
SketchAgent: Generating Structured Diagrams from Hand-Drawn Sketches
Cheng Tan1,2∗, Qi Chen3,4∗, Jingxuan Wei3,4†∗, Gaowei Wu3,4∗, Zhangyang Gao1,2, Siyuan Li1,2,

Bihui Yu3,4, Ruifeng Guo3,4, Stan Z. Li1†
1Westlake University
2Zhejiang University

3University of Chinese Academy of Sciences
4Shenyang Institute of Computing Technology, Chinese Academy of Sciences

tancheng@westlake.edu.cn, weijingxuan20@mails.ucas.edu.cn

Abstract
Hand-drawn sketches are a natural and efficient
medium for capturing and conveying ideas. De-
spite significant advancements in controllable natu-
ral image generation, translating freehand sketches
into structured, machine-readable diagrams re-
mains a labor-intensive and predominantly manual
task. The primary challenge stems from the inher-
ent ambiguity of sketches, which lack the struc-
tural constraints and semantic precision required
for automated diagram generation. To address
this challenge, we introduce SketchAgent, a multi-
agent system designed to automate the transforma-
tion of hand-drawn sketches into structured dia-
grams. SketchAgent integrates sketch recognition,
symbolic reasoning, and iterative validation to pro-
duce semantically coherent and structurally accu-
rate diagrams, significantly reducing the need for
manual effort. To evaluate the effectiveness of our
approach, we propose the Sketch2Diagram Bench-
mark, a comprehensive dataset and evaluation
framework encompassing eight diverse diagram
categories, such as flowcharts, directed graphs, and
model architectures. The dataset comprises over
6,000 high-quality examples with token-level an-
notations, standardized preprocessing, and rigorous
quality control. By streamlining the diagram gener-
ation process, SketchAgent holds great promise for
applications in design, education, and engineering,
while offering a significant step toward bridging
the gap between intuitive sketching and machine-
readable diagram generation.

1 Introduction
Hand-drawn sketches are a natural and powerful medium for
rapidly conveying ideas, serving as a universal language in
creative, technical, and educational workflows [Zhao and Lai,
2022; Zhao et al., 2024; Tan et al., 2024]. From rough
brainstorming sessions to preliminary engineering designs,
sketches offer an intuitive way to externalize concepts. How-
ever, translating these informal and ambiguous drawings into

†Corresponding author.

structured, machine-readable diagrams remains an open chal-
lenge. Unlike natural image generation tasks [Cao et al.,
2024; Huang et al., 2024; Li et al., 2019], which have seen re-
markable progress in recent years through techniques such as
controllable natural image generation, the sketch-to-diagram
task demands more than just visual fidelity—it requires un-
derstanding and formalizing the underlying structural and se-
mantic relationships inherent to diagrams.

We introduce a new task, sketch-to-diagram generation,
which involves converting a hand-drawn sketch into a struc-
tured, machine-readable diagram. As shown in Figure 1, this
task differs fundamentally from controllable natural image
generation, as it focuses not on generating aesthetically pleas-
ing visuals but on synthesizing a precise, semantically mean-
ingful diagram that adheres to specific structural rules. This
transformation requires solving several core challenges: (1)
handling the inherent ambiguity and variability in free-
hand sketches, (2) preserving the spatial and structural
relationships between diagram components, and (3) pro-
ducing an output that is both syntactically valid and se-
mantically aligned with the user’s intent. These challenges
make sketch-to-diagram generation a highly specialized and
underexplored problem, distinct from existing works.

To address the lack of standardized resources for sketch-to-
diagram research, we introduce the Sketch2Diagram Bench-
mark, a comprehensive dataset and evaluation framework de-
signed to support the development and assessment of models
for this task. The dataset spans eight diverse diagram cat-
egories, including flowcharts, directed graphs, and model ar-
chitectures, and consists of over 6,000 high-quality examples.
Each example includes a hand-drawn sketch paired with its
corresponding structured diagram representation. The dataset
is meticulously curated, featuring token-level annotations,
standardized preprocessing, and rigorous quality control, en-
suring its reliability for both training and evaluation purposes.

Building on this benchmark dataset, we propose SketchA-
gent, an end-to-end system for automating the transformation
of hand-drawn sketches into structured diagrams. The system
begins by converting an input sketch into a symbolic code
representation, which abstracts its structural and spatial prop-
erties into a machine-readable format, bridging the gap be-
tween informal freehand drawings and precise computational
diagrams. From there, SketchAgent performs iterative refine-
ment to improve the accuracy, coherence, and validity of the

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1918

Converting a rough sketch into
a polished, well-organized
diagram with rich colors and
details?

Existing models

Existing models primarily generate real-
world objects, with no models focused
on creating structured diagrams.

Please convert this
sketch into a clear …

Please modify the diagram to
include the following …

With just a few adjustments, I
can achieve the style I desire!

SketchAgent

Figure 1: SketchAgent automates the transformation of hand-drawn sketches into structured diagrams.

code representation, ensuring the final diagram adheres to the
user’s intent while satisfying all structural constraints.

Our main contributions are as follows:
• We formally define the task of converting hand-drawn

sketches into structured diagrams, distinguishing it from
related tasks such as controllable image generation.

• We introduce a benchmark dataset of hand-drawn
sketches and their corresponding structured diagram
representations, offering a standardized resource for
training and evaluation.

• We propose SketchAgent, a modular system that auto-
mates the sketch-to-diagram transformation process, in-
tegrating sketch recognition, symbolic reasoning, itera-
tive refinement, and verification into a unified pipeline.

