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ABSTRACT
Contrastive graph node clustering via learnable data augmentation
is a hot research spot in the field of unsupervised graph learn-
ing. The existing methods learn the sampling distribution of a
pre-defined augmentation to generate data-driven augmentations
automatically. Although promising clustering performance has
been achieved, we observe that these strategies still rely on pre-
defined augmentations, the semantics of the augmented graph
can easily drift. The reliability of the augmented view seman-
tics for contrastive learning can not be guaranteed, thus limiting
the model performance. To address these problems, we propose
a novel CONtrastiVe Graph ClustEring network with Reliable
AugmenTation (COVERT). Specifically, in our method, the data
augmentations are processed by the proposed reversible perturb-
recover network. It distills reliable semantic information by recov-
ering the perturbed latent embeddings. Moreover, to further guar-
antee the reliability of semantics, a novel semantic loss is presented
to constrain the network via quantifying the perturbation and re-
covery. Lastly, a label-matching mechanism is designed to guide
the model by clustering information through aligning the semantic
labels and the selected high-confidence clustering pseudo labels.
Extensive experimental results on seven datasets demonstrate the ef-
fectiveness of the proposed method. We release the code and appen-
dix of CONVERT at https://github.com/xihongyang1999/CONVERT
on GitHub.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering; • Computing methodologies→ Cluster analysis.
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1 INTRODUCTION
Thanks to the strong representation capacity, graph learning algo-
rithms have attracted more attention in many fields of multimedia,
including the recommendation system [3–5, 12, 38, 40], knowledge
graph [16–18], temporal graph [19–21], molecular graph [52–55]
and so on. Among those directions, graph contrastive clustering
[9, 11, 22–24, 26, 48, 56] has become a hot research spot, which en-
codes the nodes with graph neural networks into the embeddings
and divides them into disjoint clusters in the unsupervised scenario.

In general, prevailing graph contrastive clustering algorithms
initially create augmented graph views through perturbations in
node attributes or edges. Subsequently, these methods aim to bring
identical samples in different views closer together while simulta-
neously distancing distinct samples from each other. Graph data
augmentations are adopted as a crucial technique to construct con-
trastive views. More recently, learnable graph data augmentation
has gained significant attention.

Specifically, through a Bayesian manner, JOAO [50] proposed
an augmentation strategy to automatically select augmentations
among many pre-defined candidates for graph classification. Al-
though verified effective, the augmentations selected still depend on
the pre-defined schemes and are not learnable. To further alleviate
this problem, AD-GCL [31] designed a learnable edge augmenta-
tion by Bernoulli distribution. NCLA [30] proposed a learnable
topology augmentation method with the multi-head graph atten-
tion mechanism. However, the learnable strategy for node level is
neglected. Moreover, by acquiring knowledge of a probability distri-
bution, AutoGCL [49] introduced an auto-augmentation approach
that involves masking or dropping nodes. The model performance
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Figure 1: Illustration of the semantic drift.

is guaranteed by the proposed learnable augmentation strategy.
However, previous methods still rely on pre-defined augmentations.
The semantics of the augmented view easily drift. As shown in
Fig. 1 (a), we observe that when dropping nodes in the molecule
graph, the semantic information will dramatically change. Similarly,
Fig. 1 (b) demonstrates that the relationship will be represented
incorrectly by dropping the connection in the social network. The
semantic reliability of the constructed views can not be guaranteed,
thus limiting model clustering performance.

To address these issues, we propose a novel CONtrastiVe Graph
ClustEring network with Reliable AugmenTation (COVERT). In
our method, a reversible perturb-recover network is designed to
generate augmented views by neural network optimization. Con-
cretely, the features of the augmented view are extracted by the
perturb and recover operations in the latent space, thus improving
the reliability of the semantics. In addition, we propose a novel
semantic loss to further guarantee the reliability of semantics by
quantifying the perturbation and the recovery of the reversible
network. Moreover, the neural networks are guided with clustering
information by aligning the selected high-confidence clustering
pseudo labels and the semantic labels.

In those manners, we guarantee the reliability of the embedding
semantics in dual aspects. Firstly, for the network aspect, we design
a reversible perturb-recover network. The recover network restores
the embeddings generated by the perturbed network. Thus the
semantics of the original view and the augmented view are more
similar. Secondly, for the optimization aspect, we design a semantic
loss to further guarantee reliability by pushing close the similarity
matrix of the embeddings. We summarize the key contributions of
this paper as follows:

• We propose a contrastive graph clustering method with re-
liable augmentation, termed CONVERT, by designing a re-
versible perturb-recover network to generate the augmented
view with reliable semantics.

• To further guarantee the reliability of the semantic, we design
a semantic loss by quantifying the perturbation and recovery.

• In order to guide the model with clustering information, a
label-matching mechanism is proposed to align the selected
high-confidence pseudo labels and semantic labels.

• Extensive experimental results on seven datasets have demon-
strated that CONVERT outperforms the existing state-of-the-
art deep graph clustering algorithms. Moreover, the effective-
ness of the proposed modules is verified by ablation studies.

Table 1: Notation summary.

