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Abstract
Real-world graphs are generally generated from highly entangled latent factors. However, existing deep learning methods

for graph-structured data often ignore such entanglement and simply denote the heterogeneous relations between entities as

binary edges. In this paper, we propose a novel Multi-level Disentanglement Graph Neural Network (MD-GNN), a unified

framework that simultaneously implements edge-level, attribute-level, and node-level disentanglement in an end-to-end

manner. MD-GNN takes the original graph structure and node attributes as input and outputs multiple disentangled relation

graphs and disentangled node representations. Specifically, MD-GNN first disentangles the original graph structure into

multiple relation graphs, each of which corresponds to a latent and disentangled relation among entities. The input node

attributes are then propagated in the corresponding relation graph through a multi-hop diffusion mechanism to capture

long-range dependencies between entities, and finally the disentangled node representations are obtained through infor-

mation aggregation and merging. Extensive experiments on synthetic and real-world datasets have shown qualitatively and

quantitatively that MD-GNN yields truly encouraging results in terms of disentanglement and also serves well as a general

GNN framework for downstream tasks. Code has been made available at: https://github.com/LirongWu/MD-GNN.
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1 Introduction

The purpose of disentanglement is to decompose an entity,

such as a feature vector, into several interpretable compo-

nents to better understand and explain the behavior of a

learned model. Recently, there have been many methods

proposed to solve the disentanglement problem with

promising results. For example, Variational AutoEncoder

(VAE) [13] constrains the distribution of latent features to

be Gaussian and generates disentangled representations.

However, most previous efforts focused on the disentan-

glement for Convolutional Neural Networks (CNNs) [2, 7],

and few endeavors have been made on the disentanglement

of irregular non-Euclidean domains, such as structural

graph data.

In many real-world applications, including chemical

molecules, social networks, and citation networks, data can

be naturally modeled as graphs. Recently, Graph Neural

Networks (GNNs), especially Graph Convolutional Net-

works (GCN) [14], have demonstrated their powerful

potential to solve graph-related problems, such as com-

munity detection [20, 32] and anomaly detection [25].

DisenGCN [24], a pioneering work in graph disentangle-

ment, focuses on producing independent latent features for

node-level disentanglement, but without treatment of the

underlying relations between entities. These relations are in

many cases heterogeneous, but entangled together and

denoted merely as a single bare binary-valued edge.

However, edges often contain rich relation information, not

just binary indicators of structural connectivity, which

motivates us to implicitly uncover latent relations between

entities via edge-level disentanglement. More importantly,

the attributes of each entity are also highly entangled and

usually aggregated and transformed as a whole. However,

the attributes are generally associated with different rela-

tions to indicate what type of proximity exists between

entities, which helps us to explain the interactions between

entities for better attribute-level disentanglement.
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Figure 1 shows a motivating example to illustrate the

concept of disentanglement. It can be seen that all four

users share common interests in different aspects of Arti-

ficial Intelligence (AI), but their interactions have distinctly

different focuses. For example, the interaction between

John and Ally is mainly about ‘‘Detection, Tracking,

ImageNet‘‘, reflecting their common interest in the topic of

‘‘Computer Vision’’, while John and Ben interact more on

‘‘Reinforcement Learning‘‘. Without such fine-grained

relations and attributes, it is difficult to accurately charac-

terize nodes solely from binary graph structure, and this

hinders both model interpretability and performance on

downstream tasks.

In this paper, we propose a novel Multi-level Disen-

tanglement Graph Neural Network (MD-GNN) framework

to simultaneously achieve edge-level, attribute-level, and

node-level disentanglement in an end-to-end manner. MD-

GNN decomposes each binary-valued edge into a feature

vector, with each dimension corresponding to a disentan-

gled relation subspace. Meanwhile, the attention mecha-

nisms and orthogonal constraints are applied to help locate

the attributes associated with each relation space in the

input. Moreover, to capture long-range dependencies

between nodes, we introduce a relation diffusion mecha-

nism to expand the receptive field to multi-hop neighbors

in each relation space within a single layer. Finally, fea-

tures are aggregated and transformed on individual relation

space to produce new features for each node, and all

derived features from each relation space are concatenated

to produce block-wise disentangled node features.

Our main contributions are summarized as follows: (1)

Multi-level Disentanglement. We are the first to provide

explicit mathematical definitions for graph disentangle-

ment, including edge-level, attribute-level, and node-level

disentanglement, and propose a unified framework to

implement all three levels of disentanglement. (2) Rela-

tion-based Diffusion. Most previous efforts [16, 34] on

multi-hop message-passing are based on a given binary

structure or attention mechanism. In contrast, MD-GNN

incorporates the multi-hop diffusion mechanism for mes-

sage passing based on the disentangled relation spaces,

which provides a novel perspective for message-passing.

(3) Comparative Evaluation. The proposed MD-GNN is

evaluated on both synthetic and real-world datasets and

numerous visualizations are provided to demonstrate the

excellent disentanglement performance of MD-GNN.

