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Abstract

Molecular Property Prediction (MPP) is a crucial task in the AI-driven Drug
Discovery (AIDD) pipeline, which has recently gained considerable attention
thanks to advancements in deep learning. However, recent research has revealed
that deep models struggle to beat traditional non-deep ones on MPP. In this study,
we benchmark 12 representative models (3 non-deep models and 9 deep models)
on 15 molecule datasets. Through the most comprehensive study to date, we
make the following key observations: (i) Deep models are generally unable to
outperform non-deep ones; (ii) The failure of deep models on MPP cannot be
solely attributed to the small size of molecular datasets; (iii) In particular, some
traditional models including XGB and RF that use molecular fingerprints as inputs
tend to perform better than other competitors. Furthermore, we conduct extensive
empirical investigations into the unique patterns of molecule data and inductive
biases of various models underlying these phenomena. These findings stimulate us
to develop a simple-yet-effective feature mapping method for molecule data prior
to feeding them into deep models. Empirically, deep models equipped with this
mapping method can beat non-deep ones in most MoleculeNet datasets. Notably,
the effectiveness is further corroborated by extensive experiments on cutting-edge
dataset related to COVID-19 and activity cliff datasets.

1 Introduction

Molecular Property Prediction (MPP) is a critical task in computational drug discovery, aimed
at identifying molecules with desirable pharmacological and ADMET (absorption, distribution,
metabolism, excretion, and toxicity) properties. Machine learning models have been widely used
in this fast-growing field, with two types of models being commonly employed: traditional non-
deep models and deep models. In non-deep models, molecules are fed into traditional machine
learning models such as random forest and support vector machines in the format of computed or
handcrafted molecular fingerprints [64]. The other group utilizes deep models to extract expressive
representations for molecules in a data-driven manner. Specifically, the Multi-Layer Perceptron
(MLP) could be applied to computed or handcrafted molecular fingerprints; Sequence-based neural
architectures including Recurrent Neural Networks (RNNs) [43], 1D Convolutional Neural Networks
(1D CNNs) [22], and Transformers [25, 54] are exploited to encode molecules represented in
Simplified Molecular-Input Line-Entry System (SMILES) strings [71]. Additionally, molecules
can be naturally represented as graphs with atoms as nodes and bonds as edges, inspiring a line of
works to leverage such structured inductive bias for better molecular representations [20, 76, 79, 58].
The key advancements underneath these approaches are Graph Neural Networks (GNNs), which
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Figure 1: Exemplary molecular descriptors and their corresponding models in our benchmark. SVM:
Support Vector Machine [84]; RF: Random Forest [61]; XGB: eXtreme Gradient Boosting [8];
MLP: Multi-Layer Perceptron; CNN: 1D Convolution Neural Network [32]; RNN: Recurrent Neural
Network (GRU) [46]; TRSF: TRanSFormer [67]; GCN: Graph Convolution Network [33]; MPNN:
Message-Passing Neural Network [20]; GAT: Graph Attention neTwork [68]; AFP: Attentive FP [77];
SPN: SPhereNet [38]. The above-mentioned abbreviations are applicable throughout the entire paper.

consider graph structures and attributive features simultaneously in the learning process [33, 68, 24].
More recently, researchers incorporate 3D conformations of molecules into their representations for
better performance, whereas pragmatic considerations such as calculation cost, alignment invariance,
uncertainty in conformation generation, and unavailable conformations of target molecules limited the
practical applicability of these models [5, 17, 57, 16, 38]. We summarize the widely-used molecular
descriptors and their corresponding models in our benchmark, as shown in Figure 1. Despite the
fruitful progress, previous studies [41, 29, 79, 65, 30, 13, 66] have observed that deep models
struggled to outperform non-deep ones on molecular datasets. However, these studies neither consider
the emerging powerful deep models (e.g., Transformer [25], SphereNet [37]) nor explore various
molecular descriptors (e.g., 3D molecular graph). Also, they did not investigate the reasons why deep
models often fail on molecules.

To narrow this gap, we present the most comprehensive benchmark study on molecular property
prediction to date, with a precise methodology for dataset inclusion and hyperparameter tuning. Our
empirical results confirm the observations of previous studies, namely that deep models generally
struggle to outperform traditional non-deep counterparts, even without accounting for the slower
training of deep learning algorithms. Moreover, we observe several interesting phenomena that
challenge the prevailing beliefs of the community, which can guide optimal methodology design for
future studies.

Furthermore, we aim to understand why deep models often underperform non-deep ones in MPP.
Specifically, we transform the original molecular data to observe the performance changes of various
models, uncovering the unique patterns of molecular data and the differing inductive biases of various
models. These in-depth empirical studies shed light on the benchmarking results: Deep models
struggle to learn non-smooth target functions that map molecular data to labels, while the target
functions are often non-smooth in MPP. This means that small changes in the chemical structure of
a molecule may result in large changes in molecular properties. Additionally, deep models tend to
attend to molecule features as a whole, especially handling the molecular fingerprints, while partial
substructures known as functional groups are the most informative for molecules. On the other hand,
XGB and random forest are well-suited for molecules because they make decisions based on each
dimension of molecular features separately. Based on these phenomena and analyses, we develop a
novel feature mapping method for molecule data before feeding them into models. Theoretically, we
show that our method can help deep models learn non-smooth target functions that map molecules to
properties. Moreover, our method is readily pluggable into various deep methods for performance
improvement.

We highlight the following contributions: (I) We provide the most comprehensive benchmark on
MPP tasks to date and expose the limitations of deep models on molecule datasets. Our findings offer
new and valuable insights for the fast-growing AIDD community. (II) We empirically investigate the
unique patterns of molecular data and inductive biases of various models, providing explanations
for why deep models often cannot beat non-deep ones on MPP tasks. (III) We develop a simple-yet-
effective feature mapping method to help deep models learn the non-smooth target functions with
theoretical guarantees. (IV) We verify the effectiveness of our method through extensive experiments
on MoleculeNet datasets, a cutting-edge dataset related to COVID-19 and activity cliff datasets.
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2 Related Work

In this section, we elaborate on various molecular descriptors and their respective learning models.

2.1 Fingerprints-based Molecular Descriptors

Molecular fingerprints (FPs) serve as one of the most important descriptors for molecules. Typical
examples include Extended-Connectivity Fingerprints (ECFP) [53] and PubChemFP [70]. These
fingerprints encode the neighboring environments of heavy atoms in a molecule into a fixed bit
string with a hash function, where each bit indicates whether a certain substructure is present in the
molecule. Traditional models and MLPs can take these fingerprints as ‘raw’ input. However, the
high-dimensional and sparse nature of FPs introduces additional efforts for feature selection when
they are fed into certain models. Additionally, it is difficult to interpret the relationship between
properties and structures because the hash functions are non-invertible.

2.2 Linear Notation-based Molecular Descriptors

Another option for molecules is linear notations, among which SMILES [71] is the most frequently-
used one owing to its versatility and interpretability. In SMILES, each atom is represented as a
respective ASCII symbol; Chemical bonds, branching, and stereochemistry are denoted by specific
symbols. However, a significant fraction of SMILES strings does not correspond to chemically valid
molecules. As a remedy, a new language named SELF-referencIng Embedded Strings (SELFIES) for
molecules was introduced in 2020 [34]. Every SELFIES string corresponds to a valid molecule, and
SELFIES can represent every molecule. Naturally, RNNs, 1D CNN, and Transformers are powerful
deep models for processing such sequences [69, 86, 25, 55, 82]. However, the poor scalability of the
sequential notations and the loss of spatial information limit the performances of these approaches.

