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Abstract

Mixup is an efficient data augmentation approach that improves the generalization
of neural networks by smoothing the decision boundary with mixed data. Re-
cently, dynamic mixup methods have improved previous static policies effectively
(e.g., linear interpolation) by maximizing target-related salient regions in mixed
samples, but excessive additional time costs are not acceptable. These additional
computational overheads mainly come from optimizing the mixed samples ac-
cording to the mixed labels. However, we found that the extra optimizing step
may be redundant because label-mismatched mixed samples are informative hard
mixed samples for deep models to localize discriminative features. In this paper,
we thus are not trying to propose a more complicated dynamic mixup policy but
rather an efficient mixup objective function with a decoupled regularizer named
Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those
hard mixed samples to mine discriminative features without losing the original
smoothness of mixup. As a result, DM enables static mixup methods to achieve
comparable or even exceed the performance of dynamic methods without any
extra computation. This also leads to an interesting objective design problem for
mixup training that we need to focus on both smoothing the decision boundaries
and identifying discriminative features. Extensive experiments on supervised and
semi-supervised learning benchmarks across seven datasets validate the effective-
ness of DM as a plug-and-play module. Source code and models are available at
https://github.com/Westlake-AI/openmixup.

1 Introduction
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Figure 1: visualization of hard mixed sample
mining by class activation mapping (CAM) [49]
of ResNet-50 on ImageNet. From left to right,
CAM of top-2 predicted classes using mixup cross-
entropy (MCE) and decoupled mixup (DM) loss.

Deep Learning has become the bedrock of mod-
ern AI for many tasks in machine learning [3]
such as computer vision [19, 18], natural lan-
guage processing [12]. Using a large number
of learnable parameters, deep neural networks
(DNNs) can recognize subtle dependencies in
large training datasets to be later leveraged to
perform accurate predictions on unseen data.
However, models might overfit the training set
without constraints or enough data [53]. To this
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Figure 2: Illustration of the two types of hard mixed samples in CutMix with ‘Squirrel’ and ’Panda’
as an example. Hard mixed samples indicate that the mixed sample contains salient features of a
class, but the value of the corresponding label is small. MCE loss fails to leverage these samples.

end, regularization techniques have been deployed to improve generalization [61], which can be
categorized into data-independent or data-dependent ones [16]. Some data-independent strategies, for
example, constrain the model by punishing the parameters’ norms, such as weight decay [40]. Among
data-dependent strategies, data augmentations [51] are widely used. The augmentation policies often
rely on particular domain knowledge [58] in different fields.

Mixup [77], a data-dependent augmentation technique, is proposed to generate virtual samples by
a linear combination of data pairs and the corresponding labels with the mixing ratio λ ∈ [0, 1].
Recently, a line of optimizable mixup methods are proposed to improve mixing policies to generate
object-aware virtual samples by optimizing discriminative regions in the data space to match the
corresponding labels [56, 23, 22] (referred to as dynamic methods). However, although the dynamic
approach brings some performance gain, the extra computational overhead degrades the efficiency of
mixup augmentation significantly. Specifically, the most computation of dynamic methods is spent
on optimizing label-mismatched samples, but the question of why these label-mismatched samples
should be avoided during the mixup training has rarely been analyzed. In this paper, we find these
mismatched samples are completely underutilized by static mixup methods, and the problem lies
in the loss function, mixed cross-entropy loss (MCE). Therefore, we argue that these mismatched
samples are not only not static mixup disadvantages but also hard mixed samples full of discriminative
information. Taking CutMix [74] as an example, two types of hard mixed samples are shown on the
right of Figure 2. Since MCE loss forces the model’s predictions to be consistent with the soft label
distribution, i.e., the model cannot give high-confidence predictions for the relevant classes even if the
feature is salient in hard mixed samples, we can say that these hard samples are not fully leveraged.

From this perspective, we expect the model to be able to mine these hard samples, i.e., to give
confident predictions according to salient features for localizing discriminative characteristics, even
if the proportion of features is small. Motivated by this finding, we introduce simple yet effective
Decoupled Mixup (DM) loss, a mixup objective function for explicitly leveraging the hard samples
during the mixup training. Based on the standard mixed cross-entropy (MCE) loss, an extra decoupled
regularizer term is introduced to enhance the ability to mine underlying discriminative statistics in the
mixed sample by independently computing the predicted probabilities of each mixed class. Figure 1
shows the proposed DM loss can empower the static mixup methods to explore more discriminative
features. Extensive experiments demonstrate that DM achieves data-efficiency training on supervised
and semi-supervised learning benchmarks. Our contributions are summarized below:

• Unlike those dynamic mixup policies that design complicated mixing policies, we propose
DM, a mixup objective function of mining discriminative features adaptively.

• Our work contributes more broadly to understanding mixup training: it is essential to focus
not only on the smoothness by regression of the mixed labels but also on discrimination by
encouraging the model to give reliable and confident predictions.

• Not only in supervised learning but the proposed DM can also be easily generalized to
semi-supervised learning with a minor modification. By leveraging the unlabeled data, it
can reduce the conformation bias and significantly improve performance.

• Comprehensive experiments on various tasks verify the effectiveness of DM, e.g., DM-
based static mixup policies achieve a comparable or even better performance than dynamic
methods without the extra computation.
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2 Related Work

Mixup Augmentation. As data-dependent augmentation techniques, mixup methods generate
new samples by mixing samples and corresponding labels with well-designed mixing policies
[77, 57, 69, 64]. The pioneering mixing method is Mixup [77], whose mixed samples are generated
by linear interpolation between pairs of samples. ManifoldMix variants [57, 14] extend Mixup to
the latent space of DNNs. After that, cut-based methods [74] are proposed to improve the mixup
for localizing important features, especially in the vision field. Many researchers explore using
nonlinear or optimizable sample mixup policies to generate more reliable mixed samples according
to mixed labels, such as PuzzleMix variants [23, 22, 45], SaliencyMix variants [56, 60], AutoMix
variants [38, 31], and SuperMix [11]. Concurrently, recent works try to generate more accurate mixed
labels with saliency information [20] or attention maps [5, 9, 7] for Transformer architectures, which
require prior pre-trained knowledge or attention information. On the contrary, the proposed decoupled
mixup is a pluggable learning objective for mixup augmentations. Moreover, mixup methods extend
to more than two elements [22, 11] and regression tasks [70]. Some researchers also utilize mixup
augmentations to enhance contrastive learning [8, 21, 28, 50, 31] or masked image modeling [33, 6]
to learn general representation in a self-supervised manner.

Semi-supervised Learning and Transfer Learning. Pseudo-Labeling [27] is a popular semi-
supervised learning (SSL) method that utilizes artificial labels converted from teacher model predic-
tions. MixMatch [2] and ReMixMatch [1] apply mixup on labeled and unlabeled data to enhance
the diversity of the dataset. More accurate pseudo-labeling relies on data augmentation techniques
to introduce consistency regularization, e.g., UDA [65] and FixMatch [52] employ weak and strong
augmentations to improve the consistency. Furthermore, CoMatch [29] unifies consistency regular-
ization, entropy minimization, and graph-based contrastive learning to mitigate confirmation bias.
Recently proposed works [62, 4] that improve FixMatch by designing more accurate confidence-based
pseudo-label selection strategies, e.g., FlexMatch [76] applying curriculum learning for updating
confidence threshold dynamically and class-wisely. More recently, SemiReward [30] proposes a
reward model to filter out accurate pseudo labels with reward scores. Fine-tuning a pre-trained model
on labeled datasets is a widely adopted form of transfer learning (TL) in various applications. Previ-
ously, [13, 44] show that transferring pre-trained AlexNet features to downstream tasks outperforms
hand-crafted features. Recent works mainly focus on better exploiting the discriminative knowledge
of pre-trained models from different perspectives. L2-SP [35] promotes the similarity of the final so-
lution with pre-trained weights by a simple L2 penalty. DELTA [34] constrains the model by a subset
of pre-trained feature maps selected by channel-wise attention. BSS [68] avoids negative transfer by
penalizing smaller singular values. More recently, Self-Tuning variants [67, 54] combined contrastive
learning with TL to tackle confirmation bias and model shift issues in a one-stage framework.

