density map M and the sequence S, 
and outputs the 3D atomic coordinates of the protein’s backbone. This 
function must effectively integrate the spatial information embedded 
in the cryo-EM density map with the structural constraints implied by 
the protein sequence, ultimately producing an accurate and physically 
plausible atomic reconstruction of the protein complex.

Background
Self-attention. The self-attention mechanism22 was initially introduced 
to capture long-range dependencies. Given a d-dimensional embed-
ding H ∈ ℕ × 𝔻𝔻, the self-attention operation computes attention scores 
between all pairs of elements using query (Q), key (K) and value (V) 
matrices. These matrices are linear transformations of the input 
embeddings:

Q = HWQ,K = HWK,V = XWV. (2)

WQ, WK and WV are the matrices that project the embedding into the 
hidden dimension. The attention weights are calculated as:

Attention(Q,K,V ) = softmax (QK
T

√D
)V. (3)

T is the transpose operation; D is the hidden dimension size. This mech-
anism allows each residue or voxel to aggregate information from 
the entire sequence or density map, making it particularly useful for 
modelling long-range spatial dependencies in cryo-EM density maps 
and protein sequences.

Cross-attention. While self-attention captures intra-modality 
relationships (within the sequence or within the density map), the 
cross-attention mechanism25 extends this concept to interactions 
between different modalities. Cross-attention allows one set of embed-
dings (queries) to attend to another set (keys and values), facilitating 
the integration of information from multiple sources. In E3-CryoFold, 
cross-attention is used to merge features from the density map and the 
protein sequence. The sequence embeddings are updated by attending 
to the spatial embeddings derived from the density map, effectively 
allowing the sequence representation to integrate spatial information.

Mathematically, if Qseq ∈ ℝN×D represents the sequence embedding 
and Kdes,Vdes ∈ ℝL′×D represent the embedding from the density map, 
the cross-attention operation is formulated as:

Cross - attention(Qseq,Kdes,Vdes) = softmax (
QseqKTdes
√D

)Vdes. (4)

This allows the sequence to integrate spatially contextualized infor-
mation from the density map, ensuring a coherent representation of 
both modalities.

Overall workflow
Preprocess. Normalizing the density values of cryo-EM density maps 
involves applying scaling and clipping techniques. Positive density val-
ues within these maps indicate regions where the protein is predicted 
to be located. However, the distribution of these positive density values 
varies significantly across different maps, with some ranging from 
−2.32 to 3.91 and others from −0.553 to 0.762. To ensure comparability 
across diverse datasets, a percentile-based normalization approach is 
used. This involves computing the 95th percentile of positive density 
values within each map and subsequently normalizing all values rela-
tive to this threshold.

Given the diverse dimensions of density maps, handling all maps 
with a single configuration presents significant challenges. Therefore, 
we standardize all density maps to a uniform shape of 360 × 360 × 360 
using a cubic interpolation algorithm. Although this resizing operation 
may compromise some content, we demonstrate that E3-CryoFold 
remains robust to such information loss in 2.3. For sequence encoding, 
we use the Evolutionary Scale Modelling (ESM)38 alphabet to represent 
all complex sequences. Additionally, we use the [unk] token to encode 
residues not included in the alphabet. In constructing the target atomic 
structures, we predict the coordinates of backbone atoms (including 
C, Cα, N and O atoms) for each amino acid during training.

Pretraining on simulated density maps. Despite consistent pro-
gress in the field of cryo-EM, the total number of available cryo-EM 
density maps remains limited to approximately 30,000. Addition-
ally, a significant portion of these maps has resolutions below 4 Å, 
complicating structural determination. To address the limitations of 
dataset scale and improve the generalization of our models, we simu-
late high-resolution density maps using a comprehensive collection of 
PDB structures. To avoid the sequence overlapping between the test 
and pretraining dataset, we select PDB structures with less than 20% 
sequence identity to any of the proteins in the test set. We have curated 
a dataset comprising 163,284 high-quality PDB structures, from which 
we map atomic coordinates into density maps of dimensions (360, 360, 
360). For constructing simulated density maps, we initialize a zero 
tensor of dimensions (360, 360, 360). Based on the scale of the PDB 
structure size, we determine which pixel each atom corresponds to. 
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Each atom is then mapped into its respective pixel within the initialized 
tensor. Following this mapping process, we smooth the density values 
by applying a Gaussian filter39. We set the width of Gaussian distribu-
tion as 2, and the amplitude is 1 to simulate a high-quality density map. 
Furthermore, to enhance data diversity, we introduce random Gaussian 
noise (mean 0, scale 0.05) as part of our data augmentation strategy.

For model training, we set the learning rate to 1 × 10−4, the batch 
size to 4 per GPU and the number of training epochs to 50. We use the 
AdamW40 optimizer in conjunction with the Onecycle41 learning rate 
scheduler for pretraining our models. The training is conducted on 
eight A100 GPUs over a period of approximately 5 days, with validation 
performed on the Cryo2StructData28 test set.