Notations Meaning

X ∈ R𝑁×𝐷 The Attribute Matrix
X̃1 ∈ R𝑁×𝐷 The Perturbed Attribute Matrix
A ∈ R𝑁×𝑁 The Adjacency Matrix
D ∈ R𝑁×𝑁 The Degree Matrix
E ∈ R𝑁×𝐷 The Node Embeddings
H𝑣2

𝑝 ∈ R𝑁×𝐷 The Perturbed Embeddings
H𝑣1

𝑟 ∈ R𝑁×𝑁 The Recovered Embeddings
S ∈ R𝑁×𝑁 The Similarity Matrix

h High-confidence Clustering Pseudo Label
p𝑠𝑒 The Semantic Label

2 RELATEDWORK
2.1 Deep Graph Clustering
Graph learning methods [39, 46] have attracted great attention re-
cently. Deep graph node clustering is an important unsupervised
downstream task. It aims to learn the graph underlying semantic
information and divide the nodes into different clusters. The exist-
ing clustering algorithms can be classified into three categories, i.e.,
generative algorithms [2, 8, 33, 35], adversarial algorithms [29, 32],
and contrastive algorithms [6, 11, 23, 25, 56]. Contrastive learn-
ing algorithms have obtained great success in the field of graph
[43, 45, 57]. In this paper, we mainly focus on contrastive clustering
algorithms. Data augmentation plays a crucial role in contrastive
clustering algorithms. To be specific, MVGRL [11], GDCL [56], and
DCRN [23] utilize the graph diffusionmatrix as the augmented view.
Different from the above algorithms, SCAGC [44] conducts random
edge perturbation to construct the augmented view. Regarding fea-
ture operation, both DCRN and SCAGC execute augmentations on
node attributes through attribute corruption. Despite their proven
effectiveness, the strong clustering performance of these techniques
is intricately tied to the judicious selection of data augmentations.
In recent developments, certain graph augmentation methodolo-
gies [15] emphasize that specific data augmentations may trigger
semantic drift. To alleviate this problem, in our paper, we design a
reversible network to generate the augmented view in a perturb-
recover way. The semantics of embeddings are guaranteed by the
reversible network, thus avoiding semantic drift.

2.2 Graph Data Augmentation
Graph data augmentation [41, 42, 51] has emerged as a dominant
technique in graph contrastive learning. The existing data aug-
mentation methods could roughly be divided into three classes. 1)
Augment-free methods. AFGRL [15] devises the augmented view
by identifying nodes equipped with local and global data, eschew-
ing the need for augmentation. However, this approach doesn’t
assure the augmented view’s reliability, potentially resulting in
subpar performance. 2) Adaptive augmentation techniques. In the
realm of graph classification, JOAO [50] harnesses the potential to
autonomously choose data augmentation through learning the sam-
pling distribution of predefined augmentations. Furthermore, GCA
[57] enhances augmentation adaptability by integrating diverse
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Figure 2: Illustration of CONVERT. In our method, we design a reversible perturb-recover network to generate the augmented
view. The semantic information is guaranteed by the perturbation and recovery operation in the latent space. Besides, we
design a semantic loss to further improve the reliability of the augmented views. Detailed descriptions are shown in Fig.3.
Lastly, we design a label-matching mechanism to utilize the clustering information. The selected high-confidence clustering
pseudo labels align the semantic labels p𝑠𝑒 with the label matching loss L𝑀 , thus guiding the model to have better performance.

priors targeting the graph’s topological and semantic attributes.
However, the augmentation is still not optimized by the neural
network in the adaptive augmentation methods. 3) Learnable data
augmentation. An edge-level learnable strategy is designed in AD-
GCL [31] while neglecting the augmentations on the node level.
Similarly, NCLA [30] proposed a learnable topology by the multi-
head graph attention mechanism. However, those two methods
neglected the learnable strategy for the node level. Subsequently,
AutoGCL [49] introduced a probability-driven learnable strategy.
Despite yielding improved the model performance, AutoGCL re-
mains reliant on existing and predefined data augmentations. In
contrast, our work introduces a learnable augmentation approach
at the embedding level. Through a reversible network, we generate
the augmented view, allowing the network to optimize the view’s
quality during training.

3 METHOD
In this section, we introduce a novel Contrastive Graph Clustering
method with Reliable Augmentation (CONVERT). The compre-
hensive CONVERT framework is illustrated in Figure 2. Primarily,
CONVERT encompasses two key modules: the Learnable Augmen-
tation Module with Reliable Augmentation and the Label-Matching
Module. Detailed definitions for these modules will be presented in
subsequent sections.

3.1 Notations
For an undirected graph G = {X,A}, consider V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }
as a set of 𝑁 nodes categorized into 𝐾 classes. Here, X ∈ R𝑁×𝐷

denotes the attribute matrix, while A ∈ R𝑁×𝑁 stands for the
attribute matrix and the original adjacency matrix. The degree
matrix is symbolized as D = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑𝑁 ) ∈ R𝑁×𝑁 , where
𝑑𝑖 =

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈E 𝑎𝑖 𝑗 . The graph Laplacian matrix is defined as L =

D − A. Utilizing the renormalization technique Â = A + I from
GCN [14], the symmetric normalized graph Laplacian matrix is

represented as L̃ = I−D̂− 1
2 ÂD̂− 1

2 . A summary of essential notations
is provided in Table 1.