3 Decoupled Mixup

3.1 Preliminary

Mixed Cross-Entropy Underutilizes Mixup Let us define y ∈ RC as the ground-truth label with C
categories. For labeled data point x ∈ RW×H×C whose embedded representation z is obtained from
the model M and the predicted probability p can be calculated through a Softmax function p = σ(z).
Given the mixing ratio λ ∈ [0, 1] and λ-related mixup mask H ∈ RW×H, the mixed sample
(x(a,b), y(a,b)) can be generated as x(a,b) = H ⊙ xa + (1−H)⊙ xb, and y(a,b) = λya + (1− λ)yb,
where ⊙ denotes element-wise product, (xa, ya) and (xb, yb) are sampled from a labeled dataset
L = {(xa, ya)}nL

a=1. Note that superscripts denote the index; subscripts indicate the type of data,
e.g., x(a,b) represents a mixed sample generated from xa and xb; yi indicates the label value on i-th
position. Since the mixup labels are obtained by somehow λ-based interpolation, the standard CE loss
weighted by λ, LCE = yT(a,b) log σ(z(a,b)), is typically used as the objective in the mixup training:

LMCE = −
C∑
i=1

(
λI(yia = 1) log pi(a,b) + (1− λ)I(yib = 1) log pi(a,b)

)
. (1)

where I(·) ∈ {0, 1} is an indicator function that values one if and only if the input condition
holds. Noticeably, these two items of Equation 1 are classifying ya and yb while keeping the linear
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consistency with mixing coefficient λ. As a result, DNNs with this mixup consistency prefer relatively
less confident results in high-entropy behaviour [46] and longer training time in practice. The main
reason is that in addition to λ constraint, the competing relationships defined by Softmax in
LMCE are the main cause of the confidence drop, which is more obvious when dealing with
hard mixed samples. Precisely, the competition between the mixed class a and b in Equation 1 can
severely affect the prediction of a single class; that is, interference from other classes prevents the
model from focusing its attention. This typically causes the model to be insensitive to the salient
features of the target and thus undermines model performance, as shown in Figure 1. Although the
dynamic mixup alleviates this problem, the extra time overhead is unavoidable if only focusing on
mixing policies on the data level. Therefore, the key challenge is to design an ideal objective function
for mixup training that maintains the smoothness of the mixup and can simultaneously explore the
discriminative features without any computation costs.

3.2 Decoupled Regularizer

To achieve the above goal, we first dive into the LMCE and propose the efficient decoupled mixup.
Proposition 1. Assuming x(a,b) is generated from two different classes, minimizing LMCE is equiva-
lent to regress corresponding λ in the gradient:

(∇z(a,b)
LMCE)

i =


−λ+

exp(zi
(a,b))∑

c exp(zc
(a,b)

) , i = a

−(1− λ) +
exp(zi

(a,b))∑
c exp(zc

(a,b)
) , i = b

exp(zi
(a,b))∑

c exp(zc
(a,b)

) , i ̸= a, b

(2)

Softmax Degrades Confidence. As we can see from Proposition 1, the predicted probability of
x(a,b) will be consistent with λ, and the probability is computed from the Softmax directly. The
Softmax forces the sum of predictions to one (winner takes all), which is undesirable in mixup
classification, especially when there are multiple and non-salient targets in mixed samples, e.g.,
hard mixed samples, as shown in Figure 2. The standard Softmax in LMCE deliberately suppresses
confidence and produces high-entropy predictions by coupling all classes. As a consequence, LMCE

makes many static mixup methods require longer epochs than vanilla training to achieve the desired
results [57, 73]. Based on previous analysis, a novel mixup objective, decoupled mixup (DM), is
raised to remove the Coupler and thus utilize the hard mixed samples adaptively, finally improving the
performance of mixup methods. Specifically, for mixed data points z(a,b) generated from a random
pair in labelled dataset L, an encoded mixed representation z(a,b) = fθ(x(a,b)) is generated by a
feature extractor fθ. A mixed categorical probability of i-th class is attained:

σ(z(a,b))
i =

exp(zi(a,b))∑
c exp(z

c
(a,b))

. (3)

Decoupled Softmax. where σ(·) is standard Softmax. Equation 3 shows how the mixed probabil-
ities are computed for a mixed sample. The competition between a and b is the main reason that
results in low confidence of the model, i.e., the sum of semantic information of hard mixed samples
are larger than ”1” defined by Softmax. Therefore, we propose to simply remove the competitor class
in Equation 3 to achieve decoupled Softmax. The score on i-th class is not affected by the j-th class:

ϕ(z(a,b))
i,j =

exp(zi(a,b))
XXXXXexp(zj(a,b)) +

∑
c̸=j exp(z

c
(a,b))

. (4)

where ϕ(·) is the proposed decoupled Softmax. In Equation 4, by removing the competitor, compared
with Equation 1, the decoupled Softmax makes all items associated with λ become -1 in gradient, the
derivation is given in the A.1. Our Proposition 2 verifies that the expected results are achieved with
decoupled Softmax.
Proposition 2. With the decoupled Softmax defined above, decoupled mixup cross-entropy LDM can
boost the prediction confidence of the interested classes mutually and escape from the λ-constraint:

LDM = −
c∑

i=1

c∑
j=1

yiay
j
b

(
log
( pi(a,b)

1− pj(a,b)

)
+ log

( pj(a,b)

1− pi(a,b)

))
. (5)
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Figure 3: Results illustration of applying decouple mixup. Left: taking MixUp as an example, our
proposed decoupled mixup cross-entropy, DM(CE), significantly improves training efficiency by
exploring hard mixed sample; Middle: Acc vs. cost on ImageNet-1k; Right: Top-2 acc is calculated
when the top-2 predictions equal to {ya, yb}.

The Decoupled Mixup. The proofs of Proposition 1 and 2 are given in the Appendix. In practice,
the original smoothness of LMCE should not be lost, and thus the proposed DM is a regularizer for
discriminability. The final form of decoupled mixup can be formulated as follows:

LDM(CE) = −
(
yT(a,b) log(σ(z(a,b)))︸ ︷︷ ︸

LMCE

+η yT[a,b] log(ϕ(z(a,b)))y[a,b]︸ ︷︷ ︸
LDM

)
.

where y(a,b) indicates the mixed label while y[a,b] is two-hot label encoding, η is a trade-off factor.
Notice that η is robust and can be set according to the character of mixup methods (see Sec. 5.4).

Practical consequences of such simple modification on mixup and the performance:

Make What Should be Certain More Certain. As we expected, mixup training with a decoupling
mechanism will be more accurate and confident in handling hard mixed samples with our artificially
constructed hard mixed samples by using PuzzleMix. Figure 3 right demonstrates the model trained
with decoupled mixup mostly doubled the top-2 accuracy on these mixed samples, which also verifies
the information contained in mixed samples is beyond the ”1” defined by standard Softmax. More
interestingly, this advantage of decoupled mixup, i.e., higher confidence and accuracy, can be further
amplified in semi-supervised learning due to the uncertainty of pseudo-labeling.