2.3 2D and 3D Graph-based Molecular Descriptors

Molecules can be represented with graphs naturally, with nodes as atoms and edges as chemical bonds.
Initially, [15] first adopted convolutional layers to encode molecular graphs to neural fingerprints.
Following this work, [11] employs the atom-based message-passing scheme to learn expressive
molecular graph representations. To complement the atom’s information, [31] utilized both the atom’s
and bonds’ attributes, and MPNN [20] generalized it to a unified framework. Also, multiple variants
of the MPNN framework are developed to avoid unnecessary loops (DMPNN [79]), to strengthen
the message interactions between nodes and edges (CMPNN [58]), to capture the complex inherent
quantum interactions of molecules (MGCN [39]), or take the longer-range dependencies (Attentive
FP [76]). More recently, some hybrid architectures [54, 81, 42, 45] of GNNs and transformers are
emerging to capture the topological structures of molecular graphs.

The 3D molecular graph is composed of nodes (atoms), and their positions in 3D space and edges
(bonds). The advantage of using 3D geometry is that the conformer information is critical to many
molecular properties, especially quantum properties. In addition, it is also possible to directly
leverage stereochemistry information such as chirality given the 3D geometries. Recently, multiple
works [57, 56, 14, 38, 3] have developed message-passing mechanisms tailored for 3D geometries,
which enable the learned molecular representations to follow certain physical symmetries, such
as equivariance to translations and rotations. However, the calculation cost, alignment invariance,
uncertainty in conformation generation, and unavailable conformations of target molecules limited
the applicability of these models in practice.

3 Benchmark Representative Models on Multiple Molecular Datasets.

In this section, we present a benchmark on 15 molecular datasets with 12 representative models.

3.1 Experimental Setups

Fingerprints 7−→ SVM, XGB, RF, and MLP. Following the common practice [30, 63, 50],
we feed the concatenation of various molecular fingerprints including 881 PubChem fingerprints
(PubchemFP), 307 substructure fingerprints (SubFP), and 206 MOE 1-D and 2-D descriptors [80] to
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SVM, XGB, RF, and MLP models to comprehensively represent molecular structures, with some
pre-processing procedures to remove features (1) with missing values; (2) with extremely low variance
(variance < 0.05); (3) have a high correlation (pearson correlation coefficient > 0.95) with another
feature. The retained features are normalized to the mean value of 0 and variance of 1. Additionally,
considering that traditional machine models (SVM, RF, XGB) cannot be directly applied in the
multi-task molecular datasets, we split the multi-task dataset into multiple single-task datasets and
use each of them to train the models. Finally, we report the average performance of these single tasks.

SMILES strings 7−→ CNN, RNN, and TRSF. We adopt the 1D CNNs from a recent study [32],
which include a single 1D convolutional layer with a step size equal to 1, followed by a fully connected
layer. As for the RNN, we use a 3-layer bidirectional gated recurrent units (GRUs) [10] with 256
hidden vector dimensions. Additionally, we use the pre-trained SMILES transformer [25] with 4
basic blocks and each block has 4-head attentions with 256 embedding dimensions and 2 linear layers.
The SMILES are split into symbols (e.g., ‘Br’, ‘C’, ‘=’, ‘(’,‘2’) and then fed into the transformer
together with the positional encoding [67].

2D Graphs 7−→ GCN, MPNN, GAT, and AFP. As in previous studies [76], we exhaustively utilized
all readily available atom/bond features in our 2D graph-based descriptors. Specifically, we have
incorporated 9 atom features, including atom symbol, degree, and formal charge, using a one-hot
encoding scheme. In addition, we included 4 bond features, such as type, conjugation, ring, and
stereo. The resulting encoded graphs were then fed into GCN, MPNN, GAT, and AFP models.
Further details on the graph descriptors used in our experiments can be found in [76].

3D Graphs 7−→ SPN. We employ the recently proposed SphereNet [38] for molecules with 3D
geometry. Specifically, for quantum mechanics datasets (QM7, QM8, and QM9) that contain 3D
atomic coordinates calculated with ab initio Density Functional Theory (DFT), we feed them into
SphereNet directly. For other datasets without labeled conformations, we used RDKit [35]-generated
conformations to satisfy the request of SphereNet.

Datasets splits, evaluation protocols and metrics, hyper-parameters tuning. Firstly, we randomly
split the training, validation, and test sets at a ratio of 8:1:1. And then, we tune the hyper-parameters
based on the performance of the validation set. Due to the heavy computational overhead, GNNs-
based models on the HIV and MUV datasets are in 30 evaluations; all the models on the QM7 and
QM8 are in 10 evaluations; all the models on the QM9 dataset are in one evaluation. And then,
we conduct 50 independent runs with different random seeds for dataset splitting to obtain more
reliable results, using the optimal hyper-parameters determined before. Following MoleculeNet
benchmark [72], we evaluate the classification tasks using the area under the receiver operating
characteristic curve (AUC-ROC), except the area under the precision curve (AUC-PRC) on MUV
dataset due to its extreme biased data distribution. The performance on the regression task are
reported using root mean square error (RMSE) or mean absolute error (MAE). Kindly note that we
report the average performance across multi-tasks on some datasets because they contain more than
one task. Additionally, to avoid the overfitting issue, all the deep models are trained with an early
stopping scheme if no validation performance improvement is observed in successive 50 epochs.
We set the maximal epoch as 300 and the batch-size as 128. We provide more details including
hyper-parameters tuning space for each model in the appendix.

3.2 Observations

Table 1 documents the benchmark results for various models and datasets, from which we can make
the following Observations:

Observation 1. Deep models underperform non-deep counterparts in most cases.
As can be observed in Table 1, non-deep models rank as the top one on 11/15 datasets. Kindly note
that we report the results of each task in the QM9 dataset in the appendix. On some datasets such as
MUV, QM7, and BACE, three non-deep models can even beat any deep models.

Observation 2. The failure of deep models should not be solely attributed to the limited size of
molecular datasets.
Intuitively, many previous works [21, 79, 59] pointed out that the small size of molecular datasets
is a bottleneck for deep learning models and propose various strategies accordingly [49, 48]. Here,
we complement this pre-dominant belief with a new opinion with empirical evidence. As shown in
Table 1, all the non-deep models can outperform any deep ones on some larger-scale datasets (e.g.,
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Table 1: The comparison of representative models on multiple molecular datasets. The standard
deviations can be seen in the appendix for the limited space. No.: Number of the molecules in the
datasets. The top-3 performances on each dataset are highlighted with the grey background. The best
performance is highlighted with bold. Kindly note that ‘TRSF’ denotes the transformer that has been
pre-trained on 861, 000 molecular SMILES strings. The results on QM 9 can be seen in the appendix.