2 Related Work
2.1 Controllable Image Generation
Controllable image generation aims to synthesize images that
adhere to specific constraints [Cao et al., 2024; Huang et
al., 2024]. Existing methods can be categorized into three
main approaches: GAN-based, diffusion-based, and multi-
modal fusion techniques. Early GAN-based methods, such
as ControlGAN [Li et al., 2019], introduced fine-grained
text-conditioned image synthesis but suffered from instabil-
ity and mode collapse. Diffusion models have since be-
come the dominant paradigm, offering more stable and high-
quality generation. Diffusion Self-Guidance [Epstein et al.,
2023] and MultiDiffusion [Bar-Tal et al., 2023] enable ex-
plicit control over object positioning and spatial structure,
while Control-GPT [Zhang et al., 2023b] leverages GPT-4-
generated sketches for improved spatial consistency. Other
approaches integrate LLMs or additional modalities for en-
hanced control, such as MoMA [Song et al., 2025], which
fuses textual and visual embeddings, and MM-Diff [Wei
et al., 2024b], which refines personalization through CLIP-
based representations. Furthermore, PALP [Arar et al., 2024]
enhances alignment with complex textual prompts by opti-
mizing cross-modal score matching. Despite these advance-
ments, existing approaches primarily focus on photorealis-
tic image synthesis, making them insufficient for structured
and logic-constrained generation tasks like diagrams [Cao et
al., 2024; Huang et al., 2024]. While diffusion-based mod-
els offer control over spatial attributes [Epstein et al., 2023;
Bar-Tal et al., 2023], they lack explicit structural reasoning
capabilities required for diagram generation.

2.2 Controllable Code Generation
Controllable code generation aims to produce structured and
executable code while adhering to specific constraints [Shin
and Nam, 2021; Wei et al., 2025]. Language model-based
approaches leverage pre-trained models to improve code
synthesis. Magicoder [Wei et al., 2024a] enhances multi-
language code generation through OSS-INSTRUCT, while
VeriGen [Thakur et al., 2024] tailors language models for
Verilog synthesis by curating specialized training datasets.
Structure-aware methods refine code generation by integrat-
ing abstract syntax trees and data flow graphs. Struct-
Coder [Tipirneni et al., 2024] introduces a structure-aware
self-attention mechanism, and CoTexT [Phan et al., 2021] ap-
plies multi-task learning to enhance text-to-code understand-
ing. Planning-based techniques decompose complex tasks
into stepwise solutions, as seen in Self-Planning Code Gen-
eration [Jiang et al., 2024], while reinforcement learning-
based approaches such as CodeRL [Le et al., 2022] op-
timize model adaptation through reward-based fine-tuning.
Execution-enhanced methods ensure generated code correct-
ness by leveraging runtime validation. MBR-EXEC [Shi et
al., 2022] employs minimum Bayesian risk decoding based
on execution, whereas CODET [Chen et al., 2022] gener-
ates test cases to filter invalid code. Besides, real-world in-
tegration studies, such as In-IDE Code Generation [Xu et al.,
2022], evaluate the practical utility.

While these methods advance code generation in terms of
syntax, semantics, and execution fidelity, they remain con-
strained to text-based inputs, lacking the capability to syn-
thesize code from sketch-based conceptualizations. Further-
more, existing controllable code generation approaches do
not inherently support structured diagram generation, lim-
iting their applicability in domains requiring logical and
hierarchical visual representations. [Ghosh et al., 2018;
Almazroi et al., 2021] have focused on extracting structured
representations from textual descriptions, but these methods
do not generalize to sketch-driven workflows.

3 Method
The system consists of three modules: the Sketch-to-Code
Agent, the Editing Code Agent, and the Check Agent, each
responsible for specific tasks. Given a sketch S and a user-
specified instruction set Q, SketchAgent generates an initial
code representation, refines it based on additional instruc-
tions, and verifies the final output before rendering the struc-
tured diagram. The overall workflow is illustrated in Figure 2.

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1919

Check Agent

Please convert this sketch into a
clear framework diagram, with
specific details including:
- A straight line connecting Node 1
and…
- An arrow with the number 5
indicating…
- The label ‘A’ for Node 5…

Sketch-to-Code AgentUser Query

Please modify the diagram as follows:
1. Change the color of nodes \\(h1 \\), \\(h2 \\), \\(h3 \\), …
2. Replace the dashed lines between nodes \\(g1 \\) and \\(g4
\\), \\(g2 \\) and \\(g3 \\), \\(g2 \\) and \\(g4 \\)...
3. Add a label \"Input Layer\" above nodes \\(h1 \\) to \\(h6
\\).
4. Change the color of the fill in the shaded region…
5. Remove the red \\(\\times \\) symbols from nodes \\(g1 \\),
\\(g2 \\), and \\(g5 \\) …

Editing Query

\\documentclass[crop, tikz]{standalone}
\\usepackage{tikz}
…
\\definecolor{mygreen}{rgb}{0,0.6,0}
\\definecolor{mymauve}{rgb}{0.58,0,0.82}
\\definecolor{camdrk}{RGB}{0,62,114}
\\pagenumbering{gobble}
…

Editing Code Agent

Generated Output

Editing Output

Feedback

Debugging

\\documentclass[crop, tikz]{standalone}
\\usepackage{tikz}
…
\\node[circle, draw, thick] (hAA) {};

\\node[circle, draw, thick, right=of h1]{};
…
\\path [draw=black, smooth, fill opacity=0.3]
…

Code

Compiling

mean||max

MLP Predict

MLP Predict

me
an|
|ma
x

me
an|
|ma
x

mean||max

Figure 2: The SketchAgent pipeline, consisting of three main modules: Sketch-to-Code Agent, Editing Code Agent, and Check Agent.