Enhance the Training Efficiency. It is straightforward to notice that there is no extra computation
cost when using DM in vanilla mixup training, and the performance we can achieve is the same or
even better than optimizable mixup policies, i.e., PuzzleMix, CoMixup, etc. Figure 3 left and middle
show decoupled mixup unveils the power of static mixup for more accurate and faster.

4 Extensions of Decoupled Mixup

With the high-accurate nature of decoupled mixup for mining hard mixed samples, semi-supervised
learning is a suitable scenario to propagate the accurate label from labeled space to unlabeled space
by using asymmetrical mixup. In addition, we can also generalize the decoupled mechanism into the
binary cross-entropy for boosting the multi-classification task.

4.1 Asymmetrical Strategy for Semi-supervised Learning

Based on labeled data L = {(xa, ya)}nL
a=1, if we further consider unlabeled data U = {(ua, va)}nU

a=1
decoupled mixup can be the strong connection between L and U . Recall the confirmation bias [67]
problem of SSL: the performance of the student model is restricted by the teacher model when learning
from inaccurate pseudo-labels. To fully use the L and strengthen the teacher model to provide more
robust and accurate predictions, the unlabeled data with large λ can be used to mix with the labeled
data to form hard mixed samples. With these hard mixed samples, we can employ decoupled mixup
into semi-supervised learning effectively. Since only the label of L is accurate, we need to make a
little asymmetric modification to the decoupled mixup, called Asymmetrical Strategy(AS). Formally,
given the labeled and unlabeled datasets L and U , AS builds reliable connection by generating hard
mixed samples between L and U in an asymmetric manner (λ < 0.5):

x̂(a,b) = λxa + (1− λ)ub; ŷ(a,b) = λya + (1− λ)vb.
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Due to the uncertainty of the pseudo-label, only the labeled part is retained in LDM :

L̂DM = yTa log
(
ϕ(z(a,b))

)
yb,

where ya and yb are one-hot labels from L. AS could be regarded as a special case of DM that only
decouples on labeled data. Simply replacing LDM with L̂DM can leverage the hard samples and
alleviate the confirmation bias in semi-supervised learning.

4.2 Decoupled Binary Cross-entropy Loss
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Figure 4: Rescaled label of different λ value.

Binary Cross-entropy Form of DM. Differ-
ent from Softmax-based classification, we can
also build decoupled mixup in multi-label clas-
sification tasks (1-vs-all) by using mixup binary
cross-entropy (MBCE) loss [63] (σ(·) denotes
Sigmoid rather Softmax in this case). Proposi-
tion 2 demonstrates the decoupled CE can mu-
tually enhance the confidence of predictions for
the interested classes and be free from λ limi-
tations. Similarly, for MBCE, since it is not in-
herently bound to mutual interference between
classes by Softmax, we have to preserve partial
consistency and encourage more confident pre-
dictions, and thus propose a decoupled mixup
binary cross-entropy loss, DM(BCE).

To this end, a rescaling function r : λ, t, ξ → λ′ is designed to achieve this goal. The mixed label
is rescaled by r(·): ymix = λaya + λbyb, where λa and λb are rescaled. The rescaling function is
defined as follows:

r(λ, t, ξ) =
(λ
ξ

)t
, 0 ≤ t, 0 ≤ ξ < 1, (6)

where ξ is the threshold, t is an index to control the convexity. As shown in Figure 4, Equation 6 has
three situations: (a) when ξ = 0, t = 0, the rescaled label is always equal to 1, as two-hot encoding;
(b) when ξ = 1, t = 1, r(·) is a linear function (vanilla mixup); (c) the rest curves demonstrate t is
the parameter that changes the concavity and ξ is responsible for truncating.

Empirical Results. In the case of interpolation-based mixup methods (e.g., Mixup, ManifoldMix,
etc.) that keep linearity between the mixed label and sample, the decoupled mechanism can be
introduced by only adjusting threshold t. In the case of cutting-based mixing policies (e.g., CutMix,
etc.) where the mixed samples and labels have a square relationship (generally a convex function),
we can approximate the convexity by adjusting ξ, which are detailed in Sec. 5.4 and Appendix C.5.

5 Experiments

We adopt two types of top-1 classification accuracy (Acc) metrics (the mean of three trials): (i)
the median top-1 Acc of the last 10 epochs [52, 38] for supervised image classification tasks with
Mixup variants, and (ii) the best top-1 Acc in all checkpoints for SSL tasks. Popular ConvNets
and Transformer-based architectures are used as backbone networks: ResNet variants including
ResNet [19] (R), Wide-ResNet (WRN) [75], and ResNeXt-32x4d (RX) [66], Vision Transformers
including DeiT [55] and Swin Transformer (Swin) [37].

5.1 Image Classification Benchmarks

This subsection evaluates performance gains of DM on six image classification benchmarks, including
CIFAR-100 [25], Tiny-ImageNet (Tiny) [10], ImageNet-1k [48], CUB-200-2011 (CUB) [59], FGVC-
Aircraft (Aircraft) [42]. There are mainly two types of mixup methods based on their mixing policies:
static methods including Mixup [77], CutMix [74], ManifoldMix [57], SaliencyMix [56], FMix [17],
and ResizeMix [47], and dynamic mixup methods including PuzzleMix [23], AutoMix [38], and
SAMix [31]. For a fair comparison, we use the optimal α in {0.1, 0.2, 0.5, 0.8, 1.0, 2.0} for all mixup
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Table 1: Top-1 Acc (%)↑ of small-scale image classification on CIFAR-100 and Tiny-ImageNet
datasets based on ResNet variants.

Datasets CIFAR-100 Tiny-ImageNet
R-18 RX-50 WRN-28-8 R-18 RX-50

Methods MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE)
Mixup 79.12 80.44 82.10 82.96 82.82 83.51 63.86 65.07 66.36 67.70
CutMix 78.17 79.39 81.67 82.39 84.45 84.88 65.53 66.45 66.47 67.46
ManifoldMix 80.35 81.05 82.88 83.15 83.24 83.72 64.15 65.45 67.30 68.48
FMix 79.69 80.12 81.90 82.74 84.21 84.47 63.47 65.34 65.08 66.96
ResizeMix 80.01 80.26 81.82 82.96 84.87 84.72 63.74 64.33 65.87 68.56
Avg. Gain +0.78 +0.77 +0.34 +1.18 +1.62

Table 2: Top-1 Acc (%)↑ of image classification on
ImageNet-1k with ResNet variants using PyTorch-
style 100-epoch training recipe.

R-18 R-34 R-50
Methods MCE DM(CE) MCE DM(CE) MCE DM(CE)
Vanilla 70.04 - 73.85 - 76.83 -
Mixup 69.98 70.20 73.97 74.26 77.12 77.41
CutMix 68.95 69.26 73.58 73.88 77.07 77.32
ManifoldMix 69.98 70.33 73.98 74.25 77.01 77.30
FMix 69.96 70.26 74.08 74.34 77.19 77.38
ResizeMix 69.50 69.90 73.88 74.00 77.42 77.65
Avg. Gain +0.32 +0.24 +0.25

Table 3: Top-1 Acc (%)↑ of image classification
on ImageNet-1k based on ResNet-50 using RSB
A3 100-epoch training recipe.

