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ABSTRACT

Dropout has emerged as one of the most frequently used tech-
niques for training deep neural networks (DNNs). Although
effective, the sampled sub-model by random dropout during
training is inconsistent with the full model (without dropout)
during inference. To mitigate this undesirable gap, we pro-
pose WordReg, a simple yet effective regularization built on
dropout that enforces the consistency between the outputs of
different sub-models sampled by dropout. Specifically, Wor-
dReg first obtains the worst-case dropout by maximizing the
divergence between the outputs with two sub-models with
different random dropouts. And then, it encourages the agree-
ments between the outputs of the two sub-models with worst-
case divergence. Extensive experiments on diverse DNNs and
tasks reveal that WordReg can achieve notable and consistent
improvements over non-regularized models and yields some
state-of-the-art results. Theoretically, we verify that WordReg
can reduce the gap between training and inference. The code
for reproducing the results will be released.

Index Terms— Image Recognition, Language Understand-
ing, Graph Mining, Dropout, Regularization

1. INTRODUCTION

Deep Neural Networks (DNNs) have achieved spectacular re-
sults in diverse tasks including image recognition, language
understanding, etc. However, DNNs often suffer from overfit-
ting and poor generalization. To alleviate these issues, some
regularizations [1, 2, 3] have been proposed. Among them,
Dropout [1] is the most popular technique for its simplicity and
effectiveness. Specifically, it performs implicit ensemble by
simply dropping a certain proportion of neurons from the neu-
ral networks during training. However, previous works [4, 5]
have pointed out that the potential deficiency of Dropout is that
it creates the undesirable inconsistency between the training
and inference, i.e., the sampled sub-model by random dropout
during training is inconsistent with the full model (without
dropout) during inference. Therefore, they [4, 5] impose L2

regularization on the inconsistent hidden states. However, they
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have not been widely used because: (1) the L2 distance on
hidden states is not in the same space as the main training
objective of classification (i.e., maximizing the log-likelihood
on the output probability distribution), which will hinder the
optimization process; (2) the sub-model consistency should be
controlled on the output probability level since the main objec-
tive of classification is to make the prediction distribution to
be closer to the ground-truth distribution. The smaller hidden
states distance cannot guarantee the model outputs to be closer.
In contrast, WordReg enforces sub-model consistency on the
output probability level using KL divergence.
In this paper, we propose a simple yet effective regulariza-
tion, dubbed WordReg, to reduce the inconsistency between
training and inference. More specifically, for each mini-batch
training, we first feed the data into the sub-model sampled with
a random dropout. And then, we obtain the other worst-case
dropout by maximizing the divergence between the outputs
with two sub-models with different dropouts. This process
can be formulated as a Binary Quadratic Programming (BQP)
problem and we contribute an efficient and effective approach
to solve it. Finally, we maximize the agreements between the
output probability distributions of the two sub-models that
sampled with random dropout and worst-case dropout, respec-
tively. Alternatively, we can also minimize the KL divergence
between the output probability distributions of two sub-models
that are both sampled with random dropouts. Compared with
this regularization, WordReg is task-dependent and possesses a
stronger regularization ability, which we verify through exten-
sive experiments in Section 4.4. We highlight our contributions
as (1) We propose WordReg, a simple yet effective regulariza-
tion built on dropout, which can be universally applied to di-
verse neural networks and tasks. (2) Theoretically, We explain
that WordReg minimizes the upper bound of the inconsistency
between training and inference in essence. (3) Experiments
on image, texts, and graph data reveal that WordReg achieves
notable and consistent improvements over non-regularized
models and yields some state-of-the-art results.

