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While cryogenic-electron microscopy yields high-resolution density maps
for complex structures, accurate determination of the corresponding
atomic structures still necessitates significant expertise and labour-intensive
manual interpretation. Recently, artificial intelligence-based methods have

emerged to streamline this process; however, several challenges persist.

First, existing methods typically require multi-stage training and inference,
causing inefficiencies and inconsistency. Second, these approaches often
encounter bias and incur substantial computational costs in aligning predicted
atomic coordinates with sequence. Last, due to the limitations of available
datasets, previous studies struggle to generalize effectively to complicated
and unseentest data. Here, inresponse to these challenges, weintroduce
end-to-end and efficient CryoFold (E3-CryoFold), adeep learning method

that enables end-to-end training and one-shot inference. E3-CryoFold uses
three-dimensional and sequence transformers to extract features from density
maps and sequences, using cross-attention modules to integrate the two
modalities. Additionally, it uses an SE(3) graph neural network to construct
atomic structures based on extracted features. E3-CryoFold incorporates a
pretraining stage, during which models are trained on simulated density maps
derived from Protein Data Bank structures. Empirical results demonstrate

that E3-CryoFold improves the average template modelling score of the
generated structures by 400% as compared to Cryo2Struct and significantly
outperforms ModelAngelo, while achieving this huge improvement using
merely one-thousandth of the inference time required by these methods. Thus,
E3-CryoFold represents arobust, streamlined and cohesive framework for
cryogenic-electron microscopy structure determination.

Since theinvention of the microscope, scientists have sought to observe
protein complexes with greater clarity to elucidate their structures
and functions and how they affect biological processes'. Over cen-
turies of technological advancements within the structural biology
community, cryogenic-electron microscopy (cryo-EM)?, which was
awarded the Nobel Prize in 2017, has emerged as a pivotal technique.
Cryo-EM is capable of producing nearly atomic-resolution density
maps that reveal the shapes and interactions of macromolecules®”

without the requirement for crystallization and the damage to samples.
Interpreting these three-dimensional (3D) density maps to atomic
structuralmodelsis acritical step for researchers aiming to understand
macromolecular behaviour, however, this process is inherently chal-
lenging®. It necessitates high levels of expertise to guide interpretation
andincurs significant computational costs associated with computer
graphics programs™, primarily due to the high dimensionality of the
density maps. Furthermore, the absence of accurate templates can
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severely compromise both the accuracy and efficiency of the structural
determination®.

Inrecent years, the integration of artificial intelligence (Al) meth-
ods has emerged as a promising approach to address challenges in
various fields, including the determination of cryo-EM structures™ .
Onenotable exampleis DeepTracer™, a classical deep learning method
that uses multiple U-Net architectures® to predict the structure of
protein complexes. It uses the travelling salesman problem' algo-
rithm to connect the predicted alpha carbon (Ca) atoms. Another
approach, ModelAngelo”, enhances structure prediction by incor-
porating a sequence module and aligning predicted structures with
sequences using a hidden Markov model (HMM)'®, DeepMainmast"
integrates AlphaFold2 (ref. 20) with adensity tracing protocol, signifi-
cantly improving the quality of atomic models derived from cryo-EM
maps. The latest advance, Cryo2Struct”, uses a 3D Transformer-U-Net
architecture”for protein structure determination, also using HMM for
mapping predicted Ca atoms to sequences. Despite the advances made
by these methods in facilitating accurate and expertise-free cryo-EM
structure determination, several challenges remain: (1) multiple train-
ing and inference stages introduce inefficiency and inconsistency.
For example, DeepTracer requires the training of four U-Net models
andinvolvesfiveinference steps. ModelAngelo necessitates the train-
ing of convolutional and graph neural networks (GNNs), compris-
ing three inference stages. Similarly, Cryo2Struct trains models for
residue and atom predictions and introduces three inference stages.
The multi-stage processes used in these existing methods can intro-
ducebias duetoinconsistency, and resultin run-time inefficiency. (2)
Thereisalignment bias of predicted atom coordinates and sequence.
Existing methods, including DeepTracer, Cryo2Struct and ModelAn-
gelo, use convolutional neural networks to obtain atomic coordinates,
subsequently using non-parametric algorithms such as the travelling
salesman problem or HMMs for alignment with sequence data. This
alignment approach oftenleads toinaccuracies and incurs significant
computational costs due to the extensive search space, which gener-
ally requires tens of minutes or even hours to predict one sample. (3)
Thereisinsufficient ability to generalize. Although the number of new
cryo-EMstructuresin the Electron Microscopy Data Bank* isincreasing
exponentially, fewer than 13,000 cryo-EM structures with resolutions
better than 4 A have been determined so far, many of which are redun-
dant. Consequently, the limited scale of available cryo-EM density maps
constrains the ability of deep learning methods to generalize effectively
to abroader range of real-world samples.

Here we present our method, end-to-end and efficient Cryo-
Fold (E3-CryoFold), which effectively addresses these challenges.
E3-CryoFold is an end-to-end training and one-shot inference model
that eliminates redundant multi-stage processes, resulting in sig-
nificantly improved efficiency and accuracy, achieving inference times
and template modelling (TM) scores® that are one-thousandth and
400% those of existing multi-stage methods, such as Cryo2Struct, and
significantly outperforms ModelAngelo. E3-CryoFold concurrently
uses 3D and sequence transformers to extract features from both
the density map and the sequence. It uses cross-attention” modules
to integrate spatial information into the sequence features. These
spatial-sequence features are then input into an equivariant GNN**%
to construct 3D atomic models. This approach circumvents alignment
loss between structure and sequence by directly infusing spatial fea-
turesinto the sequence representation. Notably, we have established
a training dataset of simulated cryo-EM density maps derived from
163,284 Protein Data Bank (PDB) structures, which enhances model
generalization through pretraining. We validate the generalization
capability of E3-CryoFold across two test datasets, encompassing dif-
ferent resolutions and lengths, and compare its performance against
other robust baselines. Our results demonstrate that E3-CryoFold
offersanapproach for simpler, more efficient and more robust cryo-EM
structure determination.