Methods MCE DM(CE) MBCE MBCE DM(BCE)
(one) (two) (one)

RSB 76.49 77.72 78.08 76.95 78.43
Mixup 76.01 76.69 77.66 77.42 78.28
CutMix 76.47 77.22 77.62 67.54 78.21
ManifoldMix 76.14 76.93 77.78 67.78 78.20
FMix 76.09 76.87 77.76 73.44 78.11
ResizeMix 76.90 77.21 77.85 77.30 78.32
Avg. Gain +0.76 -4.38 +0.47

Table 4: Top-1 Acc (%)↑ of classifi-
cation on ImageNet-1k with ViTs.

DeiT-S Swin-T
Methods MCE DM(CE) MCE DM(CE)
DeiT 79.80 80.37 81.28 81.49
Mixup 79.65 80.04 80.71 80.97
CutMix 79.78 80.20 80.83 81.05
FMix 79.41 79.89 80.37 80.54
ResizeMix 79.93 80.03 80.94 81.01
Avg. Gain +0.39 +0.19

Table 5: Top-1 Acc (%)↑ of fine-grained image classification
on CUB-200 and FGVC-Aircrafts with ResNet variants.

Datasets CUB-200 FGVC-Aircrafts
R-18 RX-50 R-18 RX-50

Methods MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE)
Mixup 78.39 79.90 84.58 85.04 79.52 82.66 85.18 86.68
CutMix 78.40 78.76 85.68 85.97 78.84 81.64 84.55 85.75
ManifoldMix 79.76 79.92 86.38 86.42 80.68 82.57 86.60 86.92
FMix 77.28 80.10 84.06 84.85 79.36 80.44 84.85 85.04
ResizeMix 78.50 79.58 84.77 84.92 78.10 79.54 84.08 84.51
Avg. Gain +1.19 +0.35 +2.07 +0.73

algorithms and follow original hyper-parameters in papers. We adopt the open-source codebase
OpenMixup [32] for most mixup methods. The detailed training recipes and hyper-parameters are
provided in Appendix B. We also evaluate the adversarial robustness of CIFAR-100 in Appendix C.2.

Small-scale Classification Benchmarks. For small-scale classification benchmarks on CIFAR-100
and Tiny, we adopt the CIFAR version of ResNet variants and train with SGD optimizer following
the common training settings [23, 38]. Table 1 and A2 show small-scale classification results. The
proposed DM(CE) significantly improves MCE based on various mixup algorithms. Based on CIFAR-
100 and three different CNNs (R-18, RX-50, and WRN-28-8), the decoupled mixup brings an average
performance gain of 0.78%, 0.77%, and 0.34%, respectively. More notably, the gains on the Tiny
dataset are significant, with average performance gains of: 1.18% and 1.62% on R-18 and RX-50.

ImageNet and Fine-grained Classification Benchmarks. For experiments on ImageNet-1k, we
follow three popular training procedures: PyTorch-style setting [19], DeiT [55] setting, and RSB
A3 [63] setting to demonstrate the generalizability of decoupled mixup. As shown in Table 2, 3,
and 4, DM(CE) improves consistently over MCE in all mixup algorithms on three training settings we
considered. The relative improvements have been calculated in the last row of tables. For example,
DM(CE) yields around +0.4% for mixup methods based on ResNet variants using PyTorch-style
and RSB A3 settings; around +0.5% and +0.2% for all methods based on DeiT-S and Swin-T using
DeiT setting. Notice that MBCE(two) denotes using two-hot encoding for corresponding mixing
classes, which yield worse performance than MBCE, and DM(BCE) adjusts the labels for the mixing
classes by Equation 6. It verifies the necessity of DM(BCE) in the case of using MBCE. As for
fine-grained benchmarks, we follow the training settings in AutoMix and initialize models with the
official PyTorch pre-trained models (as supervised transfer learning). Table 5 and A6 show that
DM(CE) noticeably boosts the original MCE for eight popular mixup variants, especially bringing
0.53%∼3.14% gains on Aircraft based on ResNet-18.

5.2 Semi-supervised Transfer Learning Benchmarks

Following the transfer learning (TL) benchmarks [71], we perform TL experiments on CUB, Aircraft,
and Stanford-Cars [24] (Cars). Besides the vanilla Fine-Tuning baseline, we compare current
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Table 6: Top-1 Acc (%)↑ of semi-supervised transfer learning on various TL benchmarks (CUB-200,
FGVC-Aircraft, and Standfold-Cars) using only 15%, 30% and 50% labels based on ResNet-50.

CUB-200 FGVC-Aircraft Stanford-Cars
Methods 15% 30% 50% 15% 30% 50% 15% 30% 50%
Fine-Tuning 45.25±0.12 59.68±0.21 70.12±0.29 39.57±0.20 57.46±0.12 67.93±0.28 36.77±0.12 60.63±0.18 75.10±0.21

+DM 50.04±0.17 61.39±0.24 71.87±0.23 43.15±0.22 61.02±0.15 70.38±0.18 41.30±0.16 62.65±0.21 77.19±0.19

BSS 47.74±0.23 63.38±0.29 72.56±0.17 40.41±0.12 59.23±0.31 69.19±0.13 40.57±0.12 64.13±0.18 76.78±0.21

Co-Tuning 52.58±0.53 66.47±0.17 74.64±0.36 44.09±0.67 61.65±0.32 72.73±0.08 46.02±0.18 69.09±0.10 80.66±0.25

+DM 54.96±0.65 68.25±0.21 75.72±0.37 49.27±0.83 65.60±0.41 74.89±0.17 51.78±0.34 74.15±0.29 83.02±0.26

Self-Tuning 64.17±0.47 75.13±0.35 80.22±0.36 64.11±0.32 76.03±0.25 81.22±0.29 72.50±0.45 83.58±0.28 88.11±0.29

+Mixup 62.38±0.32 74.65±0.24 81.46±0.27 59.38±0.31 74.65±0.26 81.46±0.27 70.31±0.27 83.63±0.23 88.66±0.21

+DM 73.06±0.38 79.50±0.35 82.64±0.24 67.57±0.27 80.71±0.25 84.82±0.26 81.69±0.23 89.22±0.21 91.26±0.19

Avg. Gain +5.95 +2.77 +1.34 +5.65 +4.52 +2.65 +7.22 +4.22 +2.35

Table 7: Top-1 Acc (%)↑ of semi-supervised learning on CIFAR-100 (using 400, 2500, and 10000
labels) based on WRN-28-8. Notice that DM denotes using DM(CE) and AS, Con denotes various
unsupervised consistency losses, Rot denotes the rotation loss in ReMixMatch, and CPL denotes the
curriculum labeling in FlexMatch.