3.1 Sketch-to-Code Agent
The Sketch-to-Code Agent maps a hand-drawn sketch S and
an instruction set Q to an initial code representation Ck, cap-
turing the structural semantics of the sketch. This process is
formulated as:

Ck = Fk(S,Q), (1)
where Fk represents the transformation function. The output
Ck is modeled as a sequence of tokens, where each token
corresponds to a diagram component or an attribute.

To ensure the generated code aligns with the expected
structure, we define the objective as minimizing the negative
log-likelihood of the sequence:

Lk = −ECk∼P (C|S,Q)

T∑
t=1

logP (C
(t)
k | C(<t)

k , S,Q), (2)

where T is the sequence length, C(t)
k is the t-th token, and

P (·) denotes its conditional probability given the preced-
ing sequence. Optimizing this objective ensures Ck remains
structurally valid and semantically aligned with S.

3.2 Editing Code Agent
The Editing Code Agent refines the initial code representation
Ck based on an additional instruction set Q′, generating an
updated version Ce. This process is formalized as:

Ce = Fe(Ck, Q
′), (3)

where Fe represents the refinement function. The objective
is to minimize the discrepancy between Ce and the expected
output, ensuring modifications align with the intended dia-
gram structure. To achieve this, we minimize the negative
log-likelihood of the sequence:

Le = −
T∑

t=1

logP (C(t)
e | C(<t)

e , Ck, Q
′), (4)

where T is the sequence length, C(t)
e is the t-th token, and

P (·) denotes its conditional probability given the preceding
sequence and input conditions. Optimizing this objective en-
sures Ce effectively integrates the modifications specified in
Q′ while preserving the structural integrity of Ck.

3.3 Check Agent
The Check Agent verifies and refines the generated code Ce

to produce the final executable representation Cf . This pro-
cess is formalized as:

Cf = Ff (Ce), (5)
where Ff denotes the verification and debugging function.
The goal is to ensure Cf is syntactically correct, executable,
and aligned with the original sketch S and instructions Q.

To achieve this, the Check Agent begins by performing
syntax validation and debugging to ensure that the generated
code representation Ce is syntactically correct and compil-
able. If Ce fails to compile, it is sent back for regenera-
tion by either the Sketch-to-Code Agent or the Editing Code
Agent. Once compilation succeeds, we use GPT-4o to com-
pare the compiled diagram D with the original sketch S and
the user instructions Q. If the generated diagram aligns with
the expected structure, the process is finalized; otherwise, the
Check Agent triggers a fallback mechanism, prompting the
responsible agent to regenerate Ce. This iterative validation
process guarantees that only structurally coherent and seman-
tically correct diagrams are finalized.

4 Sketch2Diagram Benchmark
The Sketch2Diagram Benchmark introduces a comprehen-
sive dataset and evaluation framework for sketch-to-diagram
tasks. It features eight diverse diagram categories, stan-
dardized with rigorous quality control and token-level statis-
tics. Clear metrics evaluate sketch-to-code and code editing
tasks, ensuring thorough assessment. The data collection and
processing pipeline for the Sketch2Diagram Benchmark is
meticulously designed to ensure a comprehensive and high-
quality dataset. This process is divided into three key stages:
Data Collection, Data Processing, and Human Inspection, as
illustrated in Figure 3.
Data Collection. The first stage involves gathering open-
source .tex files of logical diagrams from multiple repos-
itories, including datikz-v2, GitHub, and Overleaf. These

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1920

datikz-v2 GitHub Overleaf

Data Collection Data Processing

…

Generate Querys

Human Inspection

Raw Data

Compiling Cropping

Generate Diagrams

Height:800

Width:600

Generate Sketches

Modifying Generating

MLLMLLM

LLM

User Query

Editing Query

Compiler Scripts
Diagram

Code Sketches
Sketches

Code

Sketches
Code

Generating

Generating
Diagram

Code

Conversion
Model

DataHuman
Annotator

LLM

1. Ensure the image is clear, without blurriness or distortion, and suitable for accurate interpretation.
Inspection Guidelines

2. Verify the image is complete, with no missing sections or truncation.
3. Ensure the query is free from code snippets and focuses solely on the intended subject.

Figure 3: The data collection and processing pipeline for the Sketch2Diagram Benchmark.

sources provide a diverse range of diagrams across various
domains, ensuring the dataset’s broad applicability. The col-
lected .tex files are then compiled into diagram images us-
ing standard LaTeX compilers. This step guarantees that the
diagrams accurately reflect their logical structures as intended
by their original creators.

Model Architecture Diagram Directed Graph Undirected Graph
Flowchart Mind Map Line Chart

Bar Chart
Table

Directed Graph:(42.5%)

Undirected Graph:(4.58%)

Model Architecture
Diagram:(52.34%)

Flowchart:(0.27%)

Mind Map:(0.08%)

Line Chart:(0.12%)
Bar Chart:(0.08%)

Table:(0.03%)

Figure 4: Category distribution in Sketch2Diagram.