Fine-tuning on experimental density maps. Despite our models being 
pretrained on a large-scale dataset of high-quality simulated density 
maps, it remains essential to refine these models using experimental 
data for real-world applications. Following the pretraining phase, we 
further fine-tune the models on the Cryo2StructData. This dataset 
comprises 7,389 experimental cryo-EM density maps with resolutions 
ranging from 1 to 4 Å. These density maps were released by the EMDB 
on 27 March 2023 (ref. 23). We split the whole dataset into 7,000 density 
maps for training and 389 for validation. We maintain the same train-
ing hyperparameters as in the pretraining stage, with the exception of 
increasing the training epoch to 500.

Model architecture
3D and sequence transformers extract features. To integrate spatial 
information from cryo-EM density maps into sequence data, we should 
embed both modalities into a shared hidden space. To achieve this, we 
use 3D and sequence encoders to model the input data within the same 
dimensional framework. The density map is divided into 1,000 cubes, 
each with dimensions of 36 × 36 × 36. Convolutional kernels of the 
same dimensions are used to encode these cubes into spatial embed-
dings. E3-CryoFold comprises eight blocks, with each block imple-
menting spatial self-attention modules to facilitate communication 
among different spatial positions for each embedding. For enhanced 
generalization of the sequence module, we use the ESM-2 pretrained 
model to derive sequence embeddings, supplemented by sequential 
self-attention modules to connect individual residues. Besides, we use 
two embedding modules—‘Chain Embedding’ and ‘Position Embed-
ding’—to capture the sequence position and chain information for 
each residue. Crucially, cross-attention modules are integrated to 
enable interaction between spatial and sequential features. At the end 
of each block, multi-layer perceptrons update the features from both 
modalities. The output sequence features from the sequence encoder 
are subsequently used as node features within the equivariant GNN.

Equivariant GNN constructs atomic structures. Conditioned on 
these extracted node features, we use an equivariant GNN to construct 
the final structure of complexes. Initially, virtual atoms are obtained 
by projecting the node features into Euclidean space. These virtual 
atoms, with the shape of (N,4,3) (where N represents the number of 
nodes), along with the node features, are then fed into eight layers of the 
equivariant GNN42 to refine the virtual atomic representations progres-
sively. Following the approach outlined in Chroma43, we use multiple 
loss functions to train E3-CryoFold, specifically, Global Loss, Fragment 
Loss, Pair Loss and Neighbour Loss. Further details are provided in the 
next section ‘Protein backbone reconstruction based on SE(3) GNN’.

Protein backbone reconstruction based on SE(3) GNN
Backbone reconstruction with a protein graph. The backbone recon-
struction process in E3-CryoFold begins by initializing random coor-
dinates ̂X ∈ ℝN×4×3 . Based on these initial coordinates, a k-nearest 
neighbours (kNN) graph is constructed, which defines the local spatial 
relationships between residues in the protein structure. Each residue 

serves as a node in this graph, and its neighbours are determined based 
on proximity in the backbone structure. The initial node embeddings 
𝒱𝒱(0) are derived from the integrated feature embeddings H ∈ ℝN×D , 
which are generated by combining spatial information from the 
cryo-EM density map with sequence information. These embeddings 
encapsulate both local and global structural features of the protein, 
allowing the model to leverage the inherent relationships between the 
protein’s sequence and its spatial configuration.

For each residue, a local frame T = (R, t) is defined, where R ∈ ℝ3×3 
is a rotation matrix encoding the residue’s orientation, and t ∈ ℝ3 is a 
translation vector specifying the residue’s position in 3D space. These 
local frames are updated iteratively using a SE(3) GNN42, which respects 
the symmetries of 3D space by ensuring that the operations on rotations 
and translations remain equivariant to transformations such as rotations 
and translations. At each iteration, the SE(3) GNN aggregates relative 
rotation and relative translation information from neighbouring resi-
dues to update the frame of a given residue. For a residue s, the update 
rules for the rotation matrix Rs and translation vector ts are as follows:

⎧⎪⎪
⎨⎪⎪
⎩

vec(Rs) = ∑
j∈𝒩𝒩s

arsjvec(Rsj)

Rs ← Quat2Rot ∘ Norm ∘MLP9→4 ⊙ vec(Rs)

ts = ∑
j∈𝒩𝒩s

atsjtj

where 𝒩𝒩s denotes the set of neighbouring residues for the residue s in 
the kNN graph, and arsj  and atsj  are learnable attention weights that 
determine the influence of neighbour j’s rotation and translation on 
the residue s. The rotation matrix Rsj is flattened into a nine-dimensional 
vector using the vec(⋅) operation before being aggregated. After aggre-
gation, the vector is transformed back into a valid rotation matrix using 
a quaternion-to-rotation function, Quat2Rot(⋅), which ensures numeri-
cal stability and smooth rotations. Similarly, the translation vector ts 
is updated based on the weighted contributions from the translations 
of neighbouring residues. Through this frame-level message passing, 
the SE(3) GNN allows each residue’s position and orientation to be 
iteratively refined based on the local structural context provided by 
its neighbours. This ensures that the backbone reconstruction respects 
the geometric relationships within the protein while remaining equiv-
ariant to spatial transformations.