CIFAR-10 CIFAR-100
Methods Losses 250 4000 400 2500 10000
Pseudo-Labeling CE 53.51±2.20 84.92±0.19 12.55±0.85 42.26±0.28 63.45±0.24

MixMatch CE+Con 86.37±0.59 93.34±0.26 32.41±0.66 60.24±0.48 72.22±0.29

ReMixMatch CE+Con+Rot 93.70±0.05 95.16±0.01 57.15±1.05 73.87±0.35 79.08±0.27

MixMatch+DM CE+Con+DM 89.16±0.71 95.15±0.68 35.72±0.53 62.51±0.37 74.70±0.28

UDA CE+Con 94.84±0.06 95.71±0.07 53.61±1.59 72.27±0.21 77.51±0.23

FixMatch CE+Con 95.14±0.05 95.79±0.08 53.58±0.82 71.97±0.16 77.80±0.12

FlexMatch CE+Con+CPL 95.02±0.09 95.81±0.01 60.06±1.62 73.51±0.20 78.10±0.15

FixMatch+Mixup CE+Con+MCE 95.05±0.23 95.83±0.19 50.61±0.73 72.16±0.18 78.75±0.14

FixMatch+DM CE+Con+DM 95.23±0.09 95.87±0.11 59.75±0.95 74.12±0.23 79.58±0.17
Average Gain +1.44 +0.95 +4.74 +2.30 +2.13

state-of-the-art TL methods, including BSS [68], Co-Tuning [71], and Self-Tuning [67]. For a
fair comparison, we use the same hyper-parameters and augmentations as Self-Tuning, detailed in
Appendix B.2. In Table 6, we adopt DM(CE) and AS for Fine-Tuning, Co-Tuning, and Self-Tuning
using Mixup. DM(CE) and AS steadily improve Mixup and the baselines by large margins, e.g.,
+4.62%∼9.19% for 15% labels, +2.02%∼5.67% for 30% labels, and +2.09%∼3.15% for 50% labels
on Cars. This outstanding improvement implies that generating mixed samples efficiently is essential
for data-limited scenarios. A similar performance will be presented as well in the next SSL setting.

5.3 Semi-supervised Learning Benchmarks

Following [52, 76], we adopt the most commonly used CIFAR-10/100 datasets among the famous
SSL benchmarks based on WRN-28-2 and WRN-28-8. We mainly evaluate the proposed DM on
popular SSL methods MixMatch [2] and FixMatch [52], and compare with Pesudo-Labeling [27],
ReMixMatch [1], UDA [65], and FlexMatch [76]. For a fair comparison, we use the same hyperpa-
rameters and training settings as the original papers and conduct experiments with the open-source
codebase TorchSSL [76], detailed in Appendix B.2. Table 7 shows that adding DM(CE) and AS
significantly improves MixMatch and FixMatch: DM(CE) brings 1.81∼2.89% gains on CIFAR-10
and 1.27∼3.31% gains on CIFAR-100 over MixMatch while bringing 1.78∼4.17% gains on CIFAR-
100 over FixMatch. Meanwhile, we find that directly applying mixup augmentations to FixMatch
brings limited improvements, while FixMatch+DM achieves the best performance in most cases on
CIFAR-10/100 datasets. Appendix C.3 provides further studies with limited labeled data. Therefore,
mixup augmentations with DM can achieve data-efficient training in SSL.

5.4 Ablation Study and Analysis

Hyperparameters and Proposed Components. Since we have demonstrated the effectiveness of
DM in the above experiments, Figure 1 and 5 verified that DM could well explore hard mixed samples.
We then verify whether DM is robust to hyper-parameters (full hyper-parameters in Appendix C.5)
and study the effectiveness of AS in SSL:
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Figure 5: Top-1 Acc
(%) of mixed samples on
ImageNet-1k validation set.
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Table 8: Ablation of the proposed asymmetric strategy (AS) and
DM(CE) upon Self-Tuning for semi-supervised transfer learning on
CUB-200 based on R-18.

Methods 15% 30% 50% 100%
Self-Tuning 57.82 69.12 73.59 75.08
+MCE 63.36 72.81 75.73 76.67
+MCE+AS(λ ≥ 0.5) 59.04 69.67 74.89 75.96
+MCE+AS(λ ≤ 0.5) 62.97 72.46 75.40 76.34
+DM(CE)+AS(λ ≤ 0.5) 66.17 74.25 77.68 78.52

(1) The only hyper-parameter η in DM(CE) and DM(BCE) can be set according to the types
of mixup methods. We grid search η in {0.01, 0.1, 0.5, 1, 2} on ImageNet-1k. As shown in
Figure A2 left, the static (Mixup and CutMix) and the dynamic methods (PuzzleMix and
AutoMix) prefer η = 0.1 and η = 1, respectively, which might be because the dynamic
variants generate more discriminative and reliable mixed samples than the static methods.

(2) Hyper-parameters ξ and t in DM(BCE) can also be determined by the characters of mixup
policies. We grid search ξ ∈ {1, 0.9, 0.8, 0.7} and t ∈ {2, 1, 0.5, 0.3}. Figure A2 middle
and right show that cutting-based methods (CutMix and AutoMix) prefer ξ = 0.8 and t = 1,
while the interpolation-based policies (Mixup and ManifoldMix) use ξ = 1.0 and t = 0.5.

(3) Table 8 shows the superiority of AS(λ ≤ 0.5) in comparison to MCE and AS(λ ≥ 0.5),
while using DM(CE) and AS(λ ≤ 0.5) further improves MCE.

(4) The experiments of different sizes of training data are performed to verify the data efficiency
of DM. We can observe that decoupled mixup improves by around 2% accuracy without any
computational overhead. The detailed results are shown in Appendix C.3.
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Figure 6: Robustness against different occlusion ratios
of images for mixup augmentations using the MCE
and our DM(CE) loss based on ResNet-50 (left) and
DeiT-S (right) on ImageNet-1k. RSB and DeiT denote
using CutMix+Mixup (static mixup policies) in RSB
A3 [63] and DeiT [55] training settings. DM(CE)
improves mixups by exploring hard mixed samples.

Occlusion Robustness We also analyzed
robustness against random occlusion [43] for
models trained on ImageNet-1k using the of-
ficial implementation2. Concretely, the clas-
sifier is thought to be robust if it predicts the
correct label given an occluded version of the
image. In other words, the network learns es-
sential features (e.g., semantic regions) that
discriminate each class. For occlusion, we
consider patch-based random masking. In
particular, we split the image of 224 × 224
resolutions into patch size 16 × 16 and ran-
domly mask M patches out of the total num-
ber of N patches, where the occlusion ratio
is defined as M

N . As shown in Figure 6, the
proposed DM helps various mixup methods achieve better occlusion robustness, indicating DM can
force the model to learn discriminative features, e.g., image patches with semantic information that is
deterministic when the occlusion ratio is high.

6 Conclusion, Limitations, and Border Impacts

Table 9: Top-1 Acc (%)↑ on CIFAR-100 and Tiny.
Datasets CIFAR-100 Tiny-ImageNet
Backbone WRN-28-8 RX-50
Methods MCE DM(CE) MCE DM(CE)
PuzzleMix 85.02 85.25 67.83 68.04
+RSB 85.24 85.61 68.17 68.86
AutoMix 85.18 85.38 70.72 71.56
+RSB 85.35 85.54 70.98 72.37

Decoupled Mixup and Dynamic Mixups.
We investigate and show two limitations of the
decoupled mixup. Different from static mixup
methods, dynamic mixup spends extra time to
optimize mixing masks in input space to align
the mixed samples and labels. Although the op-
timized mixing policies can enhance the model
to find discriminative features [38], their predic-
tions are also under-confident. In Table 9, we tried some advanced dynamic mixup policies, e.g.,

2https://github.com/Muzammal-Naseer/Intriguing-Properties-of-Vision-Transformers
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PuzzleMix [23], and AutoMix [38], with decoupled mixup, and found the improvement is limited.
The main reason is there will not be many hard mixed samples in dynamic mixups. Therefore, we
additionally incorporate two static mixups in RSB training settings, i.e., a half probability that Mixup
or CutMix will be selected during the training. As expected, the improvements from the decoupled
mixup are getting obvious upon static mixup variants. This is a very preliminary attempt that deserves
more exploration in future works, and we provide more results of dynamic mixups in Appendix C.