Results

Overall framework

Figure 1illustrates the overall framework of E3-CryoFold. Initially,
we preprocess the density maps and sequences to align the data and
expedite the training process. The density maps and sequences are
then inputinto 3D and sequence transformers, respectively, while
a cross-attention module is used to integrate spatial and sequential
information fromboth modalities. Subsequently, anequivariant GNN
is constructed to generate atomic structures based on the combined
spatial-sequential features. Unlike previous approaches, E3-CryoFold
facilitates end-to-end training, allowing users to input the complete
cryo-EM density map and sequence (or use the model without sequence
information) to directly obtain the atomic structure through a single
model. Further details are provided in Methods.

Comparison on astandard cryo-EM structure determination
dataset

We initially assessed the modelling performance of E3-CryoFold in
comparison to other baseline methods using a standard test dataset
from Cryo2StructData’®, where the detailed introduction and filtering
process of this dataset is presented in Supplementary Information
Section1.

For our comparisons, we selected Cryo2Struct and Phenix* as
reference methods. Both E3-CryoFold and Cryo2Struct use the Cryo-
2StructDatafor training, and Cryo2Struct represents the most recent
related work, being the only openly available source. Structures gen-
erated by Phenix were downloaded from its official website for com-
parison. We evaluated the structural models constructed for 128 test
cryo-EM maps against the corresponding true structures in the PDB
to assess their quality. The evaluation results, based on four metrics,
arepresentedin Fig. 2.

Consistency of E3-CryoFold’s modelling improves accuracy.
Figure 3b illustrates the relationship between sequence matching
precision and length for E3-CryoFold and Cryo2Struct. E3-CryoFold
directly models atomic structures in a sequential manner, thereby
ensuring high accuracy in sequence matching. In contrast, Cryo-
2Struct uses an algorithm that aligns the predicted Ca atom coordi-
nates with the sequence. This approachintroduces substantial biasin
sequence matching that canstrictly impair the quality of the generated
structures.

Figure 2a,e shows the global normalized TM scores of the atomic
models constructed by the three methods. The TM scoreisastandard
metric for measuring the similarity between a model and its corre-
sponding known structure, ranging from O to 1, where higher scores
indicate better alignment. We calculated the TM scores using the
TM-align** program, awidely adopted tool for structural comparison.
To ensure a fair comparison of the models built by Cryo2Struct and
Phenix, which often differ in residue count, the global TM scores were
normalized to the length of the experimental structure. The average
global normalized TM score for E3-CryoFold is 0.815, significantly
exceeding that of Cryo2Struct (average TM score of 0.2) and Phe-
nix (average TM score of 0.087). Furthermore, across all test density
maps, E3-CryoFold consistently achieves higher TM scores than both
methods, demonstrating the superior accuracy and stability of the
predicted structures.

Figure 2b,f presents the root-mean-square deviations (r.m.s.d.)
of atomic models constructed by the three methods. After aligning
the structures, r.m.s.d. measures the Euclidean distance between
corresponding atoms in the two models. The average r.m.s.d. for
E3-CryoFold is 1.888 A, which is considerably lower than Cryo-
2Struct’s average of 9.093 A and Phenix’s average of 8.372 A. Nota-
bly, E3-CryoFold consistently demonstrates a lower r.m.s.d. than
Cryo2Struct across all evaluated density maps, and it outperforms
Phenix in 149 out of 150 maps.
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Fig.1| The architecture and pipeline of E3-CryoFold. a, The overall framework
of E3-CryoFold. ‘Unknown sequence’ means that this sequence consists of
[unk] token without residues prompt. A density map and sequence are input
into 3D and sequence transformers, respectively, and a cross-attention module
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is used for the two modal representations to communicate. Subsequently,
conditioning on the extracted features of sequence and density maps, a SE(3)
GNN progressively refines the atomic structures. b, The complete workflow. L is
the original dimension of the input density map.

Figure 2c,gillustrates the angle loss of atomic models constructed
by the three methods. Angle loss quantifies the average difference in
angles among all residues within a complex structure, measuring the
disparity between corresponding residues in two different structures:
aloweranglelossindicates better alignment. The angle loss can meas-
ure the quality of generated structures at the angle level. E3-CryoFold
exhibits an average angle loss of 0.2386, significantly lower than that
of Cryo2Struct (1.2186) and Phenix (1.7627).

Furthermore, Fig. 2d,h visualizes the bond loss of the atomic
models generated by the three methods. Bond loss calculates the
average difference in bond lengths among all residues, with lower
valuesindicatingimproved accuracy. E3-CryoFold’s average bond loss
is 0.3091, considerably lower than those of Cryo2Struct (1.4525) and
Phenix (1.8285). Beyond this, Fig. 3d shows the LDDT (local distance
difference test)** metric for these atomic models. LDDT is used to
compare the differences between predicted protein structures and
experimentally obtained structures. It evaluates the accuracy of the
model by calculating the difference in distances between localized
atoms, whichis similarto the bond loss metrics. E3-CryoFold’s average

LDDT is 0.8746, also better than those of Cryo2Struct (0.2553) and Phe-
nix (0.2300). Across all test density maps, E3-CryoFold demonstrates
lower angle, bond losses and higher LDDT metrics compared to the
other two methods. These results indicate that E3-CryoFold not only
produces superior overall predicted structures but also refines each
residue with reduced bias.