Data Processing. We standardize the compiled diagrams
to ensure uniformity and facilitate sketch-to-diagram tasks.
Images are cropped to remove blank spaces and resized to
800×600 pixels. Colors and intricate details are stripped
from diagrams to produce simplified sketch representations.
GPT-4O generates corresponding sketch codes, ensuring con-
sistency with the original diagrams. For model evaluation, we
create two query types: (1) User Queries, which pair sketch

images with codes to add supplementary details; and (2)
Editing Queries, which capture differences between sketch
and original diagram codes to guide refinement.

Human Inspection. The final stage involves a rigorous
manual inspection process to ensure data quality. Human an-
notators adhere to three strict guidelines: First, images must
be clear, free of blurriness or distortion, to ensure accurate
interpretation. Second, images must be complete, with no
missing sections or truncations. Third, queries are reviewed
to exclude code snippets and focus on descriptive elements
relevant to the task. These measures ensure the dataset’s reli-
ability and suitability for model evaluation.

4.1 Data Analysis

Diversity and Imbalance Challenges. Figures 5 and 4 il-
lustrate the dataset’s diversity and distribution. Figure 5
showcases examples from eight diagram categories, includ-
ing undirected graphs, model architecture diagrams, and
flowcharts, highlighting their real-world relevance. Fig-
ure 4 reveals an imbalance, with model architecture diagrams
(52.34%) and directed graphs (42.5%) dominating, while cat-
egories like flowcharts and mind maps are underrepresented.

Token Length Statistics. Table 1 summarizes token length
statistics for the Sketch2Diagram dataset, categorized by
sketch-to-code (S2C) and code-editing (C2C) tasks. The
dataset contains a total of 4824 training samples and 1206
test samples. Query lengths range from a minimum of 28 to-
kens for S2C tasks to a maximum of 170,894 tokens for C2C
tasks. Answer lengths exhibit similar variability, with max-
imum values reaching 170,371 tokens. These diverse token
lengths reflect the dataset’s ability to evaluate models across
tasks with varying complexities and input-output structures.

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1921

Undirected Graph

Flowchart

Model Architecture Diagram

Mind Map

Directed Graph

Bar Chart

Predict the next horizontal values of
The time GNSS series

Table Line Chart

a5

a4a6

a350a0

a1, a023 a2

a3

0.35 0.15

0.05 0.45

（t1）

（t2）

recovers（s1） paralyzed（s2）

Train the ML algorithm Train the ML algorithm

Predict the next
horizontal values

Predict the next
horizontal values

S0

S1

S2

S3
S4

S1

S0
S2

S3
S4

0.35 0.15

0.05 0.45

（t1）

（t2）

recovers(s1) paralyzed(s2)

Figure 5: Examples of diagram types in the Sketch2Diagram.

Statistic Train S2C Train C2C Test S2C Test C2C
Total Samples
Sample Count 4824 4824 1206 1206

Query Length (tokens)
Minimum 28 165 39 208
Maximum 1118 170894 1115 28715
Average 243.9 1161.0 243.2 1074.3

Answer Length (tokens)
Minimum 119 125 133 133
Maximum 170371 170371 28633 28633
Average 1010.0 1064.1 922.4 977.8

Table 1: Key statistics of the Sketch2Diagram dataset.

4.2 Evaluation Metrics
We employ a comprehensive set of evaluation metrics. For
sketch-to-code, Pass@1 measures functional correctness,
while ROUGE-L, BLEU, CodeBLEU (C-BLEU), chrF, Edit
Distance (ED), BLEURT, and RUBY evaluate textual and se-
mantic similarity. For code editing, we extend these metrics
to include diagram fidelity measures such as FID, KID, CLIP-
FID (C-FID), Inception Score (IS), LPIPS, and SSIM.

5 Experiment
Setup The Sketch-to-Code Agent is based on Qwen2-VL-
7B [Wang et al., 2024], while the Editing Code Agent utilizes
Qwen2.5-Coder-7B [Hui et al., 2024]. Both agents were fine-
tuned over four epochs on a 4×80GB A100 GPU setup. The
input token length for both agents is set to 4096 tokens.

Model For sketch generation, the Sketch-to-Code Agent
is compared against several state-of-the-art models, includ-
ing Yi-VL [Team, 2025c], Qwen2-VL [Wang et al., 2024],
Internlm-Xcomposer2.5 [Zhang et al., 2023a], Llama-3.2-
Vision [AI, 2025b], Phi-3.5-Vision [Abdin et al., 2024],
Llava-v1.6 [Liu and Others, 2025], Cogvlm2-Llama3 [Hong
et al., 2024], and DeepSeek-VL [Team, 2025f], with close-
source models such as GPT-4o [Achiam et al., 2023],
GLM-4-plus [Team, 2025g], and Gemini-1.5-Pro [Team
et al., 2024] also implemented. For the sketch editing
task, the Editing Code Agent is assessed alongside special-
ized code models, including Qwen2.5-Coder [Hui et al.,
2024], DeepSeek-Coder-Instruct [Guo et al., 2024], Code-
Llama [Roziere et al., 2023], WizardCoder [Luo et al.,
2023], CodeGeeX4-All [Team, 2025d], Starcoder2 [Lozhkov
et al., 2024], Yi-Coder [Team, 2025b], Llama 3.1 [AI,
2025a], Baichuan2 [Yang et al., 2023], Internlm2.5 [Cai et
al., 2024], Yi-1.5 [Team, 2025a], and Qwen2 [Team, 2024],
and close-source models like GPT-4o [Achiam et al., 2023],
DeepSeekV2.5 [Team, 2025e], GLM-4-Plus [Team, 2025g],
and Gemini-1.5-Pro [Team et al., 2024].