Dataset (No.) Metric SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP SPN

BACE (1,513) AUC_ROC 0.886 0.896 0.890 0.815 0.559 0.835 0.887 0.880 0.846 0.886 0.879 0.882
HIV (40,748) AUC_ROC 0.817 0.823 0.826 0.733 0.639 0.748 0.791 0.834 0.814 0.812 0.819 0.818
BBBP (2,035) AUC_ROC 0.913 0.926 0.923 0.760 0.693 0.897 0.918 0.915 0.872 0.902 0.893 0.905

ClinTox (1,475) AUC_ROC 0.879 0.919 0.933 0.685 0.813 0.963 0.890 0.889 0.868 0.891 0.907 0.912
SIDER (1,366) AUC_ROC 0.626 0.638 0.644 0.591 0.515 0.641 0.617 0.633 0.603 0.614 0.620 0.613
Tox21 (7,811) AUC_ROC 0.820 0.837 0.838 0.766 0.734 0.817 0.834 0.830 0.816 0.829 0.845 0.827

ToxCast (8,539) AUC_ROC 0.725 0.785 0.778 0.735 0.74 0.780 0.781 0.767 0.736 0.768 0.788 0.772
MUV (93,087) AUC_PRC 0.093 0.072 0.069 0.045 0.094 0.059 0.018 0.056 0.019 0.055 0.044 0.058

SARS-CoV-2 (14,332) AUC_ROC 0.599 0.700 0.686 0.688 0.649 0.643 0.638 0.646 0.640 0.683 0.651 0.663

ESOL (1,127) RMSE 0.676 0.583 0.647 2.569 1.511 0.718 0.653 0.773 0.695 0.661 0.594 0.671
Lipop (4,200) RMSE 0.683 0.585 0.626 1.016 1.207 0.947 0.633 0.665 0.669 0.680 0.664 0.630
FreeSolv (639) RMSE 1.063 0.715 1.014 2.275 2.205 1.504 1.046 1.316 1.327 1.304 1.139 1.159
QM7 (6,830) MAE 42.814 52.726 51.403 81.165 158.160 64.363 86.060 64.530 107.013 78.217 59.973 55.727

QM8 (21,786) MAE 0.0364 0.0126 0.0098 0.0205 0.0295 0.0232 0.0104 0.0154 0.0109 0.0187 0.0098 0.0103
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Figure 2: The performance of various models on the smoothed datasets. Left: ESOL (Regression);
Middle: Lipop (Regression); Right: QM7 (Regression). Kindly note that we only smooth the
regression datasets because the labels of classification datasets are not suitable for smoothing.

MUV and QM 7). However, in some small datasets (e.g., ClinTox and ESOL), some deep models
can beat partial non-deep ones. Therefore, we argue that there could be other reasons for the failure
of deep models, not solely the dataset size. We will provide further analysis in Sec. 4.

Observation 3. XGB and RF exhibit a particular advantage over other models.
In the experiments shown in Table 1, we can see that the XGB and RF models consistently rank
among the top three on each dataset. Additionally, tree models rank as the top one on 8/15 datasets.
Next, we will explore why tree models are well-suited for molecular fingerprints in Sec. 4.

4 Empirical Study: Why above phenomena would occur?

In this section, we attempt to understand which characteristics of molecular data lead to the failure of
powerful deep models. Also, we aim to understand the inductive biases of XGB and RF that make
them well-suited for molecules, and how they differ from the inductive biases of deep models. The
details of the experiments in this section can be found in the appendix.

Explanation 1. Unlike image data, molecular data patterns are non-smooth. Deep models
struggle to learn non-smooth target functions that map molecules to properties.
We design two experiments to verify the above explanation, i.e., increasing or decreasing the level
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Table 2: RMSEc are the prediction RMSE on cliff molecules, respectively. ∆P is the predicted
bioactivity change rate when transitioning from non-cliff to cliff molecules with subtle structural
changes. The top-3 performances on each dataset are highlighted with the grey background. The best
performance is highlighted with bold.

Target name
(Response type)

Metric SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP

CB1
(Agonism EC50)

RMSEc 0.773 0.767 0.770 0.944 0.823 0.888 0.807 0.992 0.989 0.975 0.967
∆P 15.04% 21.13% 20.76% 2.07% 10.15% 9.42% 13.32% 4.13% 3.85% 1.17% 4.35%

DAT
(Inhibition Ki)

RMSEc 0.744 0.696 0.730 0.894 0.783 0.934 0.792 1.003 0.921 1.042 0.995
∆P 20.64% 23.03% 23.95% 2.73% 14.18% 9.34% 15.02% 5.83% 5.15% 2.27% 5.08%

PPARα
(Agonism EC50)

RMSEc 0.671 0.678 0.685 0.962 0.825 0.968 0.713 0.870 0.872 0.929 0.823
∆P 21.07% 22.93% 23.14% 11.29% 13.48% 18.39% 15.29% 1.83% 5.18% 4.93% 11.73%

DOR
(Inhibition Ki)

RMSEc 0.861 0.854 0.836 1.098 1.036 1.032 0.874 1.259 1.152 1.281 1.179
∆P 25.26% 28.41% 23.95% 10.02% 9.83% 10.25% 15.18% 9.77% 12.52% 11.36% 13.11%

of data smoothing in the molecular datasets. Firstly, we ‘increase’ the molecular data smoothing
level by smoothing the labels based on similarities between molecules. Specifically, let D denote the
molecular dataset and (xi, yi) ∈ D be i-th molecule and its label, we smooth the target function as
follows,

ŷi =

∑
xj∈Nxi

s(xi, xj)yj∑
xj∈Nxi

s(xi, xj)
, (1)

where s(·, ·) denotes the Tanimoto coefficient of the extended connectivity fingerprints (ECFP)
between two molecules that can be considered as their structural similarity. Nxi

is the k-nearest
neighbor set of xi (including xi) picked from the whole dataset based on the structural similarities. ŷi
denotes the label after smoothing. We smooth all the molecules in the dataset in this way and use the
smoothed label ŷi to train the models. The results are shown in Figure 2, where ‘0-smooth’ denotes
the original datasets. ‘10-smooth’ and ‘20-smooth’ mean k = 10 and k = 20, respectively. As can be
observed, the performance of deep models improves dramatically as the level of dataset smoothing
increases, and many deep models including MLP, GCN, and AFP can even beat non-deep ones after
smoothing. These phenomena indicate that deep models are more suitable for the smoothed datasets.

Figure 3: Examplary of Activity Cliffs (ACs)
on the target named dopamine D3 receptor
(D3R). Ki means the bioactivity values. The
figure is adapted from a previous work [66]
with permission.

Secondly, we ‘decrease’ the level of data smooth-
ing using the concept of activity cliff [40, 60] from
chemistry, which means a situation where small
changes in the chemical structure of a drug lead
to significant changes in its bioactivity. We provide
an example activity cliff pairs in Figure 3. Appar-
ently, the target function of activity cliffs that map
molecules to the activity values is less smoothing
than normal molecular datasets. We then evaluate
the models on the activity cliff datasets [66]. The
test set contains molecules that are chemically sim-
ilar to those in the training set but exhibit either a
large difference in bioactivity (cliff molecules) or
similar bioactivity (non-cliff molecules). As shown
in Table 2, the non-deep models consistently outper-
form deep ones on these activity cliff datasets. Furthermore, the deep models exhibit less significant
prediction change rates compared to the non-deep ones. This observation suggests that deep models
are indeed less sensitive to subtle structural changes compared to non-deep ones. Our explanation
is consistent with the conclusions in deep learning theory [51], i.e., deep models struggle to learn
high-frequency components of the target functions. However, traditional models such as XGB and
RF can learn piece-wise target functions, and do not exhibit such bias. Our explorations uncover
several promising avenues to enhance deep models’ performance on molecules: smoothing the target
functions or improving deep models’ ability to learn the non-smooth target functions.
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Explanation 2. Deep models undesirably mix different dimensions of molecular features,
whereas tree models make decisions based on each dimension of the features separately.
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Figure 4: The performance of various models on the orthogonally transformed datasets. Left:
FreeSolv (Regression); Middle: ClinTox (Classification); Right: Tox21 (Classification). Kindly note
that we did not evaluate CNN, RNN, and TRSF on the transformed datasets because we cannot apply
the orthogonal transformations to the input SMILES strings.