3.2 Reliable Augmentation Module
In this subsection, we design a reversible network to obtain the
augmented views with reliable semantics. Specifically, we propose
a perturb network and a recover network.

To avoid the entanglement of graph convolutional filters and
weight matrices, following AGE [6], we firstly adopt the Laplacian
filter to obtain the smoothed attribute matrix X̃1 as follows:

X̃1 = (I − L̃)tX, (1)

where L̃ represents the symmetric normalized graph Laplacian
matrix, while t denotes the layer number of the Laplacian filter.
Subsequently, we leverage the perturbation network 𝑝 (·;𝜃 ) to apply
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Figure 3: Illustration of the semantic loss L𝑆 . Through
pulling close S(E

𝑣1 ,H𝑣1
𝑟 ) and S(E

𝑣1 ,H𝑣2
𝑝 ) , the perturbation and

recovery could be quantified, thus guaranteeing the reliabil-
ity.

perturbations to the attribute matrix, leading to the formation of
the perturbed attribute matrix X̃2, formulated as follows:

X̃2 = 𝑝 (X̃1;𝜃 ) . (2)
After that, we extract the original embeddings E𝑣1 and the per-

turbed embeddingsE𝑣2 for the X̃1 and X̃2 with the encoder network:

E𝑣1 = Encoder(X̃1);E𝑣1𝑖 =
E𝑣1
𝑖

| |E𝑣1
𝑖
| |2
, 𝑖 = 1, 2, . . . , 𝑁

E𝑣2 = Encoder(X̃2);E𝑣2𝑗 =
E𝑣2
𝑗

| |E𝑣2
𝑗
| |2
, 𝑗 = 1, 2, . . . , 𝑁 .

(3)

We adopt the multi-layers perceptions (MLPs) as the encoder
network. To obtain the reliable semantic augmented views, we de-
sign a recover network 𝑟 (· ;𝜃 ) to recover the perturbed embeddings
as follows:

H𝑣1
𝑟 = 𝑟 (E𝑣2 ;𝜃 ), (4)

where H𝑣1
𝑟 denotes the recovered embeddings. Here, we adopt the

two layers of multi-layers perceptions as the perturb network and
the recover network, respectively. In this manner, the perturbed
embeddings could be recovered by 𝑟 (· ;𝜃 ). In embedding space, the
recover network restores the perturbed semantics. Therefore, the
recovered embeddings have more similar semantics to the original
embeddings. In addition, we implement the perturb to the original
embeddings E𝑣1 by the perturb network 𝑝 (· ;𝜃 ) as formulated:

H𝑣2
𝑝 = 𝑝 (E𝑣1 ;𝜃 ), (5)

whereH𝑣2
𝑝 is the perturbed embeddings. Since the smoothed attrib-

uted matrix X̃ has been perturbed, we conduct the same operation
for the original embeddings to obtain the perturbed embeddings.
In this way, the semantics of the perturbed embeddings are similar
to the same perturbed operation in latent space.

Aiming to further guarantee reliable semantics of the augmented
view, as shown in Fig. 3, we calculate the similaritymatrix S between
𝑖-th sample in the first view and 𝑗-th sample in the second view as
follows:

Algorithm 1 CONVERT
Input: The input graph G = {X,A}; The iteration number 𝐼 ;
High-confidence epoch 𝑁

Output: The clustering result R.
1: for 𝑖 = 1 to 𝐼 do
2: Acquire the smoothed attribute matrix X̃1 and perturbed attribute

matrix X̃2.
3: Encoder the attribute to obtain the embeddings E𝑣1 and E𝑣2 .
4: Obtain the perturbed embedding H𝑣2

𝑝 and the recovered embedding
H𝑣1

𝑟 with Eq.(4) and (5).
5: Fuse E𝑣1 and E𝑣2 to to yield E, followed by K-means for clustering

results.
6: Calculate the similarity matrix using Eq.(6).
7: Obtain the semantic labels p𝑠𝑒 and high-confidence pseudo labels h

via Eq.(10) and (9).
8: if 𝑖 > 𝑁 then
9: Calculate the label-matching loss L𝑀 via Eq.(11)
10: end if
11: Calculate the semantic loss L𝑆 with Eq. (7).
12: Calculate the contrastive loss L𝑐 with Eq. (12).
13: Update the entire network by minimizing L in Eq. (13).
14: end for
15: Perform K-means on E to obtain the final clustering result R.
16: return R

S(E
𝑣1 ,H𝑣1

𝑟 )
𝑖 𝑗

= E𝑣1
𝑖

⊙ H𝑣1
𝑟 𝑗
,

S
(E𝑣1 ,H𝑣2

𝑝 )
𝑖 𝑗

= E𝑣1
𝑖

⊙ H𝑣2
𝑝 𝑗
,

(6)

where ⊙ denotes the Hadamard product. Besides, S(E
𝑣1 ,H𝑣1

𝑟 ) repre-
sents the similarity matrix between the original embeddings and
the recovered embeddings. S(E

𝑣1 ,H𝑣2
𝑝 ) denotes the similarity ma-

trix of the original embeddings and the perturbed embeddings. S
can better reveal the changing of semantics by quantifying pertur-
bation and recovery. Subsequently, we enhance the reliability of
embedding semantics by forcing the similarity matrix to pull close:

L𝑆 =

S(E𝑣1 ,H𝑣1
𝑟 ) − S(E

𝑣1 ,H𝑣2
𝑝 )

2
𝐹
. (7)

Through Eq.7, we constrain the network to restore the perturbed
embeddings. In this manner, the quantification of perturb and re-
store is mutually reinforcing, thus generating the augmented view
with more reliable semantics.