5.1 Sketch generation
Main Results SketchAgent leverages compiler principles
and integrates GPT-4o as a feedback mechanism to achieve
state-of-the-art performance in translating logical structure
diagrams into executable code. As demonstrated in Table 2,
SketchAgent significantly outperforms both open-source and
close-source models across key code generation metrics. No-
tably, it achieves a Pass@1 score of 82.34, substantially

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1922

Model Size Pass@1↑ ROUGE-L↑ C-BLEU↑ BLEU↑ ED↓ chrF↑ BLEURT↑ RUBY↑

(a) Main results

Yi-VL-34B 34B 0.25 33.68 77.79 8.23 94.17 19.87 37.28 21.52
Qwen2-VL-7B-Instruct 7B 52.40 33.72 75.19 7.37 90.38 26.26 32.91 21.97
internlm-xcomposer2d5-7b 7B 0.08 30.32 78.65 3.61 94.50 19.98 37.18 18.57
Llama-3.2-11B-Vision-Instruct 11B 40.09 39.17 80.36 16.61 87.35 28.09 37.64 26.05
Phi-3.5-vision-instruct 4B 16.64 13.41 68.95 5.20 97.37 12.65 34.27 7.82
llava-v1.6-34b 34B 8.51 24.63 76.75 10.68 96.73 27.49 33.75 13.96
cogvlm2-llama3-chat-19B 19B 0.00 12.60 70.57 3.16 98.03 12.27 32.73 7.35
deepseek-vl-7b-chat 7B 0.33 26.94 80.74 12.06 95.68 22.47 37.18 15.21
GPT-4o - 51.12 34.42 79.56 12.65 92.20 29.51 33.40 20.85
Gemini-1.5-pro - 61.94 39.80 81.02 12.64 89.10 30.61 32.53 25.86
GLM-4V-Plus - 66.09 40.53 81.30 12.73 88.16 30.01 33.00 26.70
SketchAgent 7B 82.34 52.96 86.02 29.61 73.16 47.88 46.34 41.17

(b) Ablation study

w/o GPT-4o 7B 81.18 52.90 86.01 29.34 73.16 47.36 46.28 41.05
w/o Compiler 7B 80.85 52.83 86.01 29.33 73.23 47.78 46.25 41.02
w/o GPT-4o & Compiler 7B 78.52 52.39 85.98 25.88 73.36 47.82 46.38 40.78

Table 2: (a) Main results: Performance comparison on sketch generation with open-source and closed-source models on key code generation
metrics. The best result is highlighted in bold. (b) Ablation study: Performance under different component configurations.

surpassing powerful large language models such as GPT-4o
(51.12), Gemini-1.5-pro (61.94), and GLM-4V-Plus (66.09).
In addition, SketchAgent excels in other critical metrics, in-
cluding CodeBLEU (86.02), BLEU (29.61), and BLEURT
(46.34), indicating its strong ability to generate syntactically
and semantically accurate code. These evaluation results
underscore SketchAgent’s superior capability in producing
high-quality, executable code from sketch representations.

Ablation Study We conduct an ablation study as detailed
in Table 2. The results reveal the critical role played by both
the compiler module and GPT-4o feedback mechanism. Re-
moving the compiler results in a 1.49-point drop in Pass@1,
indicating the compiler’s significant contribution to precise
code generation. Removing the GPT-4o feedback mecha-
nism leads to a 1.16-point decline in Pass@1, demonstrating
GPT-4o’s role in validating outputs. More importantly, when
both the compiler and GPT-4o are removed, the Pass@1 score
experiences a substantial decrease of 3.82 points, falling to
78.52, highlighting their effect on SketchAgent.

Human Evaluation We employed three professional eval-
uators to assess the outputs. A score of 1 indicated the lowest
quality, while 5 represented the highest quality. As shown
in Figure 6, SketchAgent consistently achieved the highest
quality based on objective assessment metrics. Furthermore,
SketchAgent surpassed the accuracy of other models. Inter-
estingly, the results revealed that SketchAgent performed bet-
ter on the editing task compared to the generation task.

5.2 Sketch Editing
Main Results SketchAgent’s Editing Code Agent demon-
strates high performance across several key metrics, as shown
in Table 3. It achieves the highest Pass@1 score of 93.12,
surpassing other models such as Qwen2.5-Coder (62.19) and
DeepSeek Coder (81.92). Moreover, SketchAgent excels in
CodeBLEU and BLEU, with scores of 98.63 and 87.38, re-

Qwen2.5-Coder
DeepSeek Coder

Code Llama

WizardCoder

CodeGeeX4-ALL

Starcoder2

Yi-Coder

Llama 3.1
Baichuan2 InternLM2.5

Yi-1.5

Qwen2

GPT-4o

DeepSeek V2.5

GLM-4-Plus

Gemini-1.5-Pro

Sketch2DiaAgent

Generation Editing

Figure 6: Human evaluation results for different models on diagram
generation and Modify diagram generation tasks.

spectively, surpassing WizardCoder (96.78 and 76.39) and
Code Llama (96.57 and 77.20). In terms of visual fidelity
metrics, SketchAgent performs well with a FID of 130.1494,
outperforming models such as DeepSeek Coder (222.42) and
Qwen2.5-Coder (246.79), demonstrating its strong visual co-
herence and competitiveness.