Typically, features in molecular data carry meanings individually. As we elaborated in Sec. 2.1,
each dimension of molecular fingerprints often indicates whether a certain substructure is present in
the molecule; each dimension of nodes/edges features in molecular graph data indicates a specific
characteristic of the atoms/bonds (e.g., atom/bond type, atom degree). To verify the above explanation,
we mix the different dimensions of molecular features xi ∈ Rd using an orthogonal transformation
before feeding them into various models,

x̂i = Qxi, (2)

where Q ∈ Rd×d is the orthogonal matrix and x̂i is the molecular feature after transformation.
Kindly note that the meaning of xi depends on the input molecular descriptors in the experiments.
Specifically, for SVM, XGB, RF, and MLP, xi denotes the molecular fingerprints; for GNN models,
xi can denote the atom features and bond features in the molecular graphs, i.e., we apply orthogonal
transformations to both the atom features and bond features. As can be observed in Figure 4, the
performance of tree models deteriorates dramatically and falls behind most deep models after the
orthogonal transformation. It is because each dimension of x̂i is a linear combination of all the
dimensions of xi according to the matrix-vector product rule. In other words, the molecular features
after orthogonal transformation no longer carry meanings individually, accounting for the failure of
tree models that make decisions based on each dimension of the features separately. The learning style
of tree models is more suitable for molecular data because only a handful of features (e.g., certain
substructures) are most indicative of molecular properties [47]. On the other hand, the performance
decreases of deep models are less significant, and most deep models can beat tree models after the
transformations. We explain this observation as follows. Without the loss of generality, we assume
that a linear layer of deep models can map the original molecular feature xi to the label yi,

yi = W⊤xi + b, (3)

where W and b denote the parameter matrix and the bias term of the linear layer, respectively. And
then, we aim to learn a new linear layer mapping the transformed model feature x̂i to label yi,

yi = Ŵ⊤x̂i + b = Ŵ⊤Qxi + b̂, (4)

where Ŵ and b̂ denote the parameter matrix and the bias term of the new linear layer, respectively.
Apparently, to achieve the same results as the original feature, we only have to learn Ŵ so that
Ŵ = QW because Q−1 = Q⊤ as an orthogonal matrix, and also b̂ = b. Therefore, applying the
orthogonal transformation to molecular features barely impacts the performance of deep models. The
empirical results in Figure 4 confirm this point although some performance changes are observable
due to uncontrollable random factors.
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5 Methodology

Although we have shown and explained the superiority of non-deep models on molecular data,
deep models have numerous advantages over the traditional approaches: (i) GNNs can exploit the
structural/geometrical inductive biases of 2D/3D molecular graphs, alleviating the manual efforts
to capture the topology of the networks; (ii) The pre-trained representations with deep models are
beneficial to various downstream tasks, showing promising values in drug discovery [75, 74, 9, 73].
Therefore, we aim to empower the deep models to beat the non-deep ones on MPP tasks including
activity cliff cases.

As we explained before, deep models struggle to learn the non-smooth target functions of molecular
data, a phenomenon referred to “spectral bias” in literature [51]. To overcome such bias, prior
works [44, 87] have experimentally found that a heuristic sinusoidal mapping of the input features
allows MLPs to learn the non-smooth target functions. However, these mapping methods would
undesirably mix the original features. Please refer to the appendix for detailed discussions due to
the limited space. As a remedy, we introduce a new method named Independent Feature Mapping
(IFM) that embeds each dimension of molecular features separately before feeding them into models.
Denoting a molecular feature as x ∈ Rd, we formulate IFM as,

fx = [sin(v)|| cos(v)], v = [2πc1x, . . . , 2πckx] , (5)

where || denotes the concatenation of two vectors, c = [c1, c2, · · · , ck] are the learnable parameters
initialized from N (0, σ) and fx ∈ R2k×d. We study the influence of the hyperparameters k and σ in
the appendix. Since cos(a− b) = cos a cos b+ sin a sin b, we have,

fx · fx′ =

k∑
i=1

cos(2πci(x− x′)) := gc(x− x′), (6)

where · is the dot product and x′ is another molecular feature. Therefore, IFM can map data points
to a vector space so that their dot product achieves a certain distance metric, which is an expected
characteristic for feature mapping methods [52, 4, 23]. In what follows, we will provide theoretical
justifications on the effectiveness of our IFM following a previous study [62]. As revealed in previous
works, deep models can be approximated with Neural Tangent Kernel (NTK) [28, 2, 6, 36, 62].
Specifically, let I be a fully-connected deep network with weights θ initialized from a Gaussian
distribution N , the NTK theory shows that as the width of the layers in I becomes infinite and the
learning rate for stochastic gradient descent (SGD) approaches zero, the function I(x; θ) converges
during training to the kernel regression solution using the neural tangent kernel (NTK), which is:

hNTK(x, x
′) = Eθ∼N

〈
∂I(x; θ)

∂θ
,
∂I(x′; θ)

∂θ

〉
(7)

When the inputs are limited to a hypersphere, the NTK for an MLP can be expressed as a dot product
kernel (a kernel in the form hNTK(x · x′) for a scalar function hNTK : R → R). In our cases, the
input to the deep models would be fx, the composed kernel of IFM and NTK can be formulated as,

hNTK (fx · fx′) = hNTK (gc (x− x′)) = (hNTK ◦ gc)(x− x′), (8)

thus, training deep models on these mapped molecular features corresponds to kernel regression with
the stationary composed NTK function hNTK ◦ gc. Considering that the parameters c are tunable,
IFM creates a composed NTK that is not only stationary but also tunable. It enables us to dramatically
control the range of frequencies that can be learned via manipulating the parameters c.

6 Experiments
6.1 Experimental Settings
In our experiments, we equip various deep models with IFM. Specifically, for MLPs with fingerprints
as inputs, we employ the proposed feature mapping method to the fingerprints (after feature selection
and standardization) directly; For molecular graphs, we map both the features of atoms and bonds
before feeding them into the GNNs. The other settings are the same as the benchmarking experiments.
If a deep model named ‘z’ (e.g., MLP) is equipped with IFM, we re-name it as ‘IFM-z’ (e.g.,
IFM-MLP) in our results. Also, we evaluate the non-deep models equipped with IFM in the appendix.
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Table 3: The performance comparison on multiple molecular datasets. The best performance on
each dataset is highlighted with bold. The ‘P-Best (Model)’ denotes the best result in Table 1 and its
corresponding model name. The results of 12 tasks on QM 9 can be seen in the appendix.