2. METHODOLOGY

We show the overall framework of WordReg in Figure 1. For-
mally, considering a sub-model that takes sample x as input
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Fig. 1. Illustration of Worst-case drop Regularization (Wor-
dReg). We obtain the worst-case drop mask vector mw (rela-
tive to mr) via solving a BQP problem.

and m as a mask vector denoting which neurons of the neural
network should be dropped, the output (after softmax) of the
sub-model is fθ(x,m). For the i-th unit mi of the mask vector
m, mi = 1 indicates that the neuron should be dropped while
mi = 0 illustrates that the neuron should be preserved during
dropout. To start, we introduce mr to denote the mask vector
of random dropout of the first sub-model. With the dropout
ratio σ ∈ [0, 1] preseted, we can define the constraint on m as,

Rm =
{
m | m ∈ {0, 1}N , ∥m∥0 = ⌊σN⌋

}
, (1)

where ∥ · ∥0 is the ℓ0 norm, N is the number of neurons in the
model. And then, we can obtain the worst-case mask vector
mw via maximizing the discrepancy of the outputs from two
sub-models sampled with dropout,

mw = argmax
m∈Rm

E
(x,y)∼D

DKL (fθ(x,mr)||fθ(x,m)) , (2)

where DKL is Kullback–Leibler divergence. With Taylor ex-
pansion, we can approximate the optimal solution as,

mw ≈ argmax
m∈Rm

1

2
mTHm, (3)

H = E
(x,y)∼D

∇2DKL (fθ(x,mr)||fθ(x,m))

∣∣∣∣
m=0

, (4)

H is the Hessian matrix of the loss DKL at m = 0 which
is a N ×N semi-positive definite matrix. Obviously, this is
a Binary Quadratic Programming (BQP) problem, which is
NP-hard but admits an approximate solution to mw. Here, we
introduce a novel and more suitable method for this problem,
which enjoys more accurate solution of semidefinite program-
ming (SDP) relaxations [6] and higher efficiency of spectral
relaxations methods [7] simultaneously. Firstly, we convert
{0, 1}-constraint on m of Rm to {−1, 1}-constraint on n via
defining n = 2m − 1. Then we introduce a new variable
n̂ with N + 1 dimensions, i.e., n̂i = [n; 1], where [·; ·] de-
notes concatenation. We can rewrite constraint Rm as a new
constraint Rn̂ on n̂,

Rn̂ =
{
n̂ | n̂ ∈ {±1}N+1, eT n̂ = c

}
, (5)

where c = 2⌊σN⌋−N+1 and e ∈ RN+1 is an all-one vector.
By these transformations, we can reformulate the BQP in Eq

(4) as a new BQP in terms of n̂, where the constraint term
n̂ ∈ {±1}N+1 can be rewrited as n̂2

i = 1. We then introduce
a Lagrange multiplier λi for each constraint n̂2

i = 1 and λ0

for the constraint eT n̂ = c. Now, we can formulate the dual
problem of the original BQP as,

min
λ,λ0

d (λ, λ0) , (6)

d (λ, λ0) = max
∥n̂∥2=N+1

n̂T [L+ diag(λ)]n̂− eTλ− cλ0

= (N + 1)λmax − eTλ− cλ0,
(7)

where

L =

(
H He+ 1

2λ0e
eTH + 1

2λ0e
T 0

)
∈ R(N+1)×(N+1)

, and λmax is the largest eigenvalue of L + diag(λ). The
eigenvector of unit norm umax corresponding to λmax can
be derived via approximated by using a single-step power
iteration instead of conducting naive eigenvalue decomposition.
Then, the maximum n̂∗ can be derived,

n̂∗ =
√
N + 1umax. (8)

The dual problem Eq.(6) can be solved by the gradient descent
method. The gradients of d w.r.t λ and λ0 are as follows,

∇λd = (N + 1)u2
max − e, (9)

∂d

∂λ0
=

1

2
(N + 1)uT

max

(
0 e
e 0

)
umax − c, (10)

where u2
max denotes an element-wise square of umax. During

training, over each mini-batch, we compute the above gradient
to make a one-step update of the Lagrange multipliers λ and
λ0 with the gradients, before the maximum n̂∗ is taken with
the updated multipliers. Finally, both ±n̂∗ are optimal and
we should choose the one closer to n̂N+1 = 1 as required.
Note that we seek the worst-case dropout mask layer-by-layer
instead of applying it to an entire network as a whole. This
can make the WordReg computationally efficient as well as
prevent too many neurons from being dropped at a few layers.
Given the small scale of neurons (usually <1k) in each layer
in widely-used DNNs, WordReg is computationally cheap.
With the worst-case dropout mask vector mw obtained, we
can formulate the loss L of DNNs training with WordReg as,

L = E
(x,y)∼D

(l (y, fθ (x))+µDKL (fθ(x,mr), fθ(x,mw))),

(11)
where l(·) is the loss of neural network training and µ is a
trade-off parameter that we will study in section 4.4.