2 Related work

2.1 Graph neural networks

Graph neural networks (GNN) are a family of neural net-

works that are widely used for graph representation

learning. A general GNN framework involves two key

computations for each node vi at every layer: (1)

AGGREGATE operation: aggregating messages from

neighborhood N i; (2) UPDATE operation: updating node

representation from its representation in the previous layer

and aggregated messages. Considering a L-layer GNN, the

formulation of the l-th layer is as follows:

m
ðlÞ
i ¼ AGGREGATEðlÞ fhðl�1Þ

j : vj 2 N ig
� �

h
ðlÞ
i ¼ UPDATEðlÞ h

ðl�1Þ
i ;m

ðlÞ
i

� � ð1Þ

where 1� l� L, h
ðlÞ
i is the embedding of node vi in the l-th

layer, and h
ð0Þ
i ¼ xi is the input feature. For node-level

tasks, the node representation h
ðLÞ
i can be directly used for

downstream tasks. However, for graph-level tasks, an extra

READOUT function is usually required to aggregate node

features to obtain a graph-level representation hg, as

follows:

hg ¼ READOUT fhðLÞi j vi 2 Vg
� �

¼ 1

jVj
X
i2V

h
ðLÞ
i ð2Þ

Recent years have witnessed a surge of interest in handling

graph-related tasks with Graph Neural Networks (GNNs).

There are two categories of GNNs: Spectral GNNs and

Spatial GNNs. The spectral GNNs define convolution

kernels in the spectral domain based on the graph signal

processing theory [31]. For example, GCN-Cheby [5] uses

Computer Vision Reinforcement 
Learning

Natural Language
Processing

John

Ben

AllyMaya

Fig. 1 A motivating example of our work. We take common interests

between users as relations (marked by lines with different colors and

widths) and the interaction frequency of textual content as attributes

(visualized as point clouds)
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the polynomial of the Laplacian matrix as the convolution

kernel, and Graph Convolutional Networks (GCN) [14] can

be considered as a first-order approximation of GCN-

Cheby with a self-loop mechanism. Besides, GraphHeat

[38] designs a more powerful low-pass filter through heat

kernel. Moreover, GWNN [39] replaces the eigenvectors

with wavelet bases so as to further improve the efficiency

of the model. Generally, spectral methods have good

interpretability for graph signal processing, but lack gen-

eralization [9].

The spatial GNNs focus on the design of aggregation

functions. For example, GraphSAGE [9] employs a gen-

eralized induction framework to efficiently generate node

embeddings for previously unseen data by using known

node feature information. Graph Attention Networks

(GAT) [14] extends the idea of GCN by introducing the

attention mechanism. Unlike APPNP [16], which incor-

porates personalized PageRank in the aggregation function,

GPRGNN [4] proposes a new Generalized PageRank GNN

that adaptively learns edge weights to jointly optimize the

feature extraction and topological information regardless of

the level of graph heterophily. Moreover, MAGNA [35]

proposes a principled way to incorporate multi-hop context

information into every layer of GNN attention computation

by diffusing the attention scores across the network. Some

other classical GNN variants include CensNet [11],

AdaLNet [18] and KrylovNetc [23]. For more detailed

reviews on GNNs, please refer to the survey [44].

Recently, many neural networks have been proposed

with expressive power beyond the 1-WL test

[3, 17, 26, 42]. However, these papers introduce extra and

domain-specific components beyond standard message-

passing GNNs. For example, the learned embeddings of

P-GNN [42] are tied with random anchor-sets, and thus are

not applicable to node/graph level tasks that require

deterministic node embeddings. To address this problem,

ID-GNNs [41] develops a class of message passing GNNs

and show that GNNs, after incorporating inductive identity

information, can surpass the expressive power of the 1-WL

test while maintaining benefits of efficiency, simplicity,

and broad applicability.

2.2 Disentanglement learning

The task of disentanglement learning has recently been an

important research topic toward interpretable AI. The

purpose of disentanglement is to decompose an entity, such

as a feature vector, into several interpretable components to

better understand and explain the behavior of a learned

model. In recent years, many approaches have been pro-

posed for learning disentangled representations based on

deep neural networks and have achieved promising results

with better robustness and interpretability [22]. In contrast

to earlier attempts that relied on hand-crafted variables

[36, 37], most recent works are based on the autoencoder

[7, 10, 13, 29] or generative model [2]. The autoencoder-

based methods generally constrain the latent feature gen-

erated from the encoder to make it independent in each

dimension. For example, Variational AutoEncoder (VAE)

[13] constrains the distribution of latent features to be

Gaussian. In contrast, the work of [29] disentangles latent

features by ensuring that each block of latent features

cannot be predicted from the rest. Besides, DSD [7] swaps

some of the latent features twice to achieve semi-super-

vised disentanglement. For the generative model, extra

information is introduced during the generation. For

example, InfoGAN [2] adds the class code to the model and

maximizes the mutual information between the generated

data and the class code. Despite many previous efforts in

CNN-based disentanglement, disentanglement learning

poses great challenges and there are still many unexplored

problems in the GNN domain. More importantly, it’s not

easy to apply existing strategies directly to GNN due to its

non-Euclidean property.

2.3 Graph disentanglement learning

Numerous methods have been proposed to deal with the

heterogeneous relations between nodes. For example, the

works of DisenGCN [24] and IPGDN [21], as pioneering

attempts, achieve node-level disentanglement through

neighbor routines that divide the neighbors of a node into

several mutually exclusive parts. Following the idea of

neighbor routines, ADGCN [43] further proposes an

adversarial regularizer that improves the separability

between different neighbor components, thus restricting

interdependence among components. In particular, GAT

applies a multi-head attention mechanism to prune irrele-

vant neighbors and discover intrinsic relations in the graph,

which can also be considered as a special kind of edge-

level disentanglement. The closest work to us is Fac-

torGCN [40], which performs edge-level disentanglement

by taking into account global-level topological semantics,

such as higher-order relations. However, our advantages

over FctorGNN are: (1) attribute-level disentanglement; (2)

a unified end-to-end framework for all three levels of dis-

entanglement; (3) explicit mathematical definitions; (4)

replacing multi-layer disentanglement with one-layer

relation diffusion. Another work similar to ours is GCAT

[19], which proposes a channel-aware attention mechanism

enabled by edge textual contents when aggregating infor-

mation and implements this mechanism in a graph

autoencoder framework. However, the textual content

between nodes is usually hardly accessible in practice, i.e.,

the relational topological semantics of the graph is under-

lying, which limits the application of GCAT, which is
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exactly the problem that graph disentanglement aims to

address. From a practical point of view, relation learning

with and without textual contents are two completely dif-

ferent research directions. While similar in motivation, the

experimental setup, datasets, and evaluation protocols of

this paper are completely different from those of GCAT.