Different from previous augmentation methods, our method can
construct more reliable semantic augmented views. The reasons
are as follows. On the one hand, instead of using normal graph
augmentations, e.g., feature masking or edge perturbing, the aug-
mented views are generated by the reversible network. The process
of the augmented view is learnable and can be optimized by the
network. On the other hand, the semantics of the augmented view
is guaranteed by the perturb-recover procedure. The perturbed
embeddings are restored through the recover network.

3.3 Label-Matching Module
After encoding, we firstly fuse the embeddings to obtain consensus
embeddings E as below:
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E =
1
2
(E𝑣1 + E𝑣2 ) . (8)

Then we implement K-means [10] to obtain clustering results.
To utilize more reliable clustering information, we obtain the high-
confidence pseudo labels h through selecting clustering pseudo
labels p. Formally,

h = top(p), (9)

where top(·) is the confidence measure function to select the top 𝜏
clustering pseudo labels.

In the unsupervised clustering scene, the supervision informa-
tion could be extracted by the high-confidence clustering pseudo
labels. We design a matching mechanism between the semantic
labels and the high-confidence pseudo labels to further guide the
network. Specifically, we conduct the Softmax for the embeddings
to obtain the semantic labels p𝑠𝑒 as follows:

p𝑠𝑒𝑖 = Softmax(E𝑣𝑖 ), 𝑖 ∈ 1, 2. (10)

Subsequently, we match the semantic labels p𝑠𝑒 and the high-
confidence pseudo labels h by:

L𝑀 = CE(p𝑠𝑒𝑖 ,h), 𝑖 ∈ 1, 2, (11)

where CE(·) is the Cross-Entropy loss [7]. Through the matching
mechanism, the quality of the semantics can be further improved
with the high-confidence pseudo labels. Furthermore, in order to
enhance the precision of clustering pseudo labels, we employ a
two-stage training strategy aimed at bolstering the network’s dis-
criminative capability. Specifically, during the second stage, we opt
for high-confidence pseudo labels to enact the matching mecha-
nism.

3.4 Loss Function
The proposed CONVERT jointly optimizes three objectives, includ-
ing the semantic loss L𝑆 , the label matching loss L𝑀 , and the
contrastive loss L𝐶 . More precisely, we employ L𝐶 to amplify the
similarity among positive samples while diminishing it among neg-
ative samples. The contrastive loss for the 𝑖-th sample in the 𝑗-th
view can be articulated as follows:

ℓ (E𝑖 ,E𝑗 ) = − log
esim(E𝑖 ,E𝑗 )

esim(E𝑖 ,E𝑗 ) + ∑
𝑘≠𝑖

esim(E𝑘 ,E𝑖 )
,

L𝐶 =
1
2𝑁

𝑁∑︁
𝑖=1

[ℓ (E𝑖 ,E𝑗 ), ℓ (E𝑗 ,E𝑖 )]

(12)

where sim(·) represents the function to calculate the similarity, i.e.,
cosine similarity. Here, we calculate the contrastive loss for the
view pairs (E𝑣1 ,H𝑣1

𝑟 ) and (E𝑣2 ,H𝑣2
𝑝 ). In summary, the objective of

CONVERT is formulated as:

L = L𝐶 + 𝛼L𝑆 + 𝛽L𝑀 , (13)

where 𝛼 and 𝛽 are the trade-off hyper-parameters. The detailed
learning procedure of CONVERT is illustrated in Algorithm 1.

Table 2: Statistics summary of seven datasets.

Dataset Type Sample Dimension Edge Class

CORA Graph 2708 1433 5429 7
CITESEER Graph 3327 3703 4732 6
AMAP Graph 7650 745 119081 8

CORAFULL Graph 19793 8710 63421 70
BAT Graph 131 81 1038 4
EAT Graph 399 203 5994 4
UAT Graph 1190 239 13599 4

4 EXPERIMENT
In this section, we conduct the experiments to verify the effective-
ness of the proposed CONVERT through answering the following
questions:

• RQ1: How effective is CONVERT for graph node clustering?
• RQ2: How does the proposed module influence the perfor-
mance of CONVERT?

• RQ3: How about the efficient about CONVERT ?
• RQ4: How do the hyper-parameters impact the performance
of CONVERT?

• RQ5: What is the clustering structure revealed by CON-
VERT?

4.1 Datasets & Metric
Benchmark DatasetsWe conduct extensive experiments to ver-
ify the effectiveness of CONVERT on seven benchmark datasets,
including CORA 1, CITESEER 2, BAT [48], EAT [47], UAT [48],
AMAP [28], and CORAFULL [25]. Detailed dataset statistics are
summarized in Table 2.