We present a comparative analysis of DockQ* metrics for three
methods in Fig. 3c. DockQ serves as a scoring system for evaluating
molecular docking results, providing a quantitative assessment of the
accuracy of predicted protein-ligand binding patterns. It integrates
contact density and geometric considerations into its evaluation.
ADockQscore exceeding 0.8 indicates that the generated atomic mod-
elsare of high quality. Notably, E3-CryoFold achieves an average DockQ
score of 0.900, significantly surpassing the scores of Cryo2Struct
(0.027) and Phenix (0.023). These findings illustrate that E3-CryoFold
is significantly more effective at capturing the geometric relation-
ships among the complex chains and poses better modelling for the
molecules’ interaction. Additionally, we introduce the Ca displace-
ment metric, which s calculated by Phenix’s chain_comparison tool”,
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Fig. 2| The analysis results of atomic structures on 150 test experimental
density maps for E3-CryoFold against Cryo2Struct and Phenix in four metrics.
In each panel of an evaluation metric, the score of the model built by E3-CryoFold
foreach map is plotted against that by contrasting the baseline for the same
map. A dot above the 45° line indicates that E3-CryoFold has a higher score than
the baseline for the map. The number at the top-left and bottom-right corners
ofaplotare the number of targets plotted above and below the diagonal line,
respectively. The up or down arrow in the top-right corner indicates whether

this higher or lower metricis better. a, The TM score of the atomic structures

of E3-CryoFold against Cryo2Struct. The TM score of the atomic structures
normalized by the length of the known structure. The normalized TM score

is calculated by using TM-align to align the atomic models: the higher the TM
score, the better. b, The r.m.s.d.* of the atomic structures of E3-CryoFold against
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Cryo2Struct. Ther.m.s.d. is also calculated by the TM-align program: the lower
ther.m.s.d., the better. ¢, The angle loss of the atomic structures of E3-CryoFold
against Cryo2Struct. The angle loss represents the angle difference between the
two structures: the lower the angle loss, the better. d, The bond loss of the atomic
structures of E3-CryoFold against Cryo2Struct. The bond loss represents the
atom distance difference between the two structures: the lower the bond loss, the
better. e, The TM score of the atomic structures of E3-CryoFold against Phenix.f,
Ther.m.s.d. of the atomic structures of E3-CryoFold against Phenix. g, The angle
loss of the atomic structures of E3-CryoFold against Phenix. h, The bond loss of
the atomic structures of E3-CryoFold against Cryo2Struct. i, The visualization
examples of E3-CryoFold’s SE(3) GNN multi-layer predictions. The cryo-EM
density map 8623 was released on 3 May 2017.

to assess the performance of three models presented in Fig. 3g. The
average Ca displacements for E3-CryoFold, Cryo2Struct and Phenix
aremeasured at 0.3163,1.8237 and 1.2708, respectively. These results
indicate a substantial improvement in the predictive accuracy of Ca
atom positions. This further corroborates the accuracy of predictions
made by E3-CryoFold.

Figure 3e,f shows the performance of models predicted by
E3-CryoFold in comparison to deposited models (target structures),
assessed using the Q-score®” and Fourier shell correlation (FSC) met-
rics®. The Q-score quantifies the resolvability of individual atoms
within cryo-EM maps, thereby reflecting the overall quality of the con-
structed model. Awell-constructed model typically exhibits Q-scores
that correlate with local resolution, which may vary across cryo-EM
maps. FSC is a quantitative measure used to assess the resolution
of 3D reconstructions from cryo-EM data. It evaluates the similarity
between two independent reconstructions of the same specimen by
comparing their Fourier transforms within specific spatial frequency

shells. Additionally, we calculate the Q-scores using the MapQ tool*
and determine the FSC using Servalcat™ after refining both models,
focusing only ontheresidues presentin E3-CryoFold and the deposited
models. The average Q-scores for models generated by E3-CryoFold and
the deposited models are 0.4470 and 0.5017, respectively. Similarly,
the average FSC scores for the same models are 0.5127 and 0.5345.
Although the models produced by E3-CryoFold do not outperform
the deposited modelsinthese metrics, itisimportantto consider that
E3-CryoFold was trained using the deposited models astargets. These
findingsindicate that E3-CryoFold achieves performance comparable
tothat ofthe target structures, particularly in terms of the FSC metric.
This suggests a strong alignment between the models generated by
E3-CryoFold and the corresponding cryo-EM density maps.

Figure 3h,i,j presents a detailed analysis of LDDT metrics, angle
and bond loss for each residue type. Bulky amino acids, particularly
tryptophan (Trp), tyrosine (Tyr), arginine (Arg) and phenylalanine
(Phe), exhibited minimal angle and bond loss, along with high LDDT
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Fig. 3| The analysis results in various metrics for E3-CryoFold, Cryo2Struct
and Phenix on150 test experimental density maps. a, The inference time of E3-
CryoFold and Cryo2Struct against different lengths. b, The sequence matching
precision of E3-CryoFold and Cryo2Struct against different lengths. ¢, The DockQ
of the atomic structures of E3-CryoFold against other methods: the higher the
DockQ, the better.d, The LDDT of the atomic structures of E3-CryoFold against
other methods: the higher the LDDT, the better. e, The Q-score of structures of
E3-CryoFold against the deposited models: the higher the Q-score, the better.

f, The FSC of structures of E3-CryoFold against the deposited models: the higher

Amino acid type

the FSC, the better. g, The Ca displacement of atomic structures of E3-CryoFold
against other methods: the lower the Ca displacement, the better. h, The

LDDT analysis of each amino acid type for 300,000 amino acids in 150 target
structures. i, The angleloss.j, The bond loss. In the three box plotsin h,iandj,
the centreline, along with the bottom and top edges of the box, represents the
median, first quartile and third quartile values, respectively. The boundaries of
the whiskers extend to 1.5 x the interquartile range from the upper and

lower quartiles.

scores. In contrast, negatively charged residues, such as glutamic acid
(Glu) and aspartic acid (Asp), which are more susceptible to radiation
damage®¥, demonstrated higher levels of angle and bond loss and
lower LDDT scores. Notably, hydrophobic amino acids, which are less
pronetoradiation damage®, also exhibited lower angle and bond loss
alongside higher LDDT values.

We observed that E3-CryoFold demonstrates significant
advantages in all metrics. All the improved metrics indicate that the
atomic models produced by E3-CryoFold exhibit greater rationality
and similarity. These advantages stem from two key perspectives:
(1) E3-CryoFold integrates spatial features from density maps into
the sequence modality, thereby eliminating bias associated with the
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alignment of sequences and predicted Ca atoms; and (2) E3-CryoFold
predicts atomic models in an end-to-end manner, which mitigates
the inconsistency typically encountered across multiple training and
inference stages through gradient descent. Thus, E3-CryoFold is capa-
ble of generating more reasonable and high-quality structures. Fur-
thermore, we believe that enhancing the alignment of E3-CryoFold’s
predicted structures with the coordinates of Ca atoms from density
maps could yield additional improvements. Consequently, this posi-
tions E3-CryoFold as avaluable tool for structural biologists aiming to
elucidate protein functions and interactions at an atomic level.