Once the local frames Ts = (Rs, ts) for each residue have been refined 
over multiple layers of the SE(3) GNN, the 3D coordinates of the back-
bone atoms can be recovered. The updated coordinates xs of each 
residue s are computed by applying the predicted local transformation:

xs = T (l)
s ⊙𝒱𝒱(l). (5)

where 𝒱𝒱(l) represents the node embedding at the final iteration.

Reconstruction loss. Inspired by Chroma43, E3-CryoFold uses multiple 
loss functions to train the model effectively. The total loss ℒ is the sum 
of several components designed to enforce global structural accuracy, 
local fragment fidelity, pairwise consistency and accurate modelling 
of neighbourhood relationships:

ℒ = ℒglobal + ℒfragment + ℒpair + ℒneighbour + ℒdistance (6)

The loss terms are defined as follows:

•	 Global loss (ℒglobal): this term evaluates the r.m.s.d. between the 
ground truth 3D coordinates X ∈ ℝN×4×3 and the reconstructed 
coordinates ̂X ∈ ℝN×4×3:

ℒglobal =
1
N

N
∑
i=1

4
∑
j=1

√√√
√

3
∑
k=1

(Xi, j,k − ̂Xi, j,k)
2

(7)
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•	 Fragment loss (ℒfragment): this loss computes the r.m.s.d. between 
local fragments of residues. For each residue, the loss is 
evaluated over its c nearest neighbouring residues:

ℒfragment =
1
N

N
∑
i=1

c
∑
j=1

4
∑
k=1

√√√
√

3
∑
q=1

(Xi, j,k,q − ̂Xi, j,k,q)
2

(8)

•	 Pair loss (ℒpair): this loss enforces consistency between pairs of 
residues, evaluating the r.m.s.d. over k pairs for each kNN44 pair:

ℒpair =
1
N

N
∑
i=1

K
∑
j=1

c2

∑
k=1

4
∑
q=1

√√√
√

3
∑
m=1

(Xi, j,k,q,m − ̂Xi, j,k,q,m)
2

(9)

•	 Neighbour loss (ℒneighbour): this loss enforces consistency 
between each residue and its k-nearest neighbours:

ℒneighbour =
1
N

N
∑
i=1

K
∑
j=1

4
∑
k=1

√√√
√

3
∑
q=1

(Xi, j,k,q − ̂Xi, j,k,q)
2

(10)

•	 Distance loss (ℒdistance): the distance loss directly evaluates the 
mean squared error between the predicted and ground truth 
pairwise distance matrices. Given the pairwise distance matrix 
𝒟𝒟 ∈ ℝN×N  and its reconstructed counterpart 𝒟̂𝒟, the loss is 
computed as follows:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

𝒟𝒟i, j =
√√√
√

1
4

4
∑
k=1

3
∑
q=1

(Xi,k,q − X j,k,q)
2

𝒟̂𝒟i, j =
√√√
√

1
4

4
∑
k=1

3
∑
q=1

( ̂Xi,k,q − ̂Xj,k,q)
2

ℒdistance =
n
∑
i=1

n
∑
j=1
(𝒟𝒟i, j − 𝒟̂𝒟i, j)

2

(11)

By default, c = 7 represents the number of fragments, and k = 30 
indicates the number of kNNs44. These loss functions are applied at 
each layer of the decoder, and the final loss is computed as the aver-
age across all layers. This multi-layer loss application improves model 
performance by ensuring that intermediate representations are con-
sistent with the final prediction, leading to more robust and accurate 
reconstructions of the protein backbone.

Data availability
The experimental dataset can be downloaded at https://doi.
org/10.7910/DVN/FCDG0W (ref. 45), and the standard test dataset can 
be downloaded at https://doi.org/10.7910/DVN/2GSSC9 (ref. 46). The 
low-resolution and simulated datasets are accessible at https://zhang-
group.org/CR-I-TASSER/. All source data are accessible from ref. 47 
(standard_test_data.xlsx for standard test dataset, novel_test_data.xlsx 
for novel established test dataset, low_resolution_experimental_data.
xlsx for low-resolution density maps, simulated_data.xlsx for simulated 
density maps). Source data are provided with this paper.

Code availability
The source code of E3-CryoFold is available via GitHub at https://
github.com/A4Bio/CryoFold/ (ref. 48). This repository also contains 
the instructions and tutorial for applying E3-CryoFold on an example 
cryo-EM map to generate a complex structure.
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