Despite the promising results of the previous works,

there are still many problems left to be solved. First, the

current relation disentanglement is performed with all input

attributes without locating the attributes corresponding to

specific relations, i.e., attribute-level disentanglement has

not yet been fully explored. Second, the three closely

related tasks of edge-level, attribute-level, and node-level

disentanglement have never been tackled in a unified

framework. Last, despite being repeatedly mentioned, the

mathematical definitions of graph disentanglement are still

ambiguous and have not been clarified so far. The dis-

tinctive features of MD-GNN in comparison with related

methods are summarized in Table 1, where VAE can be

seen as a special version of node-level disentanglement

(without graph structure). MD-GNN enables all three

levels of disentanglement, for which no other methods can

achieve.

3 Methodology

3.1 Preliminary

Let G ¼ ðV; E;X Þ be a given attribute graph, where V is

the set of N nodes, E � V � V is the set of edges, and X is

the set of N node attributes. Each node v 2 V is associated

with an attribute vector xv 2 X , where xv 2 Rdin with din
being the dimension of input attributes. Besides, each edge

eu;v 2 E denotes a connection between node u and node

v. Next, we will state the mathematical definition on all

three levels of graph disentanglement and then devise a

well-thought-out instantiation for it. Unless particularly

specified, the notations used in this paper are illustrated in

Table 2.

The assumptions basis for this paper is that the disen-

tangled relations between entities should be node-inde-

pendent without hierarchical properties, which is more

compatible with real-world graph data. For example, if two

people are ‘‘friends‘‘, they should be disentangled as

‘‘friends’’ at different hierarchical levels of the relation

graph. A complete graph disentanglement includes three

levels: edge-level, attribute-level, and node-level disen-

tanglement. We first define three mapping functions:

w : E ! R, X : X ! M and / : V ! H for them. (1) The

edge-level disentanglement can be defined as a mapping

w : E ! R, where Ru;v ¼ wðeu;vÞ 2 RK is the disentangled

relation vector for edge eu;v, i.e., there are K latent relations

to be disentangled. (2) The attribute-level disentanglement

can be defined as a mapping X : X ! M, where Mu ¼
XðxuÞ ¼ mu;1;mu;2; . . .;mu;K

� �
2 Rdin�K denotes the dis-

entanglement for attribute xu, and ðMuÞi;k describes the

correlation of i-th element on the attribute vector xu with

relation k ð1� k�KÞ. In practice, it is the global consis-

tency (rather than local node-specific correlations) between

relations and attributes that we want to reveal1, which

means there exists a global attribute mask matrix M ¼
m1;m2; . . .;mK½ � holding for all nodes. (3) The node-level

disentanglement can be defined as / : V ! H, where hu ¼
/ðuÞ 2 Rdout is the disentangled features for node u, with

dout being the dimension of hu. Specifically, we would like

hu to be composed of K independent components, i.e.,

hu ¼ hu;1; hu;2; . . .; hu;K
� �

. The kth component hu;k 2 R
dout
K

describes the aspect of node u about relation k.

In this paper, we propose a novel instantiation, Multi-

level Disentanglement Graph Neural Network, to achieve

all three levels of graph disentanglement in a unified

framework in an end-to-end manner. As shown in Fig. 2,

MD-GNN guides the information aggregation and merging

among nodes via latent relations revealed by relation

learning and diffusion steps.

Table 1 Functional capability of different methods

VAE DisenGCN/ADGCN GAT FactorGCN MDGNN (ours)

Ability to process node features Yes Yes Yes Yes Yes

Ability to process graph structure No Yes Yes Yes Yes

Node-level disentanglement Yes Yes No Yes Yes

Graph-level disentanglement No No Yes Yes Yes

Attribute-level disentanglement No No No No Yes

Three-level disentanglements in a unified framework No No No No Yes

1 Different from image data, node attributes in graphs are usually

characterized as vectors with each dimension representing a specific

meaning. This suggests that the correlations between attributes and

relations should be node-independent.
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3.2 Relation learning step

Given an attributed graph G ¼ ðV; E;XÞ, we aim to learn a

relation vector Ru;v ¼ gðxu; xvÞ 2 RK between nodes u and

v if there exists an edge eu;v 2 E. To solve this problem, we

propose to conduct relation learning in a low-dimensional

subspace, done by multiplying the input attributes of nodes

with linear transformation matrices Wkf gKk¼1 where Wk 2
Rdin�F and F is the dimension of the subspace. In addition,

in order to locate the relation-specific attributes in the

input, we design a set of learnable attribute maskers

parameterized by mkf gKk¼1, where mk 2 Rdin masks out the

node attributes irrelevant to relation k, as follows:

h0k;i ¼ ðmk � xiÞWk ð3Þ

Then, the learning of relation graphs is formulated as

Rk;i;j ¼
1

1þ e�aT
k
½h0k;ikh0k;j�

ð4Þ

where 1� i; j�N, 1� k�K, and k denotes the concate-

nation operation. ak 2 R1�2F is the attention coefficient

with respect to relation k, similar to that of GAT [33].