Figure 2i illustrates a high-quality visualization generated by
E3-CryoFold alongside predictions from various SE(3) GNN layers.
Our analysis reveals that higher layers generally yield more accurate
and complete predictions compared to lower layers, demonstrating
the progressive refinement of atomic structures by the SE(3) GNN.
Additionally, we offer further example analyses of E3-CryoFold in
comparison to Cryo2Struct and Phenix in Supplementary Informa-
tion Section 2.

The end-to-end model benefits efficiency considerably. Figure 3a
depictstherelation of inference time and the length for E3-CryoFold
and Cryo2Struct. Onasingle A100 graphical processing unit (GPU), the
minimuminference time for E3-CryoFoldis 0.5 s (Electron Microscopy
Data Bank (EMDB) ID 6555; sequence length is 190), the maximum
inference time is 10.7 s (EMDB ID 6270; sequence length is 13,224)
and the average time is 3.1s. Cryo2Struct’s minimum inference
time is 137.85 s, maximum inference time is 10,398.8 s and the aver-
age time is 3,001.2 s. On average, E3-CryoFold is up to nearly 1,000
times faster than Cryo2Struct, demonstrating the efficiency of the
E3-CryoFold modelling method. We believe this prominent merit
positions E3-CryoFold to be able to serve as a simpler, more efficient
and more accurate tool to revolutionize the research community of
cryo-EM structure determination.

Evaluation of E3-CryoFold on a new established test dataset

To evaluate the generalization of E3-CryoFold, we assess the perfor-
mance of E3-CryoFold on alarge independent test dataset comprising
500 new density maps. We remove the test samples in which the PDB
structure only contains the asymmetric units and this results in 428
density maps. The details of this new test dataset can be found in Sup-
plementary Information Section 1.

Comparing E3-CryoFold with ModelAngelo on 109 test samples.
To evaluate the accuracy of E3-CryoFold predictions and thoroughly
investigate the advantages and limitations of the proposed model, we
conductacomprehensive comparison with ModelAngelo, aprominent
method in cryo-EM structure determination. Given that the density
maps in the standard test set referenced in the section ‘Comparison
onastandard cryo-EM structure determination dataset’ were normal-
ized before download, and considering ModelAngelo’s limitations
with normalized density maps, we selected a dataset for comparing
E3-CryoFold with ModelAngelo. In accordance with ModelAngelo’s
approach, we removed structures containinginsertion codes and other
irregularities to minimize computational costs and structural biases,
resulting in109 test samples.

Figure 4a presents the TM scores of the predicted atomic struc-
tures from both methods. The average TM score for E3-CryoFold is
0.863, whereas ModelAngelo achieves an average of 0.329. Notably,
E3-CryoFold outperforms ModelAngelo in 97 out of 109 samples,
indicating a significant advancement in TM-score performance.

Figure 4b illustrates the r.m.s.d. values for the predicted atomic
structures. The average r.m.s.d. for E3-CryoFold is1.508 A, compared to
1.849 A for ModelAngelo. While E3-CryoFold’s predictions are superior
in 44 out of 109 samples, its average r.m.s.d. is comparable to that of
ModelAngelo, albeit with fewer instances of superior performance.

Figure 4c,d depicts the angle and bond loss metrics for the pre-
dicted atomic structures. The average angle loss for E3-CryoFold is
0.1722, while ModelAngelo’s is 0.2199. The average bond loss for the
two models is 0.2207 for E3-CryoFold and 1.4966 for ModelAngelo.
E3-CryoFold outperforms ModelAngeloin 79 and 105 samples for angle
and bond loss, respectively. These metrics reveal that E3-CryoFold
exhibits superior average performance over ModelAngelo, although
it demonstrates greater variance in angle loss, while ModelAngelo
shows more significant variance in bond loss. This highlights the dif-
fering strengths of the two methods in predicting atomic angles and
bond lengths.

Figure 4e displays the Ca displacements of the predicted atomic
structures. E3-CryoFold’s average Ca displacement is 0.2769, sig-
nificantly better than ModelAngelo’s average of 0.7035. Moreover,
E3-CryoFold surpasses ModelAngelo in 99 out of 109 samples. Unlike
the comparabler.m.s.d. values, the Ca displacement metric clearly indi-
cates that E3-CryoFold generates models with superior local quality.

Figure 4f,g presents the Q-scores and FSC for the predicted atomic
structures from both E3-CryoFold and ModelAngelo. The average
Q-scorefor E3-CryoFold is 0.4413, while ModelAngelo exhibits ascore
of 0.5037. In terms of FSC, E3-CryoFold achieves an average of 0.5278
compared to ModelAngelo’s 0.5699. Additionally, E3-CryoFold out-
performs ModelAngelo in 20 and 28 predictions, respectively. These
findingsindicate that ModelAngelo demonstrates superior alignment
between predicted structures and density maps, as its atomic predic-
tions are directly derived from the density data.

Figure 4hillustrates the inference time comparison between the
two methods. E3-CryoFold significantly reduces average inference time
to4.1s,instark contrast to ModelAngelo’s 4,536.2 s.

A comprehensive analysis of these results reveals key differences
between the two methods.

Regarding efficiency, E3-CryoFold’s average inference time is sub-
stantially lower than that of ModelAngelo, demonstrating an efficiency
increase of nearly 1,000 times.