Table 10: Top-1 Acc (%)↑ of on CIFAR-100 training 200 and
600 epochs based on DeiT-S and ConvNeXt-T. Underlines
denote the top-3 best results. Total training hours and GPU
memory are collected on a single A100 GPU.
Methods DeiT-Small ConvNeXt-Tiny

200 ep 600 ep Mem. Time 200 ep 600 ep Mem. Time
Vanilla 65.81 68.50 8.1 27 78.70 80.65 4.2 10
Mixup 69.98 76.35 8.2 27 81.13 83.08 4.2 10
CutMix 74.12 79.54 8.2 27 82.46 83.20 4.2 10
DeiT 75.92 79.38 8.2 27 83.09 84.12 4.2 10
SmoothMix 67.54 80.25 8.2 27 78.87 81.31 4.2 10
SaliencyMix 69.78 76.60 8.2 27 82.82 83.03 4.2 10
AttentiveMix+ 75.98 80.33 8.3 35 82.59 83.04 4.3 14
FMix 70.41 74.31 8.2 27 81.79 82.29 4.2 10
GridMix 68.86 74.96 8.2 27 79.53 79.66 4.2 10
ResizeMix 68.45 71.95 8.2 27 82.53 82.91 4.2 10
PuzzleMix 73.60 81.01 8.3 35 82.29 84.17 4.3 53
AutoMix 76.24 80.91 18.2 59 83.30 84.79 10.2 56
SAMix 77.94 82.49 21.3 58 83.56 84.98 10.3 57
DeiT+TransMix 76.17 79.33 8.4 28 - - - -
DeiT+TokenMix† 76.25 79.57 8.4 34 - - - -
DeiT+DM(CE) 76.20 79.92 8.2 27 83.44 84.49 4.2 10

Meanwhile, we further conduct com-
prehensive comparison experiments
with modern Transformer-based archi-
tectures on CIFAR-100, considering
the concurrent work TransMix [5] and
TokenMix [36]. As shown in Table 10,
where results with † denote the offi-
cial implementation and the other are
based on OpenMixup [32], DM(CE)
enables DeiT (CutMix and Mixup) to
achieve competitive performances as
dynamic mixup variants like AutoMix
and SAMix [31] based on ConvNeXt-
S without introducing extra compu-
tational costs, while still performing
worse than them based on DeiT-S.
Compared with specially designed la-
bel mixing methods using attention
maps, DM(CE) also achieves compet-
itive performances to TransMix and TokenMix. How to further improve the decoupled mixup with
the salient regions or dynamic attention information to research similar performances of dynamic
mixing variants can also be studied in future works.

The Next Mixup. In a word, we introduce Decoupled Mixup (DM), a new objective function
for considering both smoothness and mining discriminative features in mixup augmentations. The
proposed DM helps static mixup methods (e.g., MixUp and CutMix) achieve a comparable or better
performance than the computationally expensive dynamic mixup policies. Most importantly, DM
raises a question worthy of researching: is it necessary to design very complex mixup policies? We
also find that decoupled mixup could be the bridge to combining static and dynamic mixup. However,
the introduction of additional hyperparameters may take users some extra time to check on other
than images or other mixup methods. This also leads to the core question of the next step in the
development of this work: how to design a more elegant and adaptive mixup training objective that
connects different types of mixups to achieve high data efficiency? We believe these explorations and
questions can inspire future research in the community of mixup augmentations.
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Appendix

In the Appendix sections, we provide proofs of proposition 1 (§A.1) and proposition 2 (§A.2),
implementation details (§B), and more results of comparison experiment and empirical analysis (§C).

A Proof of Proposition

A.1 Proof of Proposition 1

Proposition 1. Assuming x(a,b) is generated from two different classes, minimizing LMCE is
equivalent to regress corresponding λ in the gradient of LMCE :
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Proof. For the mixed sample (x(a,b), y(a,b)), z(a,b) is derived from a feature extractor fθ (i.e z(a,b) =
fθ(x(a,b))). According to the definition of the mixup cross-entropy loss LMCE , we have:

(
∇z(a,b)LMCE

)l
=

∂LMCE

∂zl(a,b)
= − ∂

∂zl(a,b)

(
yT(a,b) log

(
σ(z(a,b))

))
= −

C∑
i=1

(
yi(a,b)

∂

∂zl(a,b)

(
log(

exp(zi(a,b))∑C
j=1 exp(z

j
(a,b))

)
))

= −
C∑
i=1

(
yi(a,b)

∑C
j=1 exp(z

j
(a,b))

exp(zi(a,b))

∂

∂zl(a,b)

( exp(zi(a,b))∑C
j=1 exp(z

j
(a,b))

))

= −
C∑
i=1

(
yi(a,b)

(
δli −

exp(zl(a,b))∑C
j=1 exp(z

j
(a,b))

))
=

exp(zl(a,b))∑C
j=1 exp(z

j
(a,b))

− yl(a,b).

Similarly, we have:
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Thus, for LDM loss:
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A.2 Proof of Proposition 2

Proposition 2. With the decoupled Softmax defined above, decoupled mixup cross-entropy LDM(CE)

can boost the prediction confidence of the interested classes mutually and escape from the λ-
constraint:
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Proof. For the mixed sample (x(a,b), y(a,b)), z(a,b) is derived from a feature extractor fθ (i.e
z(a,b)=fθ(x(a,b))). According to the definition of the mixup cross-entropy loss LDM(CE), we have:
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B Implementation Details

B.1 Dataset

We briefly introduce used image datasets. (1) Small scale classification benchmarks: CIFAR-
10/100 [25] contains 50,000 training images and 10,000 test images in 32×32 resolutions, with
10 and 100 classes settings. Tiny-ImageNet [10] is a rescaled version of ImageNet-1k, which has
10,000 training images and 10,000 validation images of 200 classes in 64×64 resolutions. (2)
Large scale classification benchmarks: ImageNet-1k [26] contrains 1,281,167 training images and
50,000 validation images of 1000 classes in 224×224 resolutions. (3) Small-scale fine-grained
classification scenarios: CUB-200-2011 [59] contains 11,788 images from 200 wild bird species for
fine-grained classification. FGVC-Aircraft [42] contains 10,000 images of 100 classes of aircraft.
Standford-Cars [24].

B.2 Training Settings

Small-scale image classification. As for small-scale classification benchmarks on CIFAR-100
and Tiny-ImageNet datasets, we adopt the CIFAR version of ResNet variants, i.e., using a 3 × 3
convolution instead of the 7× 7 convolution and MaxPooling in the stem, and follow the common
training settings [23, 38]: the basic data augmentation includes RandomFlip and RandomCrop with 4
pixels padding; SGD optimizer and Cosine learning rate Scheduler [39] are used with the SGD weight
decay of 0.0001, the momentum of 0.9, and the Batch size of 100; all methods train 800 epochs with
the basic learning rate lr = 0.1 on CIFAR-100 and 400 epochs with lr = 0.2 on Tiny-ImageNet.

Fine-grained image classification. As for fine-grained classification experiments on CUB-200
and Aircraft datasets, all mixup methods are trained 200 epochs by SGD optimizer with the initial
learning rate lr = 0.001, the weight decay of 0.0005, and the batch size of 16. We use the standard
augmentations RandomFlip and RandomResizedCrop, and load the official PyTorch pre-trained
models on ImageNet-1k as initialization.