However, different from most previous forms of attention-

based GNNs that normalize the attention coefficients

among all the neighbors of nodes, our proposed model

directly normalizes the attention score to [0, 1] with acti-

vation function sigmoidð�Þ. The motivation behind this is

twofold: (1) it endows the relation learning process with

more flexibility, making it free from the constraints of

neighborhood connectivity and helping to learn more

essential and intrinsic relation graphs; (2) normalization

prevents too large or small attention scores from

Table 2 Notations used in this paper

Notations Descriptions

Rm m-dimensional Euclidean space

a; a;A Scalar, vector, matrix

G A graph

V The set of nodes in graph G

E The set of edges in graph G

K Relation number

S Iteration step

L Layer number

IN Identity matrix of dimension N

N i 1-hop Neighborhood set of node vi

din Dimension of input node attribute

dm Dimension of hidden node features

F Dimension of relation subspace

Rk 2 RN�N A relation graph w.r.t relation k

Ak 2 RN�N A diffused relation graph w.r.t relation k

xi 2 Rd0 Feature vector of node vi

h
ðlÞ
i;k 2 RF Hidden node features of node vi w.r.t

relation k in the l-th layer

h
ðlÞ
i 2 RF Disentangled node feature of node vi in

the l-th layer

mi 2 Rdin Attribute mask of node vi

M Global attribute mask matrix

j � j The length of a set

� Element-wise multiplication operation

k Concatenation

Fig. 2 Illustration of the architecture of the proposed MD-GNN. The blue, green and red in the figure represent different relation graphs and their

corresponding node attributes and hidden features
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dominating the optimization process, which may lead to

gradient explosion or vanishing.

In our framwork, fmkgKk¼1 are defined as a set of

learnable parameters, with each mk corresponding to one

specific relation k. However, without other constraints, the

learned fmkgKk¼1 may fail to locate relation-specific attri-

butes due to non-sufficient distinguishability. Therefore,

we impose an orthogonality constraint [1] to guide them to

focus on different aspects:

Lo ¼ M>M� ð1� INÞ
�� ��2

F
ð5Þ

where M ¼ m1;m2; . . .;mK½ �, IN is a identity matrix, and 1

is a matrix composed of values 1. The underlying moti-

vation behind this constraint is that, first, a certain relation

is generally related to only some specific attributes; for

example, words such as ‘‘vocabulary‘‘ and ‘‘language’’

may be more relevant to natural language processing and

less relevant to computer vision. Second, the difference

between the attributes corresponding to different relations

is greater than the similarity, and the definition of word

‘‘attributes‘‘ inherently implies the intention to distinguish

different things.

Once all the relation graphs are computed, one relation k

now can be represented by a specific relation graph Rk.

However, without any other constraints, some generated

relation graphs may contain similar structures, degrading

the disentanglement performance and capacity of the

model. More importantly, it is not easy to directly maxi-

mize the gap between various relation graphs due to the

non-Euclidean property of graph structure. Therefore, we

first derive a graph descriptor Dk for each relation graph Rk

and ensure that the descriptor is related only to the graph

structure and not to the node features, and then we impose

constraints by maximizing the gap between graph

descriptors. First, we obtain the graph descriptors by the

following:

Dk ¼ f

�
P
�
A Rk;Zð Þ

��
ð6Þ

where Z ¼ z1; z2; � � � ; zNð Þ 2 RN�KF and zi ¼ kKk¼1h
0
i;k

ð1� i�NÞ with k being the concatenation operation. A is

a two-layer graph autoencoder [15] which takes Z and

relation graph Rk as inputs, and generates new features for

each node, Pð�Þ is a READOUT function defined in Eq.2

that performs global average pooling for all nodes, and f ð�Þ
is a fully connected layer used to generate graph-specific

descriptor Dk. Note that all the relation graphs Rkf gKk¼1

share the same input node features Z, thus the distin-

guishability of descriptors depends only on the distinction

of relation graph structures. The following discriminative

loss is then designed to maximize the differences between

different descriptors, given by

Ld ¼ �
XK�1

i¼1

XK
j¼iþ1

jjDi � Djjj22 ð7Þ

3.3 Relation diffusion step

Different from FactorGCN [40], which stacks multiple

disentanglement layers to enlarge the receptive field to

multi-hop neighbors, we propose a relation diffusion

mechanism that expands the receptive field to multi-hop

neighbors in each relation space within a single layer to

capture the long-range dependencies between nodes. First,

we extend the learned one-hop relation matrix Rk into a

multi-hop relation matrix Hk by:

Hk ¼
X1
i¼0

hiR
i
k ð8Þ

where hi ¼ að1� aÞi with teleport probability a 2 ð0; 1�
satisfies

P1
i¼0 hi ¼ 1, hi [ 0, and hi [ hiþ1. The powers of

relation matrix, Ri
k, give us the number of relation paths

from node u to node v of length up to i in the relation graph

Rk. In practice, the computation of Eq. 8 is not trivial, as it

involves the powers of the matrix. To solve this problem,

we approximate Hk ¼
P1

i¼0 hiR
i
k by a sequence of itera-

tions, as follows:

A
ðSþ1Þ
k ¼ ð1� aÞRkA

ðSÞ
k þ aAð0Þ

k ;A
ð0Þ
k ¼ IN ð9Þ

Theorem 1 limS!1 A
ðSÞ
k ¼ Hk.