Ablation Study The ablation study in Table 3 evaluates
the impact of feedback module and compilation module
on SketchAgent’s performance. The full model achieves a
Pass@1 score of 93.12, slightly lower than the 94.69 of the
model without feedback, suggesting that the removal of feed-
back marginally improves performance. However, both mod-
els outperform the one without compilation, which scores
91.21, highlighting the importance of the compilation mod-

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1923

Model Size Pass@1↑ ROUGE↑ C-BLEU↑ BLEU↑ ED↓ chrF↑ BLEURT↑ RUBY↑ IS↑ FID↓ KID↓ C-FID↓ LPIPS↓ SSIM↑

(a) Main results

Qwen2.5-Coder 7B 62.19 89.43 95.59 78.11 23.26 88.22 46.25 82.56 3.82 246.80 19.59 64.77 49.68 0.43
DeepSeek Coder 33B 81.92 88.53 95.37 75.38 22.31 87.67 46.28 81.66 3.95 222.42 1.90 29.16 54.07 0.51
Code Llama 34B 59.78 96.23 96.57 77.20 6.07 87.76 73.62 93.66 3.02 283.48 2.10 36.63 44.13 0.28
WizardCoder 15B 92.12 94.30 96.78 76.39 10.03 90.85 73.82 90.84 4.03 283.48 2.09 36.63 44.13 0.28
CodeGeeX4-ALL 9B 69.32 86.07 93.24 63.11 21.85 84.99 68.64 79.19 2.70 209.63 12.45 53.08 44.29 2.81
Starcoder2 15B 88.39 86.31 91.38 57.68 22.10 83.08 69.13 83.86 3.75 283.48 2.10 36.63 44.13 0.28
Yi-Coder 9B 66.67 34.17 39.34 8.14 30.87 33.83 49.12 31.68 3.35 228.94 2.09 30.11 53.44 0.44
Llama 3.1 8B 59.95 71.71 85.77 68.47 35.35 69.72 60.95 65.53 3.68 238.25 1.37 26.88 55.61 0.42
Baichuan2 13B 18.57 41.88 75.37 8.51 65.03 40.01 47.83 36.16 4.43 148.70 9.73 33.80 75.84 6.42
InternLM2.5 20B 80.43 90.09 94.81 74.78 16.03 88.64 70.86 84.59 3.09 220.07 1.00 29.11 48.84 0.51
Yi-1.5 34B 53.23 83.14 94.19 60.51 28.24 81.85 66.41 75.69 3.50 226.15 1.77 30.12 49.97 10.43
Qwen2 7B 58.96 78.93 93.01 60.22 37.30 76.56 61.60 69.73 3.22 237.49 1.34 27.85 50.50 0.42
GPT-4o - 91.79 96.81 96.78 86.40 14.23 92.69 69.46 94.87 5.51 139.56 0.23 13.99 46.94 28.41
DeepSeek V2.5 - 83.67 94.30 96.77 80.54 17.02 90.85 71.01 90.84 4.57 203.27 0.98 33.18 42.16 0.43
GLM-4-Plus - 87.06 95.88 96.78 86.06 10.02 91.02 73.27 88.81 5.71 243.45 1.32 23.44 47.38 0.61
Gemini-1.5-Pro - 83.75 94.26 95.42 85.72 19.08 90.75 69.08 90.77 3.83 246.68 19.58 64.70 49.57 0.26

SketchAgent 7B 93.12 97.68 98.63 87.38 5.92 96.38 74.33 96.26 5.51 130.15 0.22 12.24 42.00 30.13

(b) Ablation study

- w/o Feedback 7B 94.69 97.65 98.62 87.38 14.21 96.32 71.28 94.21 5.20 143.54 0.26 13.54 47.29 32.47
- w/o Compilation 7B 91.21 96.26 98.62 85.12 5.95 94.77 73.05 95.68 5.48 139.48 0.30 13.03 47.15 27.09
- w/o both 7B 88.39 95.39 96.77 83.56 10.05 92.68 70.21 90.11 4.92 154.23 0.51 14.25 50.71 26.33

Table 3: (a) Main results: Performance comparison on sketch editing with open-source and closed-source models on both code generation
and fidelity metrics. The best result is highlighted in bold. (b) Ablation study: Performance under different component configurations.

(a) misaligned structure

(b) misidentified element

(c) misconnected relationship

Please convert this sketch into a clear framework diagram, with
specific details including:1. A node labeled \\(x^* \\) at …

Please convert this sketch into a clear framework diagram, with
specific details including:- A straight line connecting Node 'X' …

Based on the provided framework structure, here is a detailed
query:Please convert this sketch into a clear framework …

Figure 7: The error examples of SketchAgent.

ule. For ROUGE-L, the full model leads with 97.68, followed

by the model without feedback at 97.65, while the model
without compilation drops to 96.26, emphasizing the contri-
bution of the compilation module. In FID, the full model
outperforms both ablated versions with a score of 130.15,
demonstrating the importance of both components in main-
taining visual coherence. The model without both feedback
and compilation shows higher KID and CLIP-FID scores but
sacrifices performance in other key metrics, indicating the ne-
cessity of both components for optimal performance.

5.3 Error Analysis

As shown in Figure 7, SketchAgent encounters errors in
three key areas: misaligned structures, misidentified ele-
ments, and misconnected relationships. Misaligned struc-
tures occur when the model fails to accurately capture the
underlying structure of the objects in the sketch. This leads
to incomplete or overly simplified outputs.