ImageNet image classification. For large-scale classification tasks on ImageNet-1k, we evaluate
mixup methods on three popular training procedures, and Tab. A1 shows the full training settings
of the three settings. Notice that DeiT [55] and RSB A3 [63] settings employ Mixup and CutMix
with a switching probability of 0.5 during training. (a) PyTorch-style setting. Without any advanced
training strategies, a PyTorch-style setting is used to study the performance gains of mixup methods:
SGD optimizer is used to train 100 epochs with the SGD weight decay of 0.0001, a momentum of
0.9, a batch size of 256, and the basic learning rate of 0.1 adjusted by Cosine Scheduler. Notice
that we replace the step learning rate decay with Cosine Scheduler [39] for better performances
following [74]. (b) DeiT [55] setting. We use the DeiT setting to verify the DM(CE) effectiveness
in training Transformer-based networks: AdamW optimizer [41] is used to train 300 epochs with a
batch size of 1024, the basic learning rate of 0.001, and the weight decay of 0.05. (c) RSB A3 [63]
setting. This setting adopts similar training techniques as DeiT to ConvNets, especially using MBCE
instead of MCE: LAMB optimizer [72] is used to train 100 epochs with the batch size of 2048, the
basic learning rate of 0.008, and the weight decay of 0.02. Notice that DeiT and RSB A3 settings use
the combination of Mixup and CutMix (50% random switching probabilities) as the baseline.

Semi-supervised transfer learning. For semi-supervised transfer learning benchmarks, we use the
same hyper-parameters and augmentations as Self-Tuning3: all methods are initialized by PyTorch
pre-trained models on ImageNet-1k and trained 27k steps in total by SGD optimizer with the basic
learning rate of 0.001, the momentum of 0.9, and the weight decay of 0.0005. We reproduced
Self-Tuning and conducted all experiments in OpenMixup [32].

Semi-supervised learning. For semi-supervised learning benchmarks (training from scratch),
we adopt the most commonly used CIFAR-10/100 datasets among the famous SSL benchmarks
based on WRN-28-2 and WRN-28-8 following [52, 76]. For a fair comparison, we use the same
hyperparameters and training settings as the original papers and adopt the open-source codebase
TorchSSL [76] for all methods. Concretely, we use an SGD optimizer with a basic learning rate of

3https://github.com/thuml/Self-Tuning
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Table A1: Ingredients and hyper-parameters used for ImageNet-1k training settings.

Procedure PyTorch DeiT RSB A3
Train Res 2242 2242 2242

Test Res 2242 2242 2242

Test crop ratio 0.875 0.875 0.95
Epochs 100/300 300 100
Batch size 256 1024 2048
Optimizer SGD AdamW LAMB
LR 0.1 1× 10−3 8× 10−3

LR decay cosine cosine cosine
Weight decay 10−4 0.05 0.02
optimizer momentum 0.9 β1, β2 = 0.9, 0.999 ✗
Warmup epochs ✗ 5 5
Label smoothing ϵ ✗ 0.1 ✗
Dropout ✗ ✗ ✗
Stoch. Depth ✗ 0.1 0.05
Repeated Aug ✗ ✓ ✓
Gradient Clip. ✗ 1.0 ✗
H. flip ✓ ✓ ✓
RRC ✓ ✓ ✓
Rand Augment ✗ 9/0.5 6/0.5
Auto Augment ✗ ✗ ✗
Mixup alpha ✗ 0.8 0.1
Cutmix alpha ✗ 1.0 1.0
Erasing prob. ✗ 0.25 ✗
ColorJitter ✗ ✗ ✗
EMA ✗ 0.99996 ✗
CE loss ✓ ✓ ✗
BCE loss ✗ ✗ ✓

lr = 0.03 adjusted by Cosine Scheduler, the total 220 steps, the batch size of 64 for labeled data, and
the confidence threshold τ = 0.95.

B.3 Hyper-parameter Settings

We follow the basic hyper-parameter settings (e.g., α) for mixup variants in OpenMixup [32], where
we reproduce most comparison methods. Notice that static methods denote Mixup [77], CutMix [74],
ManifoldMix [57], SaliencyMix [56], FMix [17], ResizeMix [47], and dynamic methods denote
PuzzleMix [23], AutoMix [38], and SAMix [31]). Similarly, interpolation-based methods denote
Mixup and ManifoldMix while cutting-based methods denote the rest mixup variants mentioned
above. We set the hyper-parameters of DM(CE) as follows: For CIFAR-100 and ImageNet-1k, static
methods use η = 0.1, and dynamic methods use η = 1. For Tiny-ImageNet and fine-grained datasets,
static methods use η = 1 based on ResNet-18 while η = 0.1 based on ResNeXt-50; dynamic methods
use η = 1. As for the hyper-parameters of DM(BCE) on ImageNet-1k, cutting-based methods use
t = 1 and ξ = 0.8, while interpolation-based methods use t = 0.5 and ξ = 1. Note that we use
α = 0.2 and α = 2 for the static and dynamic methods when using the proposed DM.

Table A2: Top-1 Acc (%)↑ of small-scale image classification on CIFAR-100 and Tiny-ImageNet
datasets based on ResNet variants.

Datasets CIFAR-100 Tiny-ImageNet
R-18 RX-50 WRN-28-8 R-18 RX-50

Methods MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE)
SaliencyMix 79.12 79.28 81.53 82.61 84.35 84.41 64.60 66.56 66.55 67.52
PuzzleMix 81.13 81.34 82.85 82.97 85.02 85.25 65.81 66.52 67.83 68.04
AutoMix 82.04 82.32 83.64 83.94 85.18 85.38 67.33 68.18 70.72 71.56
SAMix 82.30 82.40 84.42 84.53 85.50 85.59 68.89 69.16 72.18 72.39
Avg. Gain +0.19 +0.40 +0.15 +0.95 +0.56
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Table A3: Top-1 Acc (%)↑ of image classification on
ImageNet-1k with ResNet variants using PyTorch-
style 100-epoch training recipe.

R-18 R-34 R-50
Methods MCE DM(CE) MCE DM(CE) MCE DM(CE)
SaliencyMix 69.16 69.57 73.56 73.92 77.14 77.42
PuzzleMix 70.12 70.32 74.26 74.51 77.54 77.71
AutoMix 70.51 70.64 74.52 74.77 77.91 78.15
SAMix 70.85 70.90 74.96 75.10 78.11 78.36
Avg. Gain +0.20 +0.25 +0.23

Table A4: Top-1 Acc (%)↑ of image classification
on ImageNet-1k based on ResNet-50 using RSB
A3 100-epoch training recipe.

Methods MCE DM(CE) MBCE MBCE DM(BCE)
(one) (two) (one)

SaliencyMix 76.85 77.25 77.93 72.74 78.24
PuzzleMix 77.27 77.60 78.02 77.19 78.15
AutoMix 77.45 77.82 78.33 77.46 78.62
SAMix 78.33 78.45 78.64 77.58 78.75
Avg. Gain +0.30 -1.99 +0.04

Table A5: Top-1 Acc (%)↑ of classifi-
cation on ImageNet-1k with ViTs.

DeiT-S Swin-T
Methods MCE DM(CE) MCE DM(CE)
DeiT 79.80 80.37 81.28 81.49
SaliencyMix 79.32 79.86 80.68 80.83
PuzzleMix 79.84 80.25 81.03 81.16
AutoMix 80.78 80.91 81.80 81.92
SAMix 80.94 81.12 81.87 81.97
Avg. Gain +0.32 +0.13

Table A6: Top-1 Acc (%)↑ of fine-grained image classification
on CUB-200 and FGVC-Aircrafts with ResNet variants.