Proof Let S[ 0 be the total iteration steps, and the result

of the S-th iteration is as follows:

A
ðSÞ
k ¼ ð1� aÞRkA

ðS�1Þ
k þ aAð0Þ

k

¼ ð1� aÞ2R2
kA

ðS�2Þ
k þ ð1� aÞaRkA

ð0Þ
k þ aAð0Þ

k

¼ � � �

¼ ð1� aÞSRS
kA

ð0Þ
k þ a

XS�1

i¼0

ð1� aÞiRi
kA

ð0Þ
k

¼ ð1� aÞSRS
k þ a

XS�1

i¼0

ð1� aÞiRi
k

 !
A

ð0Þ
k

¼ ð1� aÞSRS
k þ a

XS�1

i¼0

ð1� aÞiRi
k

Since a 2 ð0; 1� and Rk;i;j 2 ð0; 1Þ, we are therefore able to
prove that ð1� aÞSRS

k converges to 0 when S ! 1.

Finally, we can get
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lim
S!1

A
ðSÞ
k ¼ lim

S!1
ð1� aÞSRS

k þ a
XS�1

i¼0

ð1� aÞiRi
k

¼ lim
S!1

a
XS�1

i¼0

ð1� aÞiRi
k ¼

X1
i¼0

að1� aÞiRi
k

where að1� aÞi ¼ hi, thus

lim
S!1

A
ðSÞ
k ¼

X1
i¼0

að1� aÞiRi
k ¼

X1
i¼0

hiR
i
k ¼ Hk

We have proved theoretically that A
ðSÞ
k converges to the

value of Hk ¼
P1

i¼0 hiR
i
k as the total iteration step S ! 1.

The strategy for taking values of S is given in Sect. 4.4.

Note that while the idea of personalized PageRank has

been adopted in graph neural networks by APPNP [16], we

would like to emphasize our differences: (1) we perform

relation-based diffusion rather than based on binary graph

structure like APPNP; (2) three associated tasks of relation

learning, relation diffusion and transformation are com-

pletely separate in our framework, rather than entangled

together like APPNP; (3) we exploit the multi-hop mech-

anism for better exploration on the inherent relations

embedded in the graph, not just to help with feature

extraction. h

3.4 Feature aggregation and merging step

Once the relation diffusion is completed, we can obtain a

number of diffused relation graphs fAðSÞ
k gKk¼1. Then, in the

feature aggregation step, we aggregate the features in each

diffused relation graph A
ðSÞ
k accordingly to learn relation-

specific representations. Specifically, the new node repre-

sentations are generated by taking the weighted sum of its

neighbors, formulated as:

h
ðlþ1Þ
i;k ¼ r

P
j2N i;k

A
ðSÞ
k;i;jh

ðlÞ
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN i;kjjN j;kj
p Wðl;kÞ

 !
ð10Þ

where h
ðlþ1Þ
i;k represents the representation of node i that are

pertinent to relation k in ðlþ 1Þ layer. In the diffused

relation graph A
ðSÞ
k , N i;k is the S-hop neighbors of node i,

A
ðSÞ
k;i;j is the weighting coefficient from node i to j, andWðl;kÞ

is a linear transformation matrix.

The learned features from different relation space is

merged to produce block-wise disentangled features:

h
ðlþ1Þ
i ¼ kKk¼1h

ðlþ1Þ
i;k

ð11Þ

where h
ðlþ1Þ
i is the disentangled feature of node i in ðlþ 1Þ

layer. In Sect. 4.2, we demonstrate the effectiveness of

node-level disentanglement through the correlation analy-

sis of the learned disentangled features.

3.5 Architecture

FactorGCN stacks multiple disentanglement layers and sets

the number of relation graphs at different layers as

hyperparameters to achieve hierarchical disentanglement.

However, this may lead to three potential problems: (1)

Excessive hyperparameters affect the generality and scal-

ability, and how to set the different number of relation

graphs for each layer requires further exploration. (2)

Learning the relation graph for each layer separately brings

an excessive computational burden. (3) The assumptions

basis for hierarchical disentanglement does not always hold

true in the real world, because the relations between enti-

ties are constant without hierarchical properties. For

example, if two people are ‘‘friends,’’ they should be dis-

entangled as ‘‘friends‘‘ in different levels of the relation

graph. To solve these problems, we perform relation

learning and diffusion only once, and then perform L-layer

information aggregation and merging based on the diffused
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relation graph fAðSÞ
k gKk¼1. The total loss of MD-GNN is

defined as

L ¼ Lt þ b 	 Lo þ k 	 Ld ð12Þ

where Lo and Ld is the orthogonal loss and discriminate

loss proposed in Eqs. 5 and 7. b and k are the weights to

balance these two losses. Lt is the task-specific loss, which

may be taken to be binary cross-entropy for the multi-label

graph classification task, Mean Absolute Error (MAE) for

the graph regression task, and cross-entropy for the multi-

class node classification. The pseudo-code of the proposed

MD-GNN is summarized in Algorithm 1. Omitting the

dimensionality to simplify the notation, the computational

burden of the model mainly comes from three parts: (1)

relation learning (OðKNÞ); (2) relation diffusion

(OðKSEÞ); and (3) information aggregation (OðKEÞ), with
a total complexity of OðKðN þ E þ SEÞÞ. Since K and S is

usually \10 in practice, the complexity is linearly related

to the number of nodes jVj and edges jVj, in the same order

as other GCN and GAT variants.

4 Experiments

4.1 Experimental setups

In this section, we show the effectiveness of the proposed

MD-GNN qualitatively and quantitatively on both syn-

thetic and real-world datasets, and provide an ablation

study on its various components.

4.1.1 Datasets

The effectiveness of the proposed MD-GNN is evaluated

on five datasets. The first one is a synthetic dataset con-

taining a fixed number of predefined graphs as ground-truth

relation graphs. The second one is ZINC dataset [12] built

from molecular graphs. The other three are widely used

citation datasets including Cora [30], Citeseer [8], and

PubMed [27]. A brief description of datasets is given in

Table 3. Next, we introduce these datasets in detail, espe-

cially how to generate the synthetic dataset.