Misidentified elements refer to errors in recognizing indi-
vidual components of a sketch. For instance, the model may
distort characters, fail to reproduce their correct proportions,
or misrepresent attributes such as font style or orientation.
These errors stem from the variability and ambiguity in the
sketches, where subtle variations in shape can confuse recog-
nition. Misconnected relationships arise when the system
misinterprets the spatial or relational connections between el-
ements. For example, arrows may connect incorrect com-
ponents, omit intermediate nodes, or bypass key elements,
leading to diagrams with logical inconsistencies. Such errors
undermine the semantic integrity of the generated diagram.

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1924

6 Conclusion
In this work, we present SketchAgent, a modular and end-
to-end system for transforming hand-drawn sketches into
structured diagrams. SketchAgent demonstrates its ability to
produce accurate and semantically coherent diagrams with
minimal human intervention. Moreover, we introduce the
Sketch2Diagram Benchmark, a comprehensive dataset fea-
turing over 6,000 high-quality examples spanning eight cat-
egories. Extensive experiments demonstrate that SketchA-
gent outperforms state-of-the-art models across key metrics,
achieving superior accuracy and visual coherence.

Acknowledgements
This work was supported by National Science and Technol-
ogy Major Project (No. 2022ZD0115101), National Natural
Science Foundation of China Project (No. 624B2115, No.
U21A20427), Project (No. WU2022A009) from the Center
of Synthetic Biology and Integrated Bioengineering of West-
lake University.

Contribution Statement
The first four authors are equal contribution.

References
[Abdin et al., 2024] Marah Abdin, Jyoti Aneja, Hany

Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin
Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219, 2024.

[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini
Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[AI, 2025a] Meta AI. Llama 3.1: A state-of-the-art large lan-
guage model, 2025.

[AI, 2025b] Meta AI. Llama-3.2-11b-vision-instruct: A
multimodal instruction-tuned model, 2025.

[Almazroi et al., 2021] Abdulwahab Ali Almazroi, Laith
Abualigah, Mohammed A Alqarni, Essam H Houssein,
Ahmad Qasim Mohammad AlHamad, and Mohamed Abd
Elaziz. Class diagram generation from text requirements:
An application of natural language processing. Deep
Learning Approaches for Spoken and Natural Language
Processing, pages 55–79, 2021.

[Arar et al., 2024] Moab Arar, Andrey Voynov, Amir Hertz,
Omri Avrahami, Shlomi Fruchter, Yael Pritch, Daniel
Cohen-Or, and Ariel Shamir. Palp: prompt aligned person-
alization of text-to-image models. In SIGGRAPH, pages
1–11, 2024.

[Bar-Tal et al., 2023] Omer Bar-Tal, Lior Yariv, Yaron Lip-
man, and Tali Dekel. Multidiffusion: Fusing diffusion
paths for controlled image generation. ICLR, 2023.

[Cai et al., 2024] Zheng Cai, Maosong Cao, Haojiong Chen,
Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv
preprint arXiv:2403.17297, 2024.

[Cao et al., 2024] Pu Cao, Feng Zhou, Qing Song, and
Lu Yang. Controllable generation with text-to-
image diffusion models: A survey. arXiv preprint
arXiv:2403.04279, 2024.

[Chen et al., 2022] Bei Chen, Fengji Zhang, Anh Nguyen,
Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397, 2022.

[Epstein et al., 2023] Dave Epstein, Allan Jabri, Ben Poole,
Alexei Efros, and Aleksander Holynski. Diffusion self-
guidance for controllable image generation. NeurIPS,
36:16222–16239, 2023.

[Ghosh et al., 2018] Sutirtha Ghosh, Prasenjit Mukherjee,
Baisakhi Chakraborty, and Rezaul Bashar. Automated
generation of er diagram from a given text in natural lan-
guage. In iCMLDE, pages 91–96. IEEE, 2018.

[Guo et al., 2024] Daya Guo, Qihao Zhu, Dejian Yang,
Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the
large language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024.

[Hong et al., 2024] Wenyi Hong, Weihan Wang, Ming Ding,
Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Vi-
sual language models for image and video understanding.
arXiv preprint arXiv:2408.16500, 2024.

[Huang et al., 2024] Shanshan Huang, Qingsong Li, Jun
Liao, Shu Wang, Li Liu, and Lian Li. Controllable image
synthesis methods, applications and challenges: a compre-
hensive survey. Artificial Intelligence Review, 57(12):336,
2024.

[Hui et al., 2024] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi
Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical
report. arXiv preprint arXiv:2409.12186, 2024.

[Jiang et al., 2024] Xue Jiang, Yihong Dong, Lecheng
Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wen-
pin Jiao. Self-planning code generation with large lan-
guage models. TOSEM, 33(7):1–30, 2024.

[Le et al., 2022] Hung Le, Yue Wang, Akhilesh Deepak Got-
mare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and
deep reinforcement learning. NeurIPS, 35:21314–21328,
2022.

[Li et al., 2019] Bowen Li, Xiaojuan Qi, Thomas
Lukasiewicz, and Philip Torr. Controllable text-to-
image generation. NeurIPS, 32, 2019.

[Liu and Others, 2025] Haotian Liu and Others. Llava-v1.6-
34b: Large multimodal language vision model, 2025.

[Lozhkov et al., 2024] Anton Lozhkov, Raymond Li,
Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1925

Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu,
Yuxiang Wei, et al. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173, 2024.

[Luo et al., 2023] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng
Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Em-
powering code large language models with evol-instruct.
arXiv preprint arXiv:2306.08568, 2023.

[Phan et al., 2021] Long Phan, Hieu Tran, Daniel Le, Hieu
Nguyen, James Anibal, Alec Peltekian, and Yanfang Ye.
Cotext: Multi-task learning with code-text transformer.
arXiv preprint arXiv:2105.08645, 2021.