Dataset (No.) Metric MLP GCN MPNN GAT AFP P-Best (Model) IFM-MLP IFM-GCN IFM-MPNN IFM-GAT IFM-AFP

BACE (1,513) AUC_ROC 0.887 0.880 0.846 0.886 0.879 0.896 (XGB) 0.915 0.903 0.866 0.894 0.907
HIV (4,0748) AUC_ROC 0.791 0.834 0.814 0.812 0.819 0.834 (GCN) 0.816 0.862 0.846 0.838 0.849
BBBP (2,035) AUC_ROC 0.918 0.915 0.872 0.902 0.893 0.926 (XGB) 0.937 0.945 0.908 0.933 0.940

ClinTox (1,475) AUC_ROC 0.890 0.889 0.868 0.891 0.907 0.963 (TRSF) 0.941 0.938 0.929 0.953 0.959
SIDER (1,366) AUC_ROC 0.617 0.633 0.603 0.614 0.620 0.644 (RF) 0.646 0.649 0.638 0.647 0.652
Tox21 (7,811) AUC_ROC 0.834 0.830 0.816 0.829 0.845 0.845 (AFP) 0.842 0.839 0.837 0.849 0.853

ToxCast (8,539) AUC_ROC 0.781 0.767 0.736 0.768 0.788 0.788 (AFP) 0.795 0.790 0.772 0.797 0.806
MUV (93,087) AUC_PRC 0.018 0.056 0.019 0.055 0.044 0.093 (SVM) 0.052 0.113 0.068 0.124 0.097

SARS-CoV-2 (14,332) AUC_ROC 0.638 0.646 0.640 0.683 0.651 0.700 (XGB) 0.675 0.682 0.686 0.716 0.704

ESOL (1,127) RMSE 0.653 0.773 0.695 0.661 0.594 0.583 (XGB) 0.587 0.728 0.673 0.566 0.561
Lipop (4,200) RMSE 0.633 0.665 0.669 0.680 0.664 0.585 (XGB) 0.556 0.577 0.568 0.584 0.578
FreeSolv (639) RMSE 1.046 1.316 1.327 1.304 1.139 0.715 (XGB) 0.862 0.916 0.911 0.908 0.883
QM7 (6,830) MAE 86.060 64.530 107.013 78.217 59.973 42.814 (SVM) 66.570 38.793 84.918 59.595 33.775

QM8 (21,786) MAE 0.0104 0.0154 0.0109 0.0187 0.0098 0.0098 (AFP) 0.0091 0.0114 0.0085 0.0139 0.0079

Table 4: The results on activity cliff datasets. The best result for each dataset is highlighted in ‘bold’.
Target name (Response type) Metric MLP GCN MPNN GAT AFP P-Best (Model) IFM-MLP IFM-GCN IFM-MPNN IFM-GAT IFM-AFP

CB1 (Agonism EC50) RMSEc 0.807 0.992 0.989 0.975 0.967 0.767 (XGB) 0.715 0.748 0.756 0.741 0.746
DAT (Inhibition Ki) RMSEc 0.792 1.003 0.921 1.042 0.995 0.696 (XGB) 0.646 0.682 0.673 0.665 0.670

PPARα (Agonism EC50) RMSEc 0.713 0.870 0.872 0.929 0.823 0.671 (SVM) 0.623 0.634 0.649 0.661 0.616
DOR (Inhibition Ki) RMSEc 0.874 1.259 1.152 1.281 1.179 0.836 (RF) 0.787 0.813 0.796 0.799 0.810

6.2 Results

Main results. We show the main results in Table 3, from which we can make the following
observations: (1) The proposed feature mapping method can significantly improve the performance
of the deep models on molecular datasets; (2) The deep models equipped with the feature mapping
method can beat non-deep counterparts in most cases, verifying the effectiveness of our method.

Results on activity cliffs. We also employ the proposed feature mapping method on activity cliff
datasets where the target functions are less smooth. The results shown in Table 4 indicate that IFM
improves the deep models by significant margins. Moreover, nearly all the deep models with IFM
method can beat traditional methods, confirming that our method can help neural networks learn
non-smooth target functions.

Table 5: Comparisons with SM (Sinusoidal Map-
ping [44]) and GM (Gaussian Mapping [62]).

Methods BACE HIV BBBP ESOL Lipop FreeSolv

MLP + SM 0.890 0.798 0.925 0.640 0.613 1.033
MLP + GM 0.896 0.806 0.923 0.625 0.591 0.992
IFM-MLP 0.915 0.816 0.937 0.587 0.556 0.862

GCN + SM 0.894 0.838 0.920 0.762 0.635 1.204
GCN + GM 0.892 0.847 0.926 0.766 0.609 1.193
IFM-GCN 0.903 0.862 0.945 0.728 0.577 0.916

Table 6: Pre-training on molecules with encoders equipped
with IFM. GIN: Graph Isomorphism Network [78].

Method (Encoder) Tox21 ToxCast Sider ClinTox BBBP Bace

AttrMasking [27] (GCN) 0.745 0.626 0.598 0.724 0.653 0.773
AttrMasking (IFM-GCN) 0.758 0.639 0.612 0.741 0.667 0.782

MGSSL [85] (GIN) 0.752 0.633 0.616 0.771 0.688 0.788
MGSSL (IFM-GIN) 0.764 0.639 0.623 0.783 0.704 0.796

Mole-BERT [26] (GIN) 0.768 0.643 0.628 0.789 0.719 0.808
Mole-BERT (IFM-GIN) 0.775 0.649 0.627 0.796 0.724 0.813

Comparisons with other feature mapping methods (ablation study). We compare the proposed
IFM with the previous feature mapping methods. The results shown in Table 5 indicate that the
proposed feature mapping method is superior to the previous method, which verifies that mixing
different dimensions of molecular features as GM [62] would degrade the performance.

Pre-training on molecules with IFM. Compared with non-deep models, deep ones can be com-
bined with the prevalent ‘Pretraining and Finetuning’ paradigm to exploit large-scale unlabeled
molecules [75]. This motivates us to develop more powerful neural encoders for this paradigm.
Specifically, we pre-train the deep models equipped with IFM and report the fine-tuning results in
Table 6. Our experimental settings are the same as the pioneering work [27] where the datasets are
split with scaffold splitting, differing from the random splitting in Table 3. As can be observed, our
method can boost various pre-training strategies to advance their performance in downstream tasks.
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7 Discussion and Conclusion

In this paper, we perform a comprehensive benchmark of representative models on molecular property
prediction. Our results reveal that traditional machine learning models, especially tree models, can
easily outperform well-designed deep models in most cases. These phenomena can be attributed to the
unique patterns of molecular data and different inductive biases of various models. Specifically, the
target function mapping molecules to properties are non-smooth, and some small changes can incur
significant property variance. Deep models struggle to learn such patterns. Additionally, molecular
features carry meanings individually and deep models would undesirably mix different dimensions of
molecular features. These findings stimulate us to develop a simple-yet-effective feature mapping
method for molecule data that can help deep models learn non-smooth target functions with theoretical
guarantees. Extensive experiments verify the effectiveness of the proposed method. Our study leaves
an open question for future research: Can our findings and methods be generalized to other AIDD
tasks including drug-target interactions (DTIs) prediction, drug-drug interactions (DDIs) prediction?
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Jastrzębski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.

[43] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC
press, 1999.

[44] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[45] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview
from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

[46] Wim De Mulder, Steven Bethard, and Marie-Francine Moens. A survey on the application of
recurrent neural networks to statistical language modeling. Comput. Speech Lang., 30:61–98,
2015.

[47] Christopher W Murray and David C Rees. The rise of fragment-based drug discovery. Nature
chemistry, 1(3):187–192, 2009.

12



[48] Cuong Q Nguyen, Constantine Kreatsoulas, and Kim M Branson. Meta-learning gnn ini-
tializations for low-resource molecular property prediction. arXiv preprint arXiv:2003.05996,
2020.

[49] Aneesh Pappu and Brooks Paige. Making graph neural networks worth it for low-data molecular
machine learning. arXiv preprint arXiv:2011.12203, 2020.

[50] Lagnajit Pattanaik and Connor W Coley. Molecular representation: going long on fingerprints.
Chem, 6(6):1204–1207, 2020.

[51] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[52] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS,
2007.

[53] David Rogers and Mathew. Hahn. Extended-connectivity fingerprints. J chem inf, 2010.

[54] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. Advances in Neural
Information Processing Systems, 33:12559–12571, 2020.

[55] Jerret Ross, Brian Belgodere, et al. Molformer: Large Scale Chemical Language Representations
Capture Molecular Structure and Properties. Nat. Mach. Intell., 2022.