Synthetic dataset The synthetic dataset contains 10000

graphs, with 7000 for training, 1000 for validation, and

2000 for testing. The task for this dataset is multi-label

graph classification. To generate this synthetic dataset, we

first generate K = 6 predefined graphs that are well-known

graphs like grid-2d graph, balanced-tree graph, and

hypercube graph, from which we select 3 ground-truth

relation graphs and merge them as one sample (mixed

graph) as shown in Fig. 3. The type of the ground-truth

graph that the mixed graph generates from is taken as the

graph label. Each node in the mixed graph is associated

with an D-dimensional attribute vector C ¼ c1; c2; . . .; cD½ �,
with the attribute ci (

D
K 	 ðk � 1Þ\i� D

K 	 k) corresponding
to a specific relation k (1� k�K). For each attribute ci
(1� i�D), if ci is associated with relation k, its value will

be sampled from the Gaussian distribution Nðk; r2Þ. In the

paper, we have D = 30 and r = 5.0.

ZINC dataset The ZINC dataset contains 12000 graphs,

with 10000 for training, 1000 for validation, and 1000 for

testing. The task of this dataset is graph regression, where

we regress the constrained solubility properties of molec-

ular graphs. The types of bonds (edges) between atoms

(nodes) are provided as ground truths to evaluate the dis-

entanglement performance.

Cora, Citeseet, and PubMed datasets These three real-

world datasets are commonly used for node classification.

We use them to demonstrate that MN-GNN may well-serve

as a general GNN framework, even putting aside its

excellent disentanglement capability. In addition to the

dataset splitting consistent with the [14] (denoted as pub),

we follow the splitting strategy in [18] to experiment with

fewer and harder label rates. We evaluate with 3%, 1% and

0.5% labeled data in training set on Cora, 1%, 0.5% and

0.3% labeled data on Citeseer, and 0.1%, 0.05% and 0.03%

labeled data on PubMed. For these three datasets, we

randomly select 50% samples for validation and the rest for

testing.

4.1.2 Baselines

To demonstrate the powerful disentanglement capability of

MD-GNN, we compare it with three state-of-the-art

Table 3 Dataset statistic information

Dataset #Node per graph #Relation #Attribute per node train/val/test Task

Synthetic 30 6 30 7000/1000/2000 multi-label graph classification

ZINC 9-37 3 28 10000/1000/1000 graph regression

Cora (public) 2708 - 1433 140/500/1000 multi-class node classification

Citeseer (public) 3327 - 3703 120/500/1000 multi-class node classification

PubMed (public) 19717 - 500 60/500/1000 multi-class node classification
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disentangled GNNs, including DisenGCN, FactorGCN,

and ADGCN on the synthetic. Besides, MLP, GCN, and

GAT, as three representative methods, are also included for

comparison. For the ZINC dataset, we add MoNet [28] and

GatedGCN [6] as baselines. On the Cora, Citeseer, and

PubMed datasets, we compare MD-GNN with Graph-

SAGE, AdaLNet, APPNP, GPRGNN, CensNet, and Kry-

lovNet to demonstrate that MD-GNN serves well as a

general GNN framework even putting side its excellent

disentanglement capability.

4.1.3 Hyperparameters

The following hyperparameters are set for the synthetic

dataset: Adam optimizer with learning rate lr = 0.005 and

weight decay decay = 5e-4; Epoch E = 200; Layer number

L = 2 with middle dimension dm = 18; Relation number K =

6, subspace dimension F = 18; Iteration steps S = 3, teleport

probability a = 0.2; Loss weights b = k = 1.0. The exper-

imental settings of the other four datasets are the same as

above, but with several dataset-specific hyperparameters

determined by a toolkit - NNI, including relation number

K, iteration steps S, teleport probability a, and loss weights

b, k.

4.1.4 Evaluation protocol

For the downstream tasks, we adopt micro-F1 for the multi-

label graph classification on the synthetic dataset, MAE for

the graph regression on the ZINC dataset, and classifica-

tion accuracy for the multi-class node classification on the

Cora, Citeseer, and PubMed datasets. Furthermore, we use

two metrics—GEDE and C-Score—proposed by [40] to

evaluate the disentanglement performance. The first one is

Graph Edit Distance on Edge (GEDE), which restricts the

traditional GED by only allowing adding and removing the

edges, and thus obtains a score by Hungarian match

between the generated relation graphs and the ground

truths. Besides GEDE, we also care about the consistency

of generated relation graphs. In other words, the best-

matched pairs between the generated factor graphs and the

ground truths, optimally, should be identical across all

samples. We, therefore, use the second metric named

consistency score (C-Score), which is computed as the

average percentage of the most frequently matched relation

graphs. In this paper, each set of experiments is run five

times with different random seeds, and the mean and

standard deviation are reported as the final metric.

4.2 Qualitative evaluation

We first provide the qualitative evaluation results on the

performance of the edge-level, attribute-level, and node-

Mixed graph Ground truth relation graphs Disentangled graphs (FactorGCN) Disentangled graphs (MDGNN)

Fig. 3 Examples of the ground-truth and disentangled relation graphs on the synthetic dataset
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level disentanglement, corresponding to the visualization

of the disentangled relation graphs, relation-related attri-

butes, and correlation analysis of the learned disentangled

features in the first layer.