Evaluation Metrics The evaluation of clustering performance
encompasses four extensively utilized metrics: Accuracy (ACC),
Normalized Mutual Information (NMI), Average Rand Index (ARI),
and macro F1-score (F1) [36, 37].

4.2 Experimental Setup
The experimental setup comprises a desktop computer equipped
with an Intel Core i7-7820x CPU, an NVIDIA GeForce RTX 2080Ti
GPU, 64GB RAM, and the PyTorch deep learning platform. To min-
imize the influence of randomness, each method is executed ten
times, and the results are reported in terms of mean values with cor-
responding standard deviations. Training all methods is continued
for 400 epochs until convergence. We employ the Adam optimizer
to minimize the total loss and subsequently perform K-means on
the acquired embeddings. A two-stage training strategy is adopted
to ensure dependable clustering pseudo labels. In the first stage, the
model’s discriminative capacity is improved, while the second stage
involves the utilization of high-confidence clustering pseudo labels
within the matching module. Comprehensive parameter settings
are elaborated in Table 1 of the Appendix.

1https://relational.fit.cvut.cz/dataset/CORA
2http://citeseerx.ist.psu.edu/index
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Table 3: The clustering performance is gauged through ten runs, encompassing mean values and standard deviations. Notably,
the most exceptional and second-best outcomes are denoted by red and blue values correspondingly. "OOM" signifies out-of-
memory during training.

Classical Graph Clustering Methods Constrastive Clustering Methods Graph Augmentation Methods
DAEGC ARGA SDCN AGE MVGRL AGC-DRR GCA AFGRL AutoSSL SUBLIME NACL CONVERTDataset Metric
IJCAI 19 TCYB 19 WWW 20 SIGKDD 20 ICML 20 IJCAI 22 WWW 21 AAAI 22 ICLR 22 WWW 22 AAAI 23 Ours

ACC 70.43±0.36 71.04±0.25 35.60±2.83 73.50±1.83 70.47±3.70 40.62±0.55 53.62±0.73 26.25±1.24 63.81±0.57 71.14±0.74 51.09±1.25 74.07±1.51
NMI 52.89±0.69 51.06±0.52 14.28±1.91 57.58±1.42 55.57±1.54 18.74±0.73 46.87±0.65 12.36±1.54 47.62±0.45 53.88±1.02 31.80±0.78 55.57±1.12
ARI 49.63±0.43 47.71±0.33 07.78±3.24 50.10±2.14 48.70±3.94 14.80±1.64 30.32±0.98 14.32±1.87 38.92±0.77 50.15±0.14 36.66±1.65 50.58±2.01CORA

F1 68.27±0.57 69.27±0.39 24.37±1.04 69.28±1.59 67.15±1.86 31.23±0.57 45.73±0.47 30.20±1.15 56.42±0.21 63.11±0.58 51.12±1.12 72.92±3.27
ACC 75.96±0.23 69.28±2.30 53.44±0.81 75.98±0.68 41.07±3.12 76.81±1.45 56.81±1.44 75.51±0.77 54.55±0.97 27.22±1.56 67.18±0.75 77.19±0.55
NMI 65.25±0.45 58.36±2.76 44.85±0.83 65.38±0.61 30.28±3.94 66.54±1.24 48.38±2.38 64.05±0.15 48.56±0.71 06.37±1.89 63.63±1.07 67.20±1.07
ARI 58.12±0.24 44.18±4.41 31.21±1.23 55.89±1.34 18.77±2.34 60.15±1.56 26.85±0.44 54.45±0.48 26.87±0.34 05.36±2.14 46.30±1.59 60.79±1.83AMAP

F1 69.87±0.54 64.30±1.95 50.66±1.49 71.74±0.93 32.88±5.50 71.03±0.64 53.59±0.57 69.99±0.34 54.47±0.83 15.97±1.53 73.04±1.08 74.03±1.00
ACC 52.67±0.00 67.86±0.80 53.05±4.63 56.68±0.76 37.56±0.32 47.79±0.02 54.89±0.34 50.92±0.44 42.43±0.47 45.04±0.19 47.48±0.64 78.02±1.36
NMI 21.43±0.35 49.09±0.54 25.74±5.71 36.04±1.54 29.33±0.70 19.91±0.24 38.88±0.23 27.55±0.62 17.84±0.98 22.03±0.48 24.36±1.54 53.54±1.71
ARI 18.18±0.29 42.02±1.21 21.04±4.97 26.59±1.83 13.45±0.03 14.59±0.13 26.69±2.85 21.89±0.74 13.11±0.81 14.45±0.87 24.14±0.98 51.95±2.18BAT