Regarding accuracy, various metrics, including TM score,
angle loss and bond loss, indicate a significant advancement in
E3-CryoFold’s capabilities for sequential and global structure model-
ling. Furthermore, both r.m.s.d. and Ca displacement metrics show
that E3-CryoFold matches or exceeds ModelAngelo’s performance
in atomic position prediction. We observe that in some cases Model-
Angelo shows poor TM scores despite having low r.m.s.d. values. We
attribute this phenomenon to the biasin Ca.atom coordinate-sequence
alignmentin ModelAngelo, as well as the inherent differences between
TMscore and r.m.s.d. The r.m.s.d. focuses solely on the absolute dis-
tances between atoms in two structures without considering sequence
similarity, whereas TM score emphasizes the overall folded structure,
the relative positions of proteins and sequence similarity*. Conse-
quently, even if some predicted structures from ModelAngelo show
very similar atomic coordinates to the ground truth, they maystill yield
poor TM scores if ModelAngelo fails to accurately align the predicted
coordinates and sequences. Instead, E3-CryoFold maintains consist-
ency in TM score and r.m.s.d. due to the perfect Ca atom-sequence
alignment of E3-CryoFold. We also provide two visualization examples
of E3-CryoFold and ModelAngeloin Fig. 4i,j. In these two visualization
examples, we observe that while ModelAngelo can generate overall
structures similar to the ground truth, it produces many disconnected
oradditional chains that differ from the ground truth, therefore show-
ing more different colours of chainsin the visualization. Additionally,
the structure generated by ModelAngelo in Fig. 4j shows a poor TM
score but a good r.m.s.d. These results further support our earlier
conclusion that ModelAngelo struggles to accurately align the pre-
dicted Ca atoms with their corresponding sequences. In contrast,
E3-CryoFold demonstrates high homogeneity with ground truth in
chainsand accurately generates structures, highlighting the superior
performance of E3-CryoFold.
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Fig. 4| The analysis results of atomic models built on 109 test experimental
cryo-EM maps for E3-CryoFold against ModelAngelo in eight metrics.

a, The TM score of the atomic structures of E3-CryoFold against ModelAngelo.
b, Ther.m.s.d.c, Theangleloss.d, Thebondloss. e, The Cadisplacement. f, The

Q-scores. g, The FSC. h, The inference time of two models versus the length of
atomic structures. i,j, The visualization examples (EMDB ID 42676 (i), EMDB ID
44846 (j)) of E3-CryoFold and ModelAngelo.

Regarding structure-map alignment, in terms of Q-score and
FSC metrics, E3-CryoFold shows a clear disadvantage compared to
ModelAngelo. This discrepancy is expected, as E3-CryoFold relies
on spatial-sequential features where sequence information is para-
mount, whereas ModelAngelo primarily uses density map data for
atomic structure predictions, using sequence information as an
auxiliary tool. Theseresults underscore the potential for integrating
both methods as a promising direction for future cryo-EM structure
determination.

Evaluating E3-CryoFold on the whole test dataset. As Fig. 5 shows,
on this newly established test dataset, E3-CryoFold demonstrates an
average TM score of 0.854, r.m.s.d. of 1.632 A, angle loss of 0.184 and
bondloss 0f 0.2360. These figures representimprovements of 4.5,13.2,
21.6 and 22.4%, respectively, compared to the standard test dataset. In

contrast, Cryo2Struct yields an average TM score of 0.213, r.m.s.d. of
8.804 A, angle loss 0f1.107 and bond loss of 1.325. While E3-CryoFold
maintains a leading TM score, angle loss and bond loss relative to
Cryo2Struct, its results exhibit greater bias from the target structure
due to alack of constraints. This further underscores E3-CryoFold’s
capacity to generate accurate atomic structures while highlighting the
challenges associated with biasin the absence of stringent constraints.

Figure 5aillustrates the relationship between TM score and reso-
lution. While the TM scores of Cryo2Struct’s predicted structures
decline asresolution decreases, E3-CryoFold shows enhanced quality
of generated structures with increasing resolution. This suggests that
E3-CryoFoldis more robust tolowresolution and less dependent on the
quality of the density map. Additionally, the lower Pearson correlation
for E3-CryoFold compared to Cryo2Struct supports this conclusion.
Figure 5b,c,d depicts r.m.s.d., angle and bond loss versus resolution,
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Fig. 5| The analysis results of atomic models built for 428 test experimental
cryo-EM maps. The solid lines depict linear regression lines and the coloured
arearepresents a 95% confidence interval. a, The TM score versus resolution;
the E3-CryoFold regression equation, 0.0153x + 0.8054; Pearson’s correlation,
0.079; the Cryo2Struct regression equation, —0.0011x + 0.184; correlation,
-0.010. b, The r.m.s.d. versus resolution; the E3-CryoFold regression equation,
-0.1034x +1.958; correlation, -0.069; the Cryo2Struct regression equation,
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0.1833x + 8.234; correlation, 0.067. ¢, The angle loss versus resolution; the
E3-CryoFold regression equation, —0.0266x + 0.2679; correlation, —0.107;
the Cryo2Struct regression equation, 0.0316x +1.793; correlation, 0.0304.

d, The bond loss versus resolution; the E3-CryoFold regression equation,
-0.0350x + 0.3462; correlation, —0.113; the Cryo2Struct regression equation,
0.0375x +1.895; correlation, 0.035. e, The cryo-EM density map 44366 was
released on15May 2024.

respectively. Theseresults further reinforce the earlier conclusion that
E3-CryoFold demonstratesimproved structural quality withincreased
resolution. Collectively, these findings indicate that E3-CryoFold per-
forms competitively well with relatively low-resolution data.

Figure 6a—f presents a visual analysis of six metrics in relation to
target structure length. All figures demonstrate that the atomic struc-
tures generated by E3-CryoFold experience aminor decline in perfor-
mance asthe length of target structuresincreases. However, structures
of considerable length still maintain good TM scores above 0.7 and
r.m.s.d. valuesbelow 3.0 A. These findings further affirm E3-CryoFold’s
capability to handle test data comprising very long sequences, dem-
onstrating the significance of E3-CryoFold in biological structural
analysis, particularly in addressing the complexities associated with
extended sequence lengths.