[56] Victor Garcia Satorras, Emiel Hoogeboom, et al. E(n) Equivariant Graph Neural Networks. In
ICML, 2021.

[57] T. K. Schuett, Kindermans, and others. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. NIPS, 2017.

[58] Ying Song, Shuangjia Zheng, Zhangming Niu, Zhang-Hua Fu, Yutong Lu, and Yuedong Yang.
Communicative representation learning on attributed molecular graphs. In IJCAI, volume 2020,
pages 2831–2838, 2020.

[59] Megan Stanley, John F Bronskill, Krzysztof Maziarz, Hubert Misztela, Jessica Lanini, Marwin
Segler, Nadine Schneider, and Marc Brockschmidt. FS-mol: A few-shot learning dataset of
molecules. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

[60] Dagmar Stumpfe and Jurgen Bajorath. Exploring activity cliffs in medicinal chemistry: miniper-
spective. Journal of medicinal chemistry, 55(7):2932–2942, 2012.

[61] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson, Robert P Sheridan,
and Bradley P Feuston. Random forest: a classification and regression tool for compound
classification and qsar modeling. Journal of chemical information and computer sciences,
43(6):1947–1958, 2003.

[62] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. ArXiv, abs/2006.10739,
2020.

[63] Hao Tian, Rajas Ketkar, and Peng Tao. Admetboost: a web server for accurate admet prediction.
Journal of Molecular Modeling, 28(12):1–6, 2022.

[64] Roberto Todeschini and Viviana Consonni. Molecular descriptors. Recent Advances in QSAR
Studies, pages 29–102, 2010.

[65] Cecile Valsecchi, Magda Collarile, Francesca Grisoni, Roberto Todeschini, Davide Ballabio,
and Viviana Consonni. Predicting molecular activity on nuclear receptors by multitask neural
networks. Journal of Chemometrics, 36(2):e3325, 2022.

13



[66] Derek van Tilborg, Alisa Alenicheva, and Francesca Grisoni. Exposing the limitations of
molecular machine learning with activity cliffs. Journal of Chemical Information and Modeling,
62(23):5938–5951, 2022.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[68] Petar Velickovic, Guillem Cucurull, et al. Graph Attention Networks. In ICLR, 2018.

[69] Sheng Wang, Yuzhi Guo, and others. Smiles-bert - large scale unsupervised pre-training for
molecular property prediction. BCB, 2019.

[70] Yanli Wang, Stephen H. Bryant, et al. Pubchem Bioassay: 2017 Update. Nucleic Acids Res.,
2017.

[71] David Weininger, Arthur Weininger, and others. Smiles. 2. algorithm for generation of unique
smiles notation. J CHEM INF MODEL, 1989.

[72] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[73] Jun Xia, Lirong Wu, , Jintao Chen, Bozhen Hu, and Stan Z. Li. SimGRACE: A Simple
Framework for Graph Contrastive Learning without Data Augmentation. In Proceedings of The
Web Conference 2022. Association for Computing Machinery, 2022.

[74] Jun Xia, Chengshuai Zhao, et al. Mole-BERT: Rethinking Pre-training Graph Neural Networks
for Molecules. In ICLR, 2023.

[75] Jun Xia, Yanqiao Zhu, Yuanqi Du, Yue Liu, and Stan Z Li. A systematic survey of chemical
pre-trained models. IJCAI, 2023.

[76] Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li,
Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of
molecular representation for drug discovery with the graph attention mechanism. Journal of
medicinal chemistry, 63(16):8749–8760, 2019.

[77] Zhaoping Xiong, Dingyan Wang, and others. Pushing the boundaries of molecular representation
for drug discovery with graph attention mechanism. J Med Chem, 2020.

[78] Keyulu Xu, Weihua Hu, et al. How Powerful are Graph Neural Networks? In ICLR, 2019.

[79] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molec-
ular representations for property prediction. Journal of chemical information and modeling,
59(8):3370–3388, 2019.

[80] Chun Wei Yap. Padel-descriptor: An open source software to calculate molecular descriptors
and fingerprints. Journal of computational chemistry, 32(7):1466–1474, 2011.

[81] Chengxuan Ying, Tianle Cai, et al. Do Transformers Really Perform Badly for Graph Represen-
tation? In NeurIPS, 2021.

[82] Atakan Yüksel, Erva Ulusoy, Atabey Ünlü, Gamze Deniz, and Tunca Doğan. Selformer: Molec-
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A Datasets

Table 7: Summary for the molecule datasets in the benchmark.
Dataset Task # Tasks # Molecules

BBBP Classification 1 2,039
Tox21 Classification 12 7,831
ToxCast Classification 617 8,576
Sider Classification 27 1,427
ClinTox Classification 2 1,478
MUV Classification 17 93,087
HIV Classification 1 41,127
Bace Classification 1 1,513
SARS-CoV-2 Classification 13 14,332

Lipop Regression 1 4,200
FreeSolv Regression 1 642
ESOL Regression 1 1,1128
QM7 Regression 1 7,160
QM8 Regression 16 21,786
QM9 Regression 12 133,885

In this section, we provide detailed information on the molecular datasets used for downstream tasks.
Molecular Property: Pharmacology The Blood-Brain Barrier Penetration (BBBP) dataset mea-
sures whether a molecule will penetrate the central nervous system. All three datasets, Tox21 [1],
ToxCast [72], and ClinTox [19] are related to the toxicity of molecular compounds. The Side Effect
Resource (SIDER) dataset stores the adverse drug reactions on a marketed drug database.
Molecular Property: Physical Chemistry Dataset proposed in [12] measures aqueous solubility
of the molecular compounds. Lipophilicity (Lipo) dataset is a subset of ChEMBL [18] measuring the
molecule octanol/water distribution coefficient. CEP dataset is a subset of the Havard Clean Energy
Project (CEP), which estimates the organic photovoltaic efficiency.
Molecular Property: Biophysics Maximum Unbiased Validation (MUV) is another sub-database
from PCBA, and is obtained by applying a refined nearest neighbor analysis. HIV is from the Drug
Therapeutics Program (DTP) AIDS Antiviral Screen, and it aims at predicting inhibit HIV replication.
BACE measures the binding results for a set of inhibitors of β-secretase 1 (BACE-1) and is gathered
in MoleculeNet [72].
Molecular Property: Quantum Mechanics QM7, QM8 and QM9 contain stable organic
molecules with up to 7, 8 or 9 heavy atoms. 3D atomic coordinates as well as electrical prop-
erties of molecules were calculated with ab initio Density Functional Theory (DFT).
Molecular Property: COVID-19 SARS-CoV-2 [7] is a collection of datasets3 generated by
screening a panel of SARS-CoV-2-related assays against approved drugs. 13 assays of 14,332 drugs
were used in our experiments.
Statistics of the datasets are in Table 7.

3The datasets are available at https://opendata.ncats.nih.gov/covid19/ (CC BY 4.0 license) and are continu-
ously extended. The data used in our experiments were downloaded on February 16th, 2021.
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B Results on QM9 dataset with 12 tasks

We show the results of each task of QM9 dataset in Table 1. As can be observed, the proposed IFM
module can consistently improve the performance of base models and can even outperform the SPN
with 3D geometry information as inputs in most tasks.