F1 52.23±0.03 67.02±1.15 46.45±5.90 55.07±0.80 29.64±0.49 42.33±0.51 53.71±0.34 46.53±0.57 34.84±0.15 44.00±0.62 42.25±0.34 77.77±1.48
ACC 36.89±0.15 52.13±0.00 39.07±1.51 47.26±0.32 32.88±0.71 37.37±0.11 48.51±1.55 37.42±1.24 31.33±0.52 38.80±0.35 36.06±1.24 58.35±0.18
NMI 05.57±0.06 22.48±1.21 08.83±2.54 23.74±0.90 11.72±1.08 07.00±0.85 28.36±1.23 11.44±1.41 07.63±0.85 14.96±0.75 21.46±1.80 33.36±0.16
ARI 05.03±0.08 17.29±0.50 06.31±1.95 16.57±0.46 04.68±1.30 04.88±0.91 19.61±1.25 06.57±1.73 02.13±0.67 10.29±0.88 21.48±0.64 27.11±0.19EAT

F1 34.72±0.16 52.75±0.07 33.42±3.10 45.54±0.40 25.35±0.75 35.20±0.17 48.22±0.33 30.53±1.47 21.82±0.98 32.31±0.97 31.25±0.96 58.42±0.22
ACC 52.29±0.49 49.31±0.15 52.25±1.91 52.37±0.42 44.16±1.38 42.64±0.31 39.39±1.46 41.50±0..25 42.52±0.64 48.74±0.54 45.38±1.15 57.36±0.55
NMI 21.33±0.44 25.44±0.31 21.61±1.26 23.64±0.66 21.53±0.94 11.15±0.24 24. 05±0.25 17.33±0.54 17.86±0.22 21.85±0.62 24.49±0.57 28.75±1.13
ARI 20.50±0.51 16.57±0.31 21.63±1.49 20.39±0.70 17.12±1.46 09.50±0.25 14. 37±0.19 13.62±0.57 13.13±0.71 19.51±0.45 21.34±0.78 27.96±0.79UAT

F1 50.33±0.64 50.26±0.16 45.59±3.54 50.15±0.73 39.44±2.19 35.18±0.32 35.72±0.28 36.52±0.89 52.94±0.87 46.19±0.87 30.56±0.25 54.55±1.49
ACC 64.54±1.39 61.07±0.49 65.96±0.31 68.73±0.24 62.83±1.59 68.32±1.83 60.45±1.03 31.45±0.54 66.76±0.67 64.14±0.65 59.23±2.32 68.43±0.69
NMI 36.41±0.86 34.40±0.71 38.71±0.32 44.93±0.53 40.69±0.93 40.28±1.41 36.15±0.78 15.17±0.47 40.67±0.84 39.08±0.25 36.68±0.89 41.62±0.73
ARI 37.78±1.24 34.32±0.70 40.17±0.43 45.31±0.41 34.18±1.73 45.34±2.33 35.20±0.96 14.32±0.78 38.73±0.55 39.27±0.78 33.37±0.53 42.77±1.63CITESEER

F1 62.20±1.32 58.23±0.31 63.62±0.24 64.45±0.27 59.54±2.17 64.82±1.60 56.42±0.94 30.20±0.71 58.22±0.68 61.00±0.15 52.67±0.64 62.39±2.15
ACC 34.35±1.00 22.07±0.43 26.67±0.40 39.62±0.13 31.52±2.95 31.19±0.57 32.63±1.24 43.53±0.96
NMI 49.16±0.73 41.28±0.25 37.38±0.39 52.38±0.17 48.99±3.95 50.23±1.54 38.46±0.25 54.86±0.33
ARI 22.60±0.47 12.38±0.24 13.63±0.27 24.46±0.48 19.11±2.63 19.17±0.47 31.41±0.55 30.39±1.04CORAFULL

F1 26.96±1.33 18.85±0.41 22.14±0.43 31.22±0.87 26.51±2.87

OOM

25.44±0.99

OOM OOM

28.94±1.72

OOM

35.58±0.98

DAEGC SDCN AFGRL GCA AutoSSL SUBLIME Ours

Figure 4: 𝑇 -SNE visualization is employed to illustrate the performance of seven methods across two benchmark datasets. The
first row pertains to the CORA dataset, while the second row corresponds to the AMAP dataset.

4.3 Performance Comparison (RQ1)
In this subsection, we conduct experiments to demonstrate the
superiority of CONVERT with 12 baselines on seven datasets. To
be specific, the compared clustering algorithms could roughly be
divided into three classes, i.e., classical graph clustering algorithms
(DAEGC [35], ARGA [29], SDCN [2]), contrastive graph clustering
algorithms (AGE [6], MVGRL [11], AGC-DRR [9]), and graph aug-
mentation clustering algorithms (GCA [57], AFGRL [15], AutoSSL
[13], SUBLIME [27], NCLA[30]).

Table.3 presents the attribute clustering performance compari-
son. From those results, we observe that 1) compared with classical
deep graph clustering algorithms, our method achieves state-of-the-
art performance. We conjecture the reason is that those methods

rarely consider the topological information; 2) Thanks to the learn-
able augmentation with reliable semantic strategy, our method
obtains better performance with contrastive deep graph clustering
methods; 3) The graph augmentation methods achieve unpromising
performance. We analyze the reason is that the semantic informa-
tion of those methods drafts after the augmentations. Overall, our
proposed CONVERT achieves better performance on most metrics
on seven datasets. Using the EAT dataset as an example, CONVERT
outperforms the second-best method by margins of 6.22%, 5.00%,
5.63%, and 5.67% in ACC, NMI, ARI, and F1 scores respectively.
Furthermore, due to space constraints, more comparison results of
eight baseline methods are available in Table 2 of the Appendix.
These supplementary results reaffirm the efficacy of our proposed
CONVERT.
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Table 4: Ablation studies of CONVERT are conducted across six datasets. The notations (w/o) L_M,” (w/o) R_S,” and “(w/o) R_N”
denote reduced models obtained by excluding the label-matching module, reliable semantic loss, and the reversible network,
respectively.