4.2.1 Disentangled relation graphs

Some disentangled relation graphs are provided in Fig. 3 to

give an intuitive understanding of the edge-level disen-

tanglement. We visualize the best-matched relation graphs

with ground truths. In particular, the redundant and missing

edges in the relation graphs are marked in red and blue,

respectively. It is found that only MD-GNN yields highly

consistent disentangled graphs with ground truths, while

the disentangled graphs of FactorGNN show lots of

misidentified edges.

4.2.2 Correlation of disentangled features

Figure 4 shows the correlation analysis of 108-dimensional

latent features with K ¼ 6 relations on the synthetic data-

set. We can see that only the correlation map of MD-GNN

exhibits six clear diagonal blocks, indicating that it can

extract highly independent hidden features with excellent

node-level disentanglement performance. None of the

compared methods, except FactorGCN and ADGCN, can

capture the mutual exclusion information. Nevertheless,

FactorGCN and ADGCN still lag far behind the proposed

MD-GNN in terms of node-level disentanglement

performance.

4.2.3 Relation-related attributes

An essential criterion for relation graphs is that they must

be interpretable, i.e., locating the attributes associated with

each relation graph and enabling attribute-level disentan-

glement. We show the ground truth and disentangled

attributes corresponding to each relation graph in Fig. 5.

Specifically, for each relation graph, we show only the

highest scoring attributes to make the number of corre-

sponding attributes equal to the true ones. It is clear that

MD-GNN is able to locate the attributes associated with

each relation and accomplish the task of attribute-level

disentanglement, whereas no other compared methods

possess this capability.

4.3 Quantitative evaluation

4.3.1 Evaluation on the synthetic dataset

The graph classification and disentanglement performance

on the synthetic dataset is reported in Table 4, where we

mark the disentanglement metrics of MLP and GCN as ‘‘-’’

since they are not capable of graph disentanglement. In

terms of classification performance evaluated by Micro-F1,

MD-GNN performs much better than other baselines,

which demonstrates that despite the powerful disentangle-

ment capability, it does not prevent MD-GNN from being a

general-purpose GNN that still outperforms conventional

models such as GCN and GAT on downstream tasks. For

example, the performance of MD-GNN is 4.4% and 2.3%

higher than GCN and GAT, respectively. Moreover, MD-

GNN achieves the best performance with respect to the

disentanglement performance evaluated by GEDE and C-

Score. Compared with the advanced method ADGCN,

MD-GNN has a 5.513 reduction in the GEDE metric and

improves the C-Score metric by 0.294.

4.3.2 Evaluation on the ZINC dataset

For the ZINC dataset, the type information of edges is

hidden during the training process and served as the ground

truth to evaluate the disentanglement performance. As

shown in Table 5, MD-GNN achieves the best perfor-

mance on both the disentanglement and downstream tasks.

We also show the performance of GatedGCN on this

dataset as a baseline for comparison, which utilizes the

type information of edges during the training process. In

MLP GCN GAT DisenGCN FactorGCN ADGCN MDGNN (Ours)

Fig. 4 Feature correlation analysis of 108-dimensional latent features on the synthetic dataset

Relation one Relation two

Relation fiveRelation four

Relation three

Relation six

Fig. 5 Ground-truth (upper row) and disentangled (lower row)

attributes corresponding to each relation (a total of six relations) in

the input on the synthetic dataset
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terms of graph regression performance evaluated by MAE,

MD-GNN performs much better than other baselines, for

example, its MAE performance is 0.031 and 0.010 lower

than ADGCN and FactorGCN, respectively. Even when

compared with the state-of-the-art method GatedGCN,

MD-GNN still shows advantages. In terms of disentan-

glement performance, MD-GNN is the best in the metric C-

score, and second only to FactorGNN in the metric GEDE.

4.3.3 Evaluation on three citation datasets

The focus of this paper is to explore disentanglement on

heterogeneous graphs rather than to design more powerful

GNNs to achieve state-of-the-art performance for all tasks

or efficiently deal with large-scale graphs. Therefore, we

also evaluate MD-GNN on three widely used node classi-

fication datasets with four different data splits to see the

performance of MD-GNN as a general GCN framework.

Since there is no ground truth relation between nodes, we

only report the classification accuracy in Table 6. It can be

observed MD-GNN achieves the best overall performance,

showing the potential of MD-GNN as a general GNN

framework, even putting aside its excellent disentangle-

ment capability. More importantly, although DisenGCN

and FactorGCN can be considered as the disentangled

versions of GCN, their performance is not always better

than that of GCN, and in some settings, even worse than

GCN. For example, on the Cora dataset with 3% labels, the

classification accuracy of DisenGCN and FactorGNN are

1.8% and 0.7% lower than that of GCN, respectively.

Furthermore, while ADGCN shows better performance

than the classical GNN model for all datasets and settings,

it still lags behind MD-GNN, especially when labeled data

is severely limited. For example, the performance of MD-

GNN improves ADGCN by 6.8% and 8.4% on the Citeseer

dataset with 0.3% labels and the PubMed dataset with

0.03% labels, respectively.

4.4 Ablation study & sensitivity analysis

4.4.1 Ablation study

This evaluates the effectiveness of various components in

the proposed MD-GNN framework through five sets of

experiments: the model without (A) Relation Learning (w/

o RL); (B) Multi-hop Relation Diffusion (w/o Diffusion);

(C) Discriminative Loss (w/o Ld); (D) Orthogonal Loss (w/

o Lo), and the (E) the full model. Limited by space, only

the results on synthetic, Cora (0.5%), Citeseer (0.3%), and

PubMed (0.03%) datasets are provided in the main paper.