Table 8: Comparison of MAE on QM9. The best result is highlighted with ‘bold’.
Target
Unit

ϵHOMO

eV

ϵLUMO

eV
∆ϵ

eV

µ

D

α

bohr 3

R2

a2
0

ZPVE
meV

U0

meV

U

meV

H

meV

G

meV

cv
cal/molK

SVM 0.016 0.038 0.040 1.19 6.35 - 0.026 - - - - 3.22
XGB 0.016 0.039 0.040 1.19 6.36 - 0.026 - - - - 3.22
RF 0.016 0.038 0.039 1.19 6.34 - 0.020 - - - - 3.22

CNN 0.018 0.019 0.032 1.11 1.55 99.27 0.073 3.52 4.09 3.81 4.03 1.08
RNN 0.014 0.028 0.028 0.91 3.53 91.03 0.015 14.83 14.93 15.66 14.84 1.47
TRSF 0.011 0.015 0.017 0.83 1.46 96.67 0.057 1.97 2.95 1.90 1.73 0.92
GCN 0.030 0.015 0.019 0.69 0.77 27.49 0.014 0.55 0.56 0.55 0.55 0.34

MPNN 0.100 0.440 0.410 0.95 1.47 38.96 0.410 2.15 2.19 2.16 2.18 0.93
GAT 0.060 0.012 0.016 0.69 0.85 24.85 0.057 0.79 0.81 0.80 0.80 0.43
AFP 0.089 0.029 0.073 0.90 0.74 27.35 0.110 1.20 1.18 1.19 1.19 0.51
SPN 0.024 0.019 0.032 0.31 0.47 29.26 0.011 0.63 0.73 0.64 0.82 0.20

IFM-MLP 0.013 0.022 0.032 0.87 1.04 125.47 0.015 16.19 16.23 16.20 16.22 0.97
IFM-GCN 0.019 0.011 0.014 0.63 0.53 15.18 0.012 0.46 0.43 0.47 0.44 0.25

IFM-MPNN 0.076 0.371 0.358 0.77 0.94 19.82 0.252 1.88 1.86 1.86 1.87 0.75
IFM-GAT 0.032 0.009 0.010 0.53 0.69 20.15 0.038 0.62 0.63 0.62 0.61 0.29
IFM-AFP 0.009 0.017 0.575 0.74 0.48 14.69 0.096 0.86 0.88 0.87 0.86 0.33

C The influence of the hyperparameters k and σ in IFM

Table 9: The influence of the hyper-parameter k (with σ = 6).
Models / k 4 8 16 32 64

Toxcast (IFM-MLP) 0.782 0.795 0.797 0.789 0.792
Toxcast (IFM-GCN) 0.771 0.780 0.783 0.785 0.774

Sider (IFM-MLP) 0.625 0.631 0.626 0.635 0.636
Sider (IFM-GCN) 0.635 0.638 0.639 0.633 0.632

Table 10: The influence of the hyper-parameter σ (with k = 8).
Models / σ 1 3 6 9 12 15

Toxcast (IFM-MLP) 0.767 0.782 0.795 0.791 0.785 0.772
Toxcast (IFM-GCN) 0.763 0.775 0.780 0.790 0.788 0.776

Sider (IFM-MLP) 0.611 0.626 0.631 0.646 0.639 0.613
Sider (IFM-GCN) 0.620 0.633 0.638 0.649 0.643 0.627

k and σ are hyper-parameters in IFM and they are tuned for the optimal performance using the
validation set. We show their tunning space and corresponding results in Table 9 and Table 10,
respectively. As can be observed, the hyper-parameter k barely impacts the performance of IFM.
Larger k would undesirably incur more computational overhead. In contrast, smaller or larger σ
would degrade the performance of IFM dramatically. In other words, the hyper-parameter σ is more
important and we are encouraged to set larger tuning space for σ to pick the optimal value for each
dataset using the validation set.
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D Performance of Non-deep models (SVM, RF, and XGB) equipped with IFM

In Table 11, we also show the results of non-deep models (SVM, RF, and XGB) equipped with IFM.
As can be observed, IFM barely impacts the performance of non-deep models.

Table 11: Performance of Non-deep models (SVM, RF, and XGB) equipped with IFM
Models Tox21 ToxCast Sider ClinTox BBBP Bace

SVM 0.820 0.725 0.626 0.879 0.913 0.886
IFM-SVM 0.822 0.724 0.629 0.883 0.907 0.883

RF 0.838 0.778 0.644 0.933 0.923 0.890
IFM-RF 0.843 0.785 0.643 0.935 0.929 0.883

XGB 0.837 0.785 0.638 0.919 0.926 0.896
IFM-XGB 0.833 0.780 0.636 0.911 0.933 0.894

E The performance of CNN, RNN, and TRSF on smoothed molecular
datasets

Due to the limited space in the main text, we report the results of CNN, RNN, and TRSF on smoothed
molecular datasets in Table 12 here.

Table 12: The performance of CNN, RNN, and TRSF on smoothed molecular datasets.
ESOL Lipop FreeSolv

Smoothing level 0-smooth 10-smooth 20-smooth 0-smooth 10-smooth 20-smooth 0-smooth 10-smooth 20-smooth
CNN 2.569 1.937 1.334 1.016 0.524 0.409 2.275 1.592 0.986
RNN 1.511 1.074 0.862 1.207 0.770 0.687 2.205 1.570 1.028
TRSF 0.718 0.667 0.564 0.947 0.549 0.435 1.504 1.175 0.954

F Standard deviations of the benchmarking results and main results

For the limited space in the main text, we report the standard deviations of the benchmarking results
and main results here in Table 13 and Table 14, respectively.

G Discussions on the previous feature mapping methods

Gaussian Feature Mapping [62] (GM): Given the molecular feature as x ∈ Rd, fx =
[cos(2πBx), sin(2πBx)]T, where each entry in B ∈ Rm×d is sampled from N

(
0, σ2

)
. In our

experiments, we use an isotropic Gaussian distribution.

Sinusoidal Feature Mapping (SM): The general form of Sinusoidal Feature Mapping in previous
works [44, 87] can be formulated as fx =

[
. . . , cos

(
2πσj/mx

)
, sin

(
2πσj/mx

)
, . . .

]T
for j =

0, · · · ,m− 1.

The superiority of IFM over SM and GM: The matrix-vector product in GM would undesirably mix
different dimensions of molecular features, our IFM avoids this issue. Moreover, the parameters c in
IFM is learnable while the parameters B are sampled from a fixed Gaussian distribution. Additionally,
the feature mapping in SM is deterministic and only contains on-axis frequencies, making it naturally
biased towards data that has more frequency content along the axes. In contrast, our IFM allows all
directions to share the same frequency content.
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Table 13: The standard deviations of main results.
Dataset (No.) Metric IFM-MLP IFM-GCN IFM-MPNN IFM-GAT IFM-AFP

BACE (1,513) AUC_ROC 0.024 0.028 0.022 0.023 0.025
HIV (40,748) AUC_ROC 0.022 0.027 0.029 0.033 0.032
BBBP (2,035) AUC_ROC 0.026 0.029 0.022 0.032 0.035

ClinTox (1,475) AUC_ROC 0.049 0.042 0.040 0.047 0.046
SIDER (1,366) AUC_ROC 0.025 0.027 0.028 0.025 0.029
Tox21 (7,811) AUC_ROC 0.017 0.014 0.015 0.012 0.011

ToxCast (8,539) AUC_ROC 0.017 0.016 0.020 0.019 0.017
MUV (93,087) AUC_PRC 0.028 0.032 0.018 0.019 0.023

SARS-CoV-2 (14,332) AUC_ROC 0.027 0.025 0.020 0.018 0.023

ESOL (1,127) RMSE 0.082 0.063 0.088 0.065 0.063
Lipop (4,200) RMSE 0.036 0.073 0.051 0.038 0.046
FreeSolv (639) RMSE 0.207 0.247 0.258 0.261 0.259
QM7 (6,830) MAE 0.025 0.028 0.022 0.013 0.024