Figure 6g-1 presents an analysis of six metrics in relation to the
maximum dimension of the target density map (for example, for a

target density map with dimensions of (540,500, 500), the maximum
dimension is 540). Theoretically, resizing during preprocessing can
lead to greater information loss as the dimensions of the target density
mapincrease.Indeed, the figuresindicate that the predicted structures
generated by E3-CryoFold exhibit aslight decline in performance as the
maximum dimension increases. However, the results remain consist-
ent with those observed for length, showing that the degradation is
not pronounced, with TM scores consistently above 0.7 and r.m.s.d.
values below 3.0 A. This demonstrates that E3-CryoFold is robust
against information loss resulting from resizing. Nevertheless, the
issue ofinformation loss is significant and warrants further investiga-
tionin future work.

Supplementary Fig. 13 illustrates several high-quality examples
generated by E3-CryoFold on the test dataset, further demonstrating
its capability to model diverse complexes with intricate structures
and combinations.
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Fig. 6| The analysis results of atomic models built for 428 test cryo-EM
maps. The coloured area represents a 95% confidence interval.a, The
TM score versus length; the regression equation, —4.91 x 10~°x + 0.8596;
Pearson’s correlation, —0.128.b, The r.m.s.d. versus length; the regression
equation, 3.59 x 10~x + 1.5613; correlation, 0.123. ¢, The angle loss versus
length; the regression equation, 6.89 x 10~°x + 0.1713; correlation, 0.145.d,
Thebond loss versus length; the regression equation, 9.78 x 10°x + 0.2199;
correlation, 0.164. e, The DockQ versus length; the regression equation,
-1.89 x 10°x + 0.9112; correlation, —0.052. f, The LDDT versus length; the
regression equation, 1.53 x 10”x + 0.8654; correlation, 0.0034. g, The TM score
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versus maximum (max.) dimension of density maps; the regression equation,
-1.26 x10™*x + 0.8911; Pearson’s correlation, —0.129. h, The r.m.s.d. versus

max. dimension; the regression equation, 9.82 x 10™*x + 1.3059; correlation,
0.152.1, The angle loss versus max. dimension; the regression equation,

1.32 x10™*x + 0.1390; correlation, 0.111. j, The bond loss versus max. dimension;
the regression equation, 1.31 x 10*x + 0.1853; correlation, —0.133.k, The

DockQ versus max. dimension; the regression equation, -=7.44 x 10™x + 0.9301;
correlation, —0.112.1, The LDDT versus max. dimension; the regression equation,
-7.82x107°x + 0.8921, correlation, -0.077.

Discussion

E3-CryoFold introduces a model for efficient, robust and generaliz-
able cryo-EM structure determination. It leverages a 3D and sequence
transformer to extract information from cryo-EM density maps and
sequences, using a cross-attention module to integrate these two

modalities. Furthermore, an efficient SE(3) GNN is proposed to con-
struct the complete atomic structure, facilitating end-to-end training
andinference.

We evaluated the performance of E3-CryoFold models on both
standard and newly established test datasets. Our results demonstratea
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significantimprovementinaccuracy and efficiency, achieving accurate
predictions with only one-thousandth of the inference time compared
to previous methods, includingModelAngelo, Cryo2Struct and Phenix.

Despite these advancements, E3-CryoFold faces certain chal-
lenges. First, the irregular shapes of density maps necessitate resizing
them to a uniform shape, which may introduce bias and lead to aloss
of spatial information, particularly in larger maps. Second, because
E3-CryoFold generates atom coordinates without constraints, the
r.m.s.d. between predicted and target structures can be relatively
volatile. We believe that combining E3-CryoFold predictions with the
atom coordinates derived from density maps could effectively mitigate
theseissues. Last, E3-CryoFold currently supports only the modelling
of theresidue backbone, while the side chains, which are also critical,
have not been considered. The modelling of side chains represents a
significant extension and an important area for future development
of E3-CryoFold.

Methods

Problem definition

E3-CryoFoldis designed to predict the 3D atomic structure of a protein
complexby leveraging both a cryo-EM density map and the correspond-
ing protein sequence. The cryo-EM density mapis represented asa3D
voxel grid M € RExtxE where L denotes the dimension of the density
map. In practice, the densigy map is divided into cubic patches of size
L' x L' x L', resulting in (5) smaller units that facilitate efficient pro-
cessing of the spatial data. The protein sequence consisting of N resi-
duesisdenotedasS=(s,,s,, ...,Sy), whereeachresidue s;belongs to the
setof amino acids A. Itisimportant to highlight that, in our model, the
specific types of amino acid in the sequence are not required; the pri-
mary role of the sequence input is to convey the number of residues.
This allows E3-CryoFold to focus onreconstructing the protein’s struc-
ture based on spatial data from the density map while using the
sequence primarily as a guide for residue count.

The goal of E3-CryoFold is to predict the 3D atomic structure of
the protein backbone, which includes the spatial coordinates of four
backbone atoms for each residue: nitrogen (N), alpha carbon (Ca),
carbonyl carbon (C) and oxygen (O). The output is represented as a
tensor X € RVM4x3 where Nis the number of residues, 4 corresponds to
the four backbone atoms and 3 refers to the x, y, zspatial coordinates.
The overarching objective is to learn a mapping function:

fIM,S) - X, 1

which takes as input the cryo-EM density map M and the sequence S,
and outputs the 3D atomic coordinates of the protein’s backbone. This
function must effectively integrate the spatial informationembedded
inthe cryo-EM density map with the structural constraints implied by
the protein sequence, ultimately producing anaccurate and physically
plausible atomic reconstruction of the protein complex.

Background

Self-attention. The self-attention mechanism*wasinitially introduced
to capture long-range dependencies. Given a d-dimensional embed-
ding H e N x D, the self-attention operation computes attention scores
between all pairs of elements using query (Q), key (K) and value (V)
matrices. These matrices are linear transformations of the input
embeddings:

Q = HWo,K = HWy, V = XW,. 2

W, Wy and W, are the matrices that project the embedding into the
hidden dimension. The attention weights are calculated as:

Attention(Q, K, V) = softmax (Q—KT) V. 3)
\/_

D

Tisthetranspose operation; Dis the hidden dimension size. This mech-
anism allows each residue or voxel to aggregate information from
the entire sequence or density map, making it particularly useful for
modelling long-range spatial dependencies in cryo-EM density maps
and protein sequences.