Dataset Metric (wo) L_M (wo) R_S (wo) R_N Feature Mask Edge Remove Edge Add Diffusion Ours

CORA

ACC 73.42±1.39 73.13±1.42 73.36±1.19 69.56±1.91 65.76±3.43 64.77±1.95 70.68±1.48 74.07±1.51
NMI 55.69±0.87 55.48±0.84 55.93±0.77 52.28±2.50 50.92±1.75 49.55±2.22 53.15±0.84 55.57±1.12
ARI 50.35±1.38 49.71±1.41 50.24±1.22 45.10±2.50 41.46±2.21 40.76±1.27 48.39±1.34 50.58±2.01
F1 72.62±1.93 72.58±1.55 72.75±1.30 68.72±2.78 63.94±4.30 62.20±2.55 68.66±1.67 72.92±3.27

AMAP

ACC 75.96±0.58 74.93±1.03 74.95±0.77 67.55±1.13 72.52±0.62 68.21±1.81 63.49±2.17 77.19±0.55
NMI 65.80±1.25 63.76±1.76 65.53±1.23 55.66±1.32 59.72±0.96 55.25±1.97 51.88±1.99 67.20±1.07
ARI 57.28±1.98 55.55±1.99 56.38±2.07 45.48±1.33 51.58±1.35 46.12±1.95 41.45±2.71 60.79±1.83
F1 72.33±2.26 71.80±1.59 70.53±1.82 64.39±1.57 67.67±1.88 64.78±2.70 61.07±2.50 74.03±1.00

BAT

ACC 76.11±1.96 69.69±3.17 68.85±2.97 61.60±2.32 49.47±2.48 64.96±2.74 64.50±3.28 78.02±1.36
NMI 52.04±1.86 45.55±2.73 43.96±2.82 36.11±2.06 19.44±3.09 39.27±3.18 39.84±3.61 53.54±1.71
ARI 49.70±2.89 41.38±2.78 39.53±3.12 31.82±2.92 12.72±3.39 33.86±3.27 34.92±4.16 51.95±2.18
F1 75.61±2.11 69.10±3.48 67.87±3.54 60.33±2.40 48.23±2.12 64.08±3.40 63.56±3.99 77.77±1.48

EAT

ACC 54.59±0.46 53.93±0.58 53.83±0.88 50.25±0.93 40.38±1.56 52.31±0.92 54.99±0.63 58.35±0.18
NMI 28.36±0.51 27.49±0.70 27.55±0.74 22.24±0.99 12.59±1.92 26.29±1.30 27.47±0.50 33.36±0.16
ARI 22.58±0.51 21.77±1.04 22.07±1.54 16.59±1.78 17.81±1.69 19.29±1.05 24.84±0.36 27.11±0.19
F1 55.05±0.53 54.43±0.66 53.71±1.53 50.80±1.32 39.68±1.98 53.10±1.01 53.27±1.01 58.42±0.22

UAT

ACC 49.99±1.32 49.49±1.34 48.39±0.57 47.76±2.79 49.80±1.02 50.00±1.13 52.67±1.84 57.36±0.55
NMI 20.93±1.67 20.99±1.83 19.93±2.39 21.61±2.27 18.81±1.03 24.18±1.39 24.29±1.65 28.75±1.13
ARI 20.02±2.26 20.10±2.31 18.35±1.65 15.84±1.83 16.06±1.22 14.39±1.88 23.33±2.23 27.96±0.79
F1 46.52±1.42 45.68±1.12 45.84±1.42 46.72±3.52 47.20±1.84 50.54±2.61 48.08±2.84 54.55±1.49

CITESEER

ACC 64.99±1.62 65.00±1.62 64.43±1.35 63.62±1.10 66.00±1.47 64.16±1.06 65.74±0.56 68.43±0.69
NMI 38.14±1.72 38.15±1.71 37.68±1.44 39.13±1.17 39.46±1.44 39.35±1.13 40.98±0.57 41.62±0.73
ARI 39.12±2.32 39.14±2.32 38.20±1.78 37.09±1.73 38.66±2.24 37.78±1.43 39.66±0.91 42.77±1.63
F1 61.22±1.38 61.23±1.38 60.82±1.62 60.36±0.85 58.50±1.24 60.39±1.01 62.00±0.81 62.39±2.15

CORA

BAT

AMAP

EAT

UAT

CITESEER

Figure 5: Sensitivity analysis of the hyper-parameter 𝛼 .