After analyzing the reported results as shown in Fig. 6, we

can draw the following conclusions: (1) Relation learning

and diffusion contribute to achieving better performance on

downstream tasks. Besides, the absence of multi-hop

relation diffusion deteriorates the disentanglement perfor-

mance slightly, which demonstrates the benefit and

importance of long-range dependencies between nodes for

disentanglement tasks. In addition, the absence of relation

learning makes the model lose its ability to disentangle, so

the disentanglement-related metrics (GEDE and C-score)

are not reported. (2) The discriminative loss Ld and the

orthogonal loss Lo help to achieve better edge-level and

attribute-level disentanglement, and more importantly, the

introduction of these two losses does not deteriorate (and

even improve) the performance of downstream tasks thus

not affecting the potential of MD-GNN as a general GNN

framework.

4.4.2 Sensitivity analysis

Figure 7 shows the sensitivity analysis with respect to the

key hyperparameters like assumed relation number K and

multi-hop iteration step S. When varying K, the iteration

step S is set to a fixed value; when varying S, the assumed

relation number K is fixed. In the figure, the best perfor-

mance is circled. The performance gain of MD-GNN

becomes larger as the number of assumed relation number

K and iteration step S increase. However, when the number

of K and S become too large, the disentanglement and

downstream tasks become more challenging, which in turn

Table 4 Graph classification and disentanglement performance on the synthetic dataset

MLP GCN GAT DisenGCN FactorGCN ADGCN MD-GNN

(Ours)

Random

Micro-F1 " 0.898±0.003 0.916±0.004 0.937±0.006 0.904±0.007 0.945±0.003 0.951±0.006 0.960–0.004 0.196±0.002

GEDE # - - 19.311±3.282 16.283±3.466 16.435±3.572 15.392±3.454 9.879–3.326 39.424±5.56

C-Score " - - 0.288±0.065 0.344±0.031 0.478±0.047 0.428±0.067 0.722–0.037 0.286±0.008
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yields lower performance gains. The performance gain

depends heavily on the properties of the graph data.

Besides, since the synthetic dataset is a dataset specifically

for evaluating disentanglement, its performance deterio-

rates severely when K deviates from the ground truth. In

practice, empirical results show that taking 3�K� 8

generally yields better results. However, since how to

precisely select K is a problem about estimating the

intrinsic property (complexity) of graphs, we use the val-

idation set to determine the empirically optimal K.

5 Discussion

In the proposed MD-GNN framework, the three closely

related tasks of edge-level, attribute-level, and node-level

disentanglement are tackled in a unified end-to-end

framework. Next, we explain how this is achieved from the

following three aspects: (1) edge-level disentanglement is

achieved through relation learning defined in Eq. 4, which

produces multiple relation graphs, each corresponding to

one latent relation between nodes; (2) we define a learnable

mask for each relation as in Eq. 3 and then achieve attri-

bute-level disentanglement through the orthogonality con-

straint defined in Eq. 5; (3) node-level disentanglement is

achieved by propagating and aggregating the input node

attributes in each relation graph to obtain disentangled

representations.

In terms of disentanglement performance, extensive

qualitative and quantitative experiments have demonstrated

that MD-GNN outperforms existing methods, including the

state-of-the-art methods FactorGCN and ADGCN. Even

putting aside its excellent disentanglement performance,

MD-GNN still achieves much better performance than

classical GNN models, such as GCN and GAT, which

shows the potential of MD-GNN as a general GNN

framework. Note that we have not tested the graph clas-

sification performance on any public dataset for the fol-

lowing three reasons: (1) The focus of this paper is to

explore disentanglement on heterogeneous graphs rather

than to design more powerful GNNs to achieve state-of-

the-art performance for all graph-related tasks. (2) The

reason we evaluated the micro-F1 metric on the synthetic

dataset is to show that MD-GNN is endowed with strong

disentanglement capabilities without compromising its

performance as a general-purpose GNN for downstream

tasks. (3) All related works on graph disentanglement,

including DisenGNN, FactorGNN, and ADGCN, all

mainly focus on the node classification task, and this paper

just follows their experimental settings for a fair

comparison.

(a)

(b)

Fig. 6 Ablation study. a shows the accuracy on the Cora, Citeseer,

and PubMed datasets. b shows the three evaluation metrics on the

synthetic dataset

(a) (b) (c) (d)

Fig. 7 Sensitivity analysis of key hyperparameters like relation

number K and iteration step S. a, b is the performance of downstream

task (Accuracy and Micro-F1) with different K and S on the four

datasets. c, d shows the disentanglement performance (GEDE and

C-Score) with different K and S on the synthetic dataset

Neural Computing and Applications (2022) 34:9087–9101 9099

123



Despite the great progress, some challenging problems

on graph disentanglement are still left for future work: (1)

If the relation number K is unknown, how to estimate it

from the given graph data? (2) How to implement user-

defined graph disentanglement, i.e., given the specific

semantics, learning the corresponding representations? (3)

How to combine disentanglement with graph explainability

for analyzing the learned model.

6 Conclusion

The proposed MD-GNN framework implements all three

levels of disentanglement simultaneously in a unified

framework in an end-to-end manner. The MD-GNN model

learns several interpretable relations from an input binary

structure, each representing a latent and disentangled

relation between entities. More importantly, we also locate

the input attributes associated with each relation. The

learned relations are then diffused in each relation space

through a multi-hop diffusion mechanism to capture long-

range dependencies and produce disentangled features

through information aggregation and merging. Extensive

experiments on synthetic and real-world datasets have

shown that the MD-GNN outperforms other leading

methods on both disentanglement and downstream tasks,

indicating the proposed MD-GNN framework can serve as

a general GCN framework with the capability of multi-

level graph disentanglement.
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