Cross-attention. While self-attention captures intra-modality
relationships (within the sequence or within the density map), the
cross-attention mechanism?® extends this concept to interactions
between different modalities. Cross-attention allows one set of embed-
dings (queries) to attend to another set (keys and values), facilitating
theintegration of information from multiple sources. In E3-CryoFold,
cross-attentionis used to merge features from the density map and the
proteinsequence. The sequence embeddings are updated by attending
to the spatial embeddings derived from the density map, effectively
allowingthe sequence representation tointegrate spatial information.

Mathematically, if Q. € RMPrepresentsthe sequenceembedding
and Kges, Ves € RE'XP represent the embedding from the density map,
the cross-attention operationis formulated as:

Q
Cross - attention(Qseq, Kdes» Vaes) = softmax (—

This allows the sequence to integrate spatially contextualized infor-
mation from the density map, ensuring a coherent representation of
both modalities.

Overall workflow

Preprocess. Normalizing the density values of cryo-EM density maps
involves applying scaling and clipping techniques. Positive density val-
ues within these mapsindicate regions where the proteinis predicted
tobelocated. However, the distribution of these positive density values
varies significantly across different maps, with some ranging from
-2.32to03.91and others from—-0.553 t0 0.762. To ensure comparability
across diverse datasets, a percentile-based normalizationapproachis
used. This involves computing the 95th percentile of positive density
values within each map and subsequently normalizing all values rela-
tive to this threshold.

Given the diverse dimensions of density maps, handling all maps
withasingle configuration presents significant challenges. Therefore,
we standardize all density maps to auniformshape of 360 x 360 x 360
usingacubicinterpolation algorithm. Although this resizing operation
may compromise some content, we demonstrate that E3-CryoFold
remains robust to suchinformationlossin 2.3.For sequence encoding,
we use the Evolutionary Scale Modelling (ESM)** alphabet to represent
all complex sequences. Additionally, we use the [unk] token to encode
residues notincludedinthealphabet. In constructing the target atomic
structures, we predict the coordinates of backbone atoms (including
C, Ca, Nand O atoms) for each amino acid during training.

Pretraining on simulated density maps. Despite consistent pro-
gress in the field of cryo-EM, the total number of available cryo-EM
density maps remains limited to approximately 30,000. Addition-
ally, a significant portion of these maps has resolutions below 4 A,
complicating structural determination. To address the limitations of
dataset scale and improve the generalization of our models, we simu-
late high-resolution density maps using acomprehensive collection of
PDB structures. To avoid the sequence overlapping between the test
and pretraining dataset, we select PDB structures with less than 20%
sequenceidentity to any of the proteinsinthe test set. We have curated
adataset comprising 163,284 high-quality PDB structures, from which
we map atomic coordinates into density maps of dimensions (360, 360,
360). For constructing simulated density maps, we initialize a zero
tensor of dimensions (360, 360, 360). Based on the scale of the PDB
structure size, we determine which pixel each atom corresponds to.
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Eachatomisthen mappedintoitsrespective pixel within the initialized
tensor. Following this mapping process, we smooth the density values
by applying a Gaussian filter®. We set the width of Gaussian distribu-
tionas 2, and theamplitudeis1to simulate a high-quality density map.
Furthermore, to enhance data diversity, we introduce random Gaussian
noise (mean 0, scale 0.05) as part of our data augmentation strategy.

For model training, we set the learning rate to 1 x 107, the batch
size to 4 per GPU and the number of training epochs to 50. We use the
AdamW*’ optimizer in conjunction with the Onecycle* learning rate
scheduler for pretraining our models. The training is conducted on
eight A100 GPUs over a period of approximately 5 days, with validation
performed on the Cryo2StructData®® test set.

Fine-tuning on experimental density maps. Despite our models being
pretrained on a large-scale dataset of high-quality simulated density
maps, it remains essential to refine these models using experimental
data for real-world applications. Following the pretraining phase, we
further fine-tune the models on the Cryo2StructData. This dataset
comprises 7,389 experimental cryo-EM density maps with resolutions
ranging from1to 4 A. These density maps were released by the EMDB
on27March 2023 (ref.23). We split the whole datasetinto 7,000 density
maps for training and 389 for validation. We maintain the same train-
ing hyperparametersasin the pretraining stage, with the exception of
increasing the training epoch to 500.

Model architecture

3D and sequence transformers extract features. Tointegrate spatial
information from cryo-EM density maps into sequence data, we should
embed both modalitiesinto ashared hidden space. To achieve this, we
use 3D and sequence encoders to model the input datawithinthe same
dimensional framework. The density mapis dividedinto1,000 cubes,
each with dimensions of 36 x 36 x 36. Convolutional kernels of the
same dimensions are used to encode these cubes into spatial embed-
dings. E3-CryoFold comprises eight blocks, with each block imple-
menting spatial self-attention modules to facilitate communication
among different spatial positions for each embedding. For enhanced
generalization of the sequence module, we use the ESM-2 pretrained
model to derive sequence embeddings, supplemented by sequential
self-attention modules to connectindividual residues. Besides, we use
two embedding modules—‘Chain Embedding’ and ‘Position Embed-
ding’—to capture the sequence position and chain information for
each residue. Crucially, cross-attention modules are integrated to
enableinteraction between spatial and sequential features. At the end
of each block, multi-layer perceptrons update the features from both
modalities. The output sequence features from the sequence encoder
are subsequently used as node features within the equivariant GNN.

Equivariant GNN constructs atomic structures. Conditioned on
these extracted node features, we use anequivariant GNN to construct
the final structure of complexes. Initially, virtual atoms are obtained
by projecting the node features into Euclidean space. These virtual
atoms, with the shape of (N,4,3) (where N represents the number of
nodes), along with the node features, are then fed into eight layers of the
equivariant GNN* to refine the virtual atomic representations progres-
sively. Following the approach outlined in Chroma*, we use multiple
loss functions to train E3-CryoFold, specifically, Global Loss, Fragment
Loss, Pair Loss and Neighbour Loss. Further details are providedin the
next section ‘Protein backbone reconstruction based on SE(3) GNN'.