4.4 Ablation Studies (RQ2)
4.4.1 Effectiveness of the proposed module. As shown in Table.4,
we conduct experiments to verify the effectiveness of the reversible
network. To be specific, we adopt “(w/o) L_M”, “(w/o) R_S” and
“(w/o) R_N” to denote the reduced models by removing the label
matching module, the reliable semantic loss, the reversible network
respectively. Without any of our proposed modules, the cluster-
ing performance will decrease, indicating that each module makes
contributions to boosting the performance. We further analyze the

CORA

BAT

AMAP

EAT

UAT

CITESEER

Figure 6: Sensitivity analysis of the hyper-parameter 𝜏 .

reasons are as follows: 1) the network is better guided by the high-
confidence clustering pseudo labels through the label-matching
mechanism. 2) The proposed semantic loss and the reversible net-
work guarantee the reliability of semantic information, thus avoid-
ing semantic drifting.

4.4.2 Effectiveness of the Learnable Augmentation Module. To vali-
date the effectiveness of the learnable augmentation module, we
conduct the ablation studies shown in Table.4. Here, we adopt the
same backbone for all experiments and four commonly used graph
augmentations, e.g., randomly masking 10% feature (Feature Mask),
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Table 5: Training Time Comparison on six datasets. Avg. denotes the average time cost on six datasets. Besides, OOM represents
Out-Of-Memory during the training process.

Dataset DEC AE DAEGC MGAE AGE SDCN MVGRL MCGC SCAGC CONVERT
ICML 2016 ICML 2017 IJCAI 2019 SIGKDD 2019 SIGKDD 2020 WWW 2020 ICML 2020 NeurIPS 2021 TMM 2022 Ours

CORA 91.13 47.31 12.97 7.38 46.65 11.32 14.72 118.07 54.08 16.89
CITESEER 223.95 74.69 14.70 6.69 70.63 11.00 18.31 126.06 50.00 57.23

BAT 21.37 7.46 4.79 3.83 2.49 11.50 3.19 2.28 93.79 5.15
EAT 26.99 9.56 5.14 4.64 3.86 12.12 3.32 2.87 47.79 5.18
UAT 42.30 29.57 6.44 4.75 8.95 10.64 4.27 23.10 64.70 6.26
AMAP 264.20 94.48 39.62 18.64 377.49 19.28 131.38 OOM 150.54 46.98
Avg. 111.66 43.85 13.94 7.66 85.01 12.64 29.20 - 76.82 22.95

Figure 7: Illustration of the gpu memory cost of CONVERT
with five algorithms on six datasets.

randomly dropping 10% graph edges (Edge Remove), randomly
adding 10% graph edges (Edge Add), and graph diffusion with 0.10
teleportation rate (Diffusion). From the results, we conclude that
since utilizing the common graph augmentations, the clustering per-
formance is limited by the drifting semantic [15]. In summary, the
experiment results demonstrate the effectiveness of the learnable
augmentation module.

4.5 Efficiency analysis (RQ3)
In this subsection, we compare the efficiency of CONVERT and
other state-of-the-art clustering algorithms. As can be observed
in Fig.7 and Table.5, CONVERT has a comparable GPU memory
cost and training time with other clustering methods. In summary,
the efficiency of CONVERT is acceptable. We analyze the reason is
that we adopt the graph filter to extract the feature, avoiding the
complex convolution and aggregation operations.

4.6 Hyper-parameter Analysis (RQ4)
4.6.1 Sensitivity Analysis of hyper-parameter 𝛼 . As can be observed
in Fig.5, we observe that the performance of CONVERT will not
fluctuate greatly when the 𝛼 ∈ [0.3, 0.7]. When the value of 𝛼
drastically changes, the balance of the model will be destroyed,
thus limiting the clustering performance. Moreover, we investigate
the influence of 𝛽 . CONVERT is not sensitive to 𝛽 . Experiments
can be found in Fig. 1 in Appendix.

4.6.2 Sensitivity Analysis of hyper-parameter 𝜏 . Besides, we investi-
gate the impact of 𝜏 . As shown in Fig.6, we observe that CONVERT
achieve better performance when 𝜏 ∈ [0.55, 0.75]. There are two
reasons. Firstly, the discriminative capacity of CONVERT is limited

when 𝜏 < 0.55 since the low confidence of the pseudo labels. Sec-
ondly, when 𝜏 > 0.75, the model easily leads to confirmation bias
due to the over-confidence pseudo labels [1].

4.7 Visualization Analysis (RQ5)
To unveil the inherent clustering structure, this subsection employs
visualization to depict the distribution of the learned embeddings.
Specifically, experiments are conducted using the 𝑡-SNE algorithm
[34] on CORA and AMAP datasets. As depicted in Figure 4, the
visual results highlight that CONVERT exhibits an enhanced clus-
tering structure.

5 CONCLUSION
In this paper, we present a learnable augmentation strategy for at-
tribute clusteringwith reliable semantics, termed CONVERT. Specif-
ically, we design a reversible network to generate augmented views.
The perturb-recover embedding operation avoids semantic drift.
Then, we design a semantic loss to further guarantee the reliability
of the semantic. Moreover, we propose a label-matching mechanism
to align the semantic labels and high-confidence pseudo labels, thus
utilizing the clustering information to guide the model. Extensive
experiments have demonstrated the effectiveness of CONVERT.
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