QM8 (21,786) MAE 0.0002 0.0003 0.0012 0.0003 0.0003

Table 14: The standard deviations of benchmarking results.
Dataset (No.) Metric SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP SPN

BACE (1,513) AUC_ROC 0.018 0.020 0.023 0.030 0.009 0.007 0.025 0.021 0.020 0.026 0.022 0.021
HIV (40,748) AUC_ROC 0.019 0.020 0.017 0.009 0.029 0.011 0.019 0.024 0.029 0.033 0.028 0.030
BBBP (2,035) AUC_ROC 0.029 0.025 0.027 0.026 0.019 0.014 0.028 0.026 0.032 0.034 0.030 0.033

ClinTox (1,475) AUC_ROC 0.041 0.042 0.039 0.008 0.098 0.007 0.048 0.045 0.043 0.053 0.042 0.046
SIDER (1,366) AUC_ROC 0.020 0.019 0.017 0.012 0.015 0.009 0.026 0.027 0.024 0.029 0.025 0.024
Tox21 (7,811) AUC_ROC 0.008 0.011 0.013 0.004 0.007 0.004 0.015 0.018 0.014 0.013 0.012 0.014

ToxCast (8,539) AUC_ROC 0.007 0.005 0.007 0.006 0.010 0.005 0.018 0.017 0.020 0.021 0.018 0.019
MUV (93,087) AUC_PRC 0.039 0.026 0.030 0.014 0.017 0.060 0.027 0.035 0.030 0.015 0.022 0.026

SARS-CoV-2 (14,332) AUC_ROC 0.110 0.010 0.013 0.007 0.023 0.015 0.028 0.028 0.019 0.007 0.025 0.017

ESOL (1,127) RMSE 0.049 0.051 0.073 0.107 0.043 0.048 0.089 0.057 0.092 0.068 0.067 0.073
Lipop (4,200) RMSE 0.037 0.032 0.029 0.016 0.009 0.020 0.033 0.080 0.053 0.041 0.039 0.035
FreeSolv (639) RMSE 0.165 0.180 0.236 0.117 0.114 0.098 0.212 0.255 0.263 0.269 0.271 0.259
QM7 (6,830) MAE 0.110 0.010 0.013 0.023 0.033 0.035 0.028 0.028 0.019 0.007 0.025 0.027

QM8 (21,786) MAE 0.0001 0.0002 0.0002 0.0004 0.0001 0.0004 0.0002 0.0005 0.0014 0.0004 0.0002 0.0003

H Hardware

For all our benchmarks and experiments, we use the GPUs including NVIDIA V100, and NVIDIA
A100 GPUs based on availability.

I Hyper-parameters tuning space

For SVM, we adopt the widely-used radial basis function (RBF) as the kernel and we optimize the
hyper-parameters within the following ranges: C (0.1 to 100) and gamma values (0 to 0.2).

For XGB, we penalize the complexity of the traditional gradient boosting model and perform shrink-
age and column subsampling to prevent over-fitting. Also, we employ sparsity-aware split finding
technique for efficient training on sparse data, etc. In the experiments, we tune the hyper-parameters
within the following ranges: learning_rate (0.01 to 0.2), gamma (0 to 0.2), min_child_weight (1 to 6),
subsample (0.7 to 1.0), colsample_bytree (0.7 to 1.0), max_depth (3 to 10) and n_estimators (50, 100,
200, 300, 400, 500, 1000).

For RF, in the implementation of RF algorithm, sample perturbation via bootstrap sampling of the
training data and feature perturbation via random feature subset selection are introduced to improve
the diversity of base learners (decision trees), which corrects for the overftting habit of decision trees
and subsequently enhances the generalization ability of RF. In the experiments, we optimize the
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hyper-parameters within the following ranges: n_estimators (50, 100, 200, 300, 400, 500, 1000),
max_depth (3 to 12), min_samples_leaf (1,3,5,10,20,50), min_impurity_decrease (0 to 0.01) and
max_features (‘sqrt’, ‘log2’, 0.7, 0.8, 0.9).

For 1D CNN, we optimize the hyper-parameters within the following ranges: learning rate (5× 10−4,
5× 10−5, 5× 10−6), the convolution kernel size (4, 8, 10), and the number of the hidden features in
the fully connected layer (128, 256, 512, 1024).

For RNN, we optimize the hyper-parameters within the following ranges: the hidden dimensions
of each layer ([64, 128, 256, 512]), L2 regularization (0 to 0.01), dropout rate (0 to 0.5). The other
hyperparameters are the same as the previous work [25].

For TRSF, we optimize the hyper-parameters within the following ranges: the hidden dimensions
of each layer ([64, 128, 256, 512]), L2 regularization (0 to 0.01), dropout rate (0 to 0.5). The other
hyperparameters are the same as the previous work [25].

For MLP, we optimize the hyper-parameters within the following ranges: L2 regularization (0 to
0.01), dropout rate (0.0 to 0.5), and neurons for each hidden layer (64, 128, 256, 512). The other
important hyper-parameters were fixed: ReLU function that has been recommended by many previous
studies was used as the activation function, and the optimizer was set to an adaptive learning rate
algorithm: Adadelta [83].

For MPNN, we optimize the hyper-parameters within the following ranges: L2 regularization (0,
10×10−8, 10×10−6, 10×10−4), learning rate (10×10−2.5, 10×10−3.5, 10×10−1.5), dimension
of node feature in hidden layers (64, 32, 16), dimension of edge feature in hidden layers (64, 32, 16),
and the number of set2set layers (2,3,4). The number of message passing steps and set2set steps were
fixed to 6.

For GCN, we optimize the hyper-parameters within the following ranges: L2 regularization (0,
10×10−8, 10×10−6, 10×10−4), learning rate (10×10−2.5, 10×10−3.5, 10×10−1.5), dimension
of the FNN classifier (64, 128, 256), and the dimension of GCN hidden layers ([128, 128], [256, 256],
[128, 64], [256, 128]).

For GAT, we optimize the hyper-parameters within the following ranges: L2 regularization (0,
10×10−8, 10×10−6, 10×10−4), learning rate (10×10−2.5, 10×10−3.5, 10×10−1.5), dimension
of GAT hidden layers ([128, 128], [256, 256], [128, 64], [256, 128]), dimension of FNN classifier
(64, 128, 256), and the number of attention heads ([2,2], [3,3], [4,4], [3,4], [2,3]).

For AFP, we optimize the hyper-parameters within the following ranges: L2 regularization (0,
10×10−8, 10×10−6, 10×10−4), learning rate (10×10−2.5, 10×10−3.5, 10×10−1.5), the number
of attentive layers for atom embedding (2,3,4,5,6), the number of attentive layers for molecule
embedding (1,2,3,4,5), dropout rate (0, 0.1, 0.3, 0.5), and fingerprint dimension (50, 100, 200, 300).

For SPN, we optimize the hyper-parameters within the following ranges: the distance LB2 intermedi-
ate size (4, 8, 16), the angle LB2 intermediate size (4, 8, 16), the torsion LB2 intermediate size (4, 8,
16), the number of interaction blocks (3, 4, 5), the number of spherical harmonics (3, 5, 7), the cutoff
distance (4, 5, 6), the batch size (32, 64), the initial learning rate (1× 10−4, 5× 10−4, 1× 10−3), the
learning rate step size (50, 100, 150), the learning rate decay ratio (0.4, 0.5, 0.6). The other settings
are the same as the original paper [38].
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