Protein backbone reconstruction based on SE(3) GNN

Backbone reconstruction with a protein graph. The backbone recon-
struction process in E3-CryoFold begins by initializing random coor-
dinates X € RV*3_ Based on these initial coordinates, a k-nearest
neighbours (kNN) graphis constructed, which defines thelocal spatial
relationships between residues in the protein structure. Each residue

servesasanodeinthisgraph,anditsneighboursare determined based
on proximity in the backbone structure. The initial node embeddings
v(© are derived from the integrated feature embeddings H € RV*?,
which are generated by combining spatial information from the
cryo-EM density map with sequence information. These embeddings
encapsulate both local and global structural features of the protein,
allowing the model to leverage the inherent relationships between the
protein’s sequence and its spatial configuration.

For eachresidue, alocal frame T=(R, t) is defined, where R € R3*3
is a rotation matrix encoding the residue’s orientation, and t e R3is a
translation vector specifying the residue’s position in 3D space. These
local frames are updated iteratively using aSE(3) GNN*, which respects
the symmetries of 3D space by ensuring that the operations onrotations
andtranslations remain equivariant to transformations such asrotations
and translations. At each iteration, the SE(3) GNN aggregates relative
rotation and relative translation information from neighbouring resi-
dues to update the frame of agiven residue. For aresidue s, the update
rules for the rotation matrix R,and translation vector t,are as follows:

vec(Ry) = A > a;jvec(RSj)
JEN

R, « Quat2Rot o Norm o MLP*™*

t,= Y a.t
Jj
JEN v

O vec(Ry)

where vy denotes the set of neighbouring residues for the residue sin
the kNN graph, and a’, and a, are learnable attention weights that
determine the influence of neighbour s rotation and translation on
theresidues. Therotationmatrix Ris flattened into a nine-dimensional
vector using the vec(-) operation before being aggregated. After aggre-
gation, the vector is transformed back into a valid rotation matrix using
aquaternion-to-rotation function, Quat2Rot(-), which ensures numeri-
cal stability and smooth rotations. Similarly, the translation vector t
isupdated based on the weighted contributions from the translations
of neighbouringresidues. Through this frame-level message passing,
the SE(3) GNN allows each residue’s position and orientation to be
iteratively refined based on the local structural context provided by
itsneighbours. This ensures that the backbone reconstruction respects
the geometricrelationships within the protein while remaining equiv-
ariant to spatial transformations.

Oncethelocalframes T, = (R, t,) for eachresidue have been refined
over multiple layers of the SE(3) GNN, the 3D coordinates of the back-
bone atoms can be recovered. The updated coordinates x; of each
residue sare computed by applying the predicted local transformation:

x,=TP 0V, ®)
where V@ represents the node embedding at the final iteration.

Reconstruction loss. Inspired by Chroma*?, E3-CryoFold uses multiple
loss functions to train the model effectively. The total loss £isthe sum
of several components designed to enforce global structural accuracy,
local fragment fidelity, pairwise consistency and accurate modelling
of neighbourhood relationships:

L= Lglobal + Lfragmem + [fpair + [/neighbour + Ldistance (6)

Theloss terms are defined as follows:

* Globalloss (£Lgba): this term evaluates the r.m.s.d. between the
ground truth 3D coordinates X € RV*#<3 and the reconstructed
coordinates X e RVx4x3;

@

LA 3 o,
Leglobal = N I Kok — X jn)
i=1j=1 \ k=1

Nature Machine Intelligence


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01056-0

* Fragmentloss (£Lfgment): this loss computes the r.m.s.d. between
local fragments of residues. For each residue, the loss is
evaluated over its c nearest neighbouring residues:

N ¢ 4 3

1 N
Lfragment = N Z Z Z Z (Xi,j,k,q - Xi,f,k’q)z ®

i=1j=1k=1 \ q=1

« Pairloss (£,,;): this loss enforces consistency between pairs of
residues, evaluating the r.m.s.d. over k pairs for each kNN** pair:

N K

1

'Cpair = N
i=1,=1

J;

@4 [3 K R
DAl D Kijwgm — Xijkgm) 9

k=1g=1 \ m=1

+ Neighbour 10ss (£ peignhbour): this loss enforces consistency
between each residue and its k-nearest neighbours:

N K 4 3

1
Lneighbour = N 2 Z 2

i=1j=1k=1 \ ¢=

(10

s 2
(Xi,j,k,q - Xi,j,k,q)
1

 Distance loss (Lgisance): the distance loss directly evaluates the
mean squared error between the predicted and ground truth
pairwise distance matrices. Given the pairwise distance matrix
D e RMN and its reconstructed counterpart 2, the loss is
computed as follows:

2
Kikg — X jkgq)

A}
Il
-
I
M+
M

x~
1]
N

Q
I
—

N 2
Kikg = Xika) (1)

S
Il
-
N
M+
M

~
Il
I
—-

1q

n on 2
Ldistance = 2, I(Di’j - Di,j)

i=1j=

By default, c =7 represents the number of fragments, and k=30
indicates the number of kNNs**. These loss functions are applied at
each layer of the decoder, and the final loss is computed as the aver-
age across all layers. This multi-layer loss application improves model
performance by ensuring that intermediate representations are con-
sistent with the final prediction, leading to more robust and accurate
reconstructions of the protein backbone.

Data availability

The experimental dataset can be downloaded at https://doi.
org/10.7910/DVN/FCDGOW (ref. 45), and the standard test dataset can
bedownloaded at https://doi.org/10.7910/DVN/2GSSC9 (ref. 46). The
low-resolution and simulated datasets are accessible at https://zhang-
group.org/CR-I-TASSER/. All source data are accessible from ref. 47
(standard_test_data.xIsx for standard test dataset, novel_test_data.xlIsx
for novel established test dataset, low_resolution_experimental_data.
xlIsx forlow-resolution density maps, simulated_data.xIsx for simulated
density maps). Source data are provided with this paper.

Code availability

The source code of E3-CryoFold is available via GitHub at https://
github.com/A4Bio/CryoFold/ (ref. 48). This repository also contains
theinstructions and tutorial for applying E3-CryoFold on an example
cryo-EM map to generate acomplex structure.
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