Datasets CUB-200 FGVC-Aircrafts
R-18 RX-50 R-18 RX-50

Methods MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE)
SaliencyMix 77.95 78.28 83.29 84.51 80.02 81.31 84.31 85.07
PuzzleMix 78.63 78.74 84.51 84.67 80.76 80.89 86.23 86.36
AutoMix 79.87 81.08 86.56 86.74 81.37 82.18 86.69 86.82
SAMix 81.11 81.27 86.83 86.95 82.15 83.68 86.80 87.22
Avg. Gain +0.45 +0.42 +0.94 +0.36

C More Experiment Results

C.1 Image Classification Benchmarks

Small-scale classification benchmarks. For small-scale classification benchmarks on CIFAR-
100 and Tiny-ImageNet, we also conduct experiments of applying the proposed DM(CE) to dy-
namic mixup methods even though these algorithms have achieved high performance in Table A2:
DM(CE) brings 0.23%∼0.36% on CIFAR-100 for the previous state-of-the-art PuzzleMix and
brings 0.21%∼0.27% on Tiny-ImageNet for the current state-of-the-art method SAMix. Overall,
the proposed DM(CE) produces +0.15∼0.4% and 0.56∼0.95% average gains on CIFAR-100 and
Tiny-ImageNet, demonstrating its generalizability to advanced mixup augmentations.

ImageNet and fine-grained classification benchmarks. For experiments on ImageNet-1k, we also
employ the proposed DM(CE) to dynamic mixup approaches on ImageNet-1k with PyTorch-style [19],
DeiT [55], and RSB A3 [63] training settings to further evaluate the generalizability of decoupled
mixup. As shown in Table A3 and Table A4, DM(CE) gains +0.2∼0.3% top-1 accuracy over MCE
in average for four dynamic mixup methods based on ResNet variants on ImageNet-1k; Table A5
show DM(CE) also improves dynamic methods based on popular DeiT-S and Swin-T backbones
with modern training recipes. These results indicate that the proposed decoupled mixup can also
boost these dynamic mixup augmentations with high performances on ImageNet-1k. Moreover, the
proposed DM(CE) can improve dynamic mixup variants on fine-grained classification benchmarks,
as shown in Table A6, with around +0.4∼0.9% average gains over MCE based on ResNet variants.

Table A7: Top-1 Acc (%)↑ and FGSM error (%)↓ on CIFAR-100 and Tiny-ImageNet based on
ResNet-18 training 400 epochs.

Datasets CIFAR-100 Tiny-ImageNet
Acc(%)↑ Error(%)↓ Acc(%)↑ Error(%)↓

Methods MCE DM(CE) MCE DM(CE) MCE DM(CE) MCE DM(CE)
Mixup 79.34 79.70 70.28 70.05 63.86 65.07 89.06 88.91
CutMix 79.58 79.77 87.43 86.84 65.53 66.45 89.14 88.79
ManifoldMix 80.18 81.06 72.50 72.19 64.15 65.45 88.78 88.52
PuzzleMix 80.22 80.58 79.76 79.53 65.81 66.13 91.83 92.05
AutoMix∗ 81.78 81.96 69.94 69.80 67.33 68.18 88.37 88.34

C.2 Adversarial Robustness

Since mixup variants are proven to enhance the robustness of DNNs against adversarial samples [77],
we compare the robustness of the original MCE and the proposed DM(CE) by performing the
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Figure A1: Experimental overviews of hard mixed sample mining. Left: Top-1 and top-2 accuracy
of mixed data based on ResNet-50 trained 100 epochs on ImageNet-1k. Prediction is counted as
correct if the top-1 prediction belongs to {ya, yb}; prediction is counted as correct if the top-2
predictions are equal to {ya, yb}. Compared with static policies like Mixup [77] and CutMix [74],
the dynamic method AutoMix [38] significantly reduces the difficulty of mixup classification and
alleviates the label mismatch issue [23] by providing more reliable mixed samples but also requires a
large computational overhead. Right: Taking Mixup as an example, our proposed decoupled mixup
cross-entropy, DM(CE), significantly improves training efficiency by exploring hard mixed samples
and alleviates the label mismatch issue.

FGSM [15] white-box attack of 8/255 ℓ∞ epsilon ball following [23]. Table A7 shows that DM(CE)
improves top-1 Acc of MCE while maintaining the competitive FGSM error rates for five popular
mixup algorithms, which indicates that DM(CE) can boost discrimination without disturbing the
smoothness properties of mixup variants.

C.3 Data-efficient Mixup with Limited Training Labels

To further DM whether data-efficient mixup training can be truly achieved, we conducted supervised
experiments on CIFAR-100 with different sizes of training data. 15%, 30%, and 50% of the CIFAR-
100 data are randomly selected as training data, and the test data are unchanged. The proposed
decoupled mixup uses DM(CE) as the loss function by default. From Table A8, we can see that
DM improves performance consistently without any computational overhead. Especially when using
only 15% of the data, DM can improve accuracy by 2%. Therefore, combined with the experimental
results of semi-supervised learning in Sec. 5.3 and Sec. 5.2, we can say that mixup training with DM
is more data-efficient with limited data.

Table A8: Top-1 Acc (%)↑ of image classification on CIFAR-100 with ResNet-18 using 15%, 30%,
and 50% labeled training sets.

15% 30% 50%
Methods MCE DM(CE) MCE DM(CE) MCE DM(CE)
Vanilla 42.48 - 56.41 - 64.32 -
Mixup 42.23 44.39 55.61 56.78 64.55 65.92
CutMix 43.81 44.85 55.99 57.14 64.38 65.87
SaliencyMix 42.95 44.01 55.42 56.51 64.56 66.10
PuzzleMix 42.67 43.87 56.19 57.36 64.74 66.26
Avg. Gain +1.36 +1.14 +1.48

C.4 Empirical Analysis

In addition to occlusion robustness in Figure 6, we analyze the top-1 and top-2 mixup classification
accuracy and visualize validation accuracy curves during training to empirically demonstrate the
effectiveness of DM in Figure A1.
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Figure A2: Ablation of hyper-parameters on ImageNet-1k based on ResNet-34. Left: analyzing
the balancing weight η in DM(CE); Middle: analyzing ξ in DM(BCE) when t is fixed to 1 and 0.5;
Right: analyzing t in DM(BCE) when ξ is fixed to 1 and 0.8.
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Figure A3: Sensitivity analysis of hyper-parameters on different datasets based on ResNet-18.

C.5 Ablation Study and Analysis

Ablation of hyper-parameters We first provide ablation experiments of the shared hyper-parameter
η in DM(CE) and DM(BCE). In Figure A2 left, the static (Mixup and CutMix) and the dynamic
methods (PuzzleMix and AutoMix) prefer η = 0.1 and η = 1, respectively, which might be
because the dynamic variants generate more discriminative and reliable mixed samples than the static
methods. Then, Figure A2 middle and right show that ablation studies of hyper-parameters ξ and t in
DM(BCE), where cutting-based methods (CutMix and AutoMix) prefer ξ = 0.8 and t = 1, while the
interpolation-based policies (Mixup and ManifoldMix) use ξ = 1.0 and t = 0.5.

Sensitivity Analysis To verify the robustness of hyper-parameter η, extra experiments are conducted
on CIFAR-100, Tiny-ImageNet, and CUB-200 datasets. Figure A3 shows the results consistent with
our ablation study in Sec. 5.4. Dynamic mixup methods prefer the large value of η (e.g., 1.0), while
static ones are more like a small value (e.g., 0.1). The main reason for this is the dynamic methods
generate mixed samples where label mismatch is relatively rare, relying on larger weights to achieve
better results, while the opposite is true in static methods.
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