[Roziere et al., 2023] Baptiste Roziere, Jonas Gehring,
Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez,
et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

[Shi et al., 2022] Freda Shi, Daniel Fried, Marjan
Ghazvininejad, Luke Zettlemoyer, and Sida I Wang.
Natural language to code translation with execution. arXiv
preprint arXiv:2204.11454, 2022.

[Shin and Nam, 2021] Jiho Shin and Jaechang Nam. A sur-
vey of automatic code generation from natural language.
Journal of Information Processing Systems, 17(3):537–
555, 2021.

[Song et al., 2025] Kunpeng Song, Yizhe Zhu, Bingchen
Liu, Qing Yan, Ahmed Elgammal, and Xiao Yang. Moma:
Multimodal llm adapter for fast personalized image gener-
ation. In ECCV, pages 117–132. Springer, 2025.

[Tan et al., 2024] Cheng Tan, Dongxin Lyu, Siyuan Li,
Zhangyang Gao, Jingxuan Wei, Siqi Ma, Zicheng Liu, and
Stan Z Li. Peer review as a multi-turn and long-context
dialogue with role-based interactions. arXiv preprint
arXiv:2406.05688, 2024.

[Team et al., 2024] Gemini Team, Petko Georgiev, Ving Ian
Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

[Team, 2024] Qwen Team. Qwen2: A scalable and versatile
language model, 2024.

[Team, 2025a] 01.AI Team. Yi-1.5: Open foundation models
by 01.ai, 2025.

[Team, 2025b] 01.AI Team. Yi-coder: Open foundation
models by 01.ai, 2025.

[Team, 2025c] 01.AI Team. Yi-vl-34b: A multimodal foun-
dation model by 01.ai, 2025.

[Team, 2025d] CodeGeeX Team. Codegeex4: Open multi-
lingual code generation model, 2025.

[Team, 2025e] DeepSeek Team. Deepseek v2.5: A scalable
and efficient mixture-of-experts language model, 2025.

[Team, 2025f] DeepSeek AI Team. Deepseek-vl-7b-chat: A
vision-language model for advanced multimodal under-
standing, 2025.

[Team, 2025g] Zhipu AI Team. Glm-4-plus: A multilingual
foundation model for general purpose ai, 2025.

[Thakur et al., 2024] Shailja Thakur, Baleegh Ahmad, Ham-
mond Pearce, Benjamin Tan, Brendan Dolan-Gavitt,
Ramesh Karri, and Siddharth Garg. Verigen: A large lan-
guage model for verilog code generation. ACM Trans.
on Design Automation of Electronic Systems, 29(3):1–31,
2024.

[Tipirneni et al., 2024] Sindhu Tipirneni, Ming Zhu, and
Chandan K Reddy. Structcoder: Structure-aware trans-
former for code generation. TKDD, 18(3):1–20, 2024.

[Wang et al., 2024] Peng Wang, Shuai Bai, Sinan Tan, Shi-
jie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

[Wei et al., 2024a] Yuxiang Wei, Zhe Wang, Jiawei Liu,
Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with oss-instruct. In ICML, 2024.

[Wei et al., 2024b] Zhichao Wei, Qingkun Su, Long Qin,
and Weizhi Wang. Mm-diff: High-fidelity image per-
sonalization via multi-modal condition integration. arXiv
preprint arXiv:2403.15059, 2024.

[Wei et al., 2025] Jingxuan Wei, Cheng Tan, Qi Chen,
Gaowei Wu, Siyuan Li, Zhangyang Gao, Linzhuang Sun,
Bihui Yu, and Ruifeng Guo. From words to structured
visuals: A benchmark and framework for text-to-diagram
generation and editing. CVPR, 2025.

[Xu et al., 2022] Frank F Xu, Bogdan Vasilescu, and Gra-
ham Neubig. In-ide code generation from natural lan-
guage: Promise and challenges. TOSEM, 31(2):1–47,
2022.

[Yang et al., 2023] Aiyuan Yang, Bin Xiao, Bingning Wang,
Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-
scale language models. arXiv preprint arXiv:2309.10305,
2023.

[Zhang et al., 2023a] Pan Zhang, Xiaoyi Dong, Bin Wang,
Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao,
Haodong Duan, Songyang Zhang, Shuangrui Ding, et al.
Internlm-xcomposer: A vision-language large model for
advanced text-image comprehension and composition.
arXiv preprint arXiv:2309.15112, 2023.

[Zhang et al., 2023b] Tianjun Zhang, Yi Zhang, Vibhav
Vineet, Neel Joshi, and Xin Wang. Controllable
text-to-image generation with gpt-4. arXiv preprint
arXiv:2305.18583, 2023.

[Zhao and Lai, 2022] Puning Zhao and Lifeng Lai. Analysis
of knn density estimation. TIT, 68(12):7971–7995, 2022.

[Zhao et al., 2024] Puning Zhao, Fei Yu, and Zhiguo Wan.
A huber loss minimization approach to byzantine robust
federated learning. In AAAI, 2024.

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

1926

	Introduction
	Related Work
	Controllable Image Generation
	Controllable Code Generation

	Method
	Sketch-to-Code Agent
	Editing Code Agent
	Check Agent

	Sketch2Diagram Benchmark
	Data Analysis
	Evaluation Metrics

	Experiment
	Sketch generation
	Sketch Editing
	Error Analysis

	Conclusion