3. THEORETICAL JUSTIFICATION

In this section, we aim to explain the reasons why WordReg
can mitigate the gap between training and inference. Specif-
ically, we show that the inconsistency between loss of the



full model fθ(x) and the averaged loss of sub-models can be
bounded by our regularization objective using a linear model.

Theorem 3.1. Given the liner model is fθ(x) = softmax
(Norm(wTx)) where Norm(·) is the normalization layer, we
have:

|L(w)− Emr
[L(w,mr)]|

≤ c
√

E
(x,y)∼D

DKL (fθ(x,mr)||fθ(x,mw)),
(12)

where c is a constant.

Proof. Given the loss function L is c1-Lipschitz smooth, we
have,

1

c1
|L(w)− Emr [L(w,mr)]| ≤

E
mr,

(x,y)∼D

∥∥∥∥∥wTx−
(
wTx

)
⊙mr

σ

∥∥∥∥∥ = E
(x,y)∼D

(1− σ)
∥∥wTx

∥∥ ,
(13)

where σ is the dropout ratio and is the Lipshitz constant. Based
on the relation between the KL-divergence and the total varia-
tion distance, we have,

E
mr,m

′
r

(x,y)∼D

∥fθ(x,mr)− fθ(x,m
′
r)∥1

≤
√

2 E
mr,m

′
r

(x,y)∼D

DKL (fθ(x,mr)||fθ(x,m′
r))

≤
√

2 E
mr

(x,y)∼D

DKL (fθ(x,mr)||fθ(x,mw)),

(14)

Suppose that the inverse function from softmax(wTx) to
wTx is c2-Lipschitz smooth, we have,

E
mr,m

′
r

(x,y)∼D

∥∥∥∥∥
(
wTx

)
⊙mr −

(
wTx

)
⊙m′

r

σ

∥∥∥∥∥
= 2(1− σ) E

(x,y)∼D

∥∥wTx
∥∥

≤ c2

√
2 E

mr

(x,y)∼D

DKL (fθ(x,mr)||fθ(x,mw)),

(15)

because both mr,m
′
r independently follow Bernoulli distri-

bution. Unifying Eq.(13) and Eq.(15), we have,

|L(w)− Emr
[L(w,mr)]|

≤
√
2

2
c1c2

√
E

(x,y)∼D
DKL (fθ(x,mr)||fθ(x,mw)),

(16)

Let c =
√
2
2 c1c2, we can draw the conclusion.

4. EXPERIMENTS

In this section, we experimentally verify that WordReg can be
universally applied in diverse DNNs including Convolutional
Neural Networks (CNNs), Transformer, Graph Neural Net-
works (GNNs), and diverse tasks including image recognition,
language understanding, and graph classification.

4.1. Application to Image Recognition

Table 1. Accuracy on CIFAR-100 with 3 random seeds while
ImageNet with only 1 seed for the heavy computational over-
head. Kindly note that ResNet-34 here is trained from scratch
while the ViT models are initialized with publicly available
pre-trained weights and then finetuned on the CIFAR-100 and
ImageNet datasets.

Method CIFAR-100 ImageNet
ResNet-34 [8] 78.59 ± 0.16 75.14
ResNet-34 + FD [5] 78.94 ± 0.10 75.54
ResNet-34 + WordReg 79.85 ± 0.24 76.41
ViT-B/16 [9] 92.55 ± 0.36 83.86
ViT-B/16 + FD [5] 92.76 ± 0.31 84.03
ViT-B/16 + WordReg 93.92 ± 0.22 84.54
ViT-L/16 [9] 93.41 ± 0.27 85.12
ViT-L/16 + FD [5] 93.73 ± 0.16 85.36
ViT-L/16 + WordReg 94.75 ± 0.19 86.05

For image recognition, we perform experiments on two rep-
resentative datasets: CIFAR-100 [14] and ImageNet [15]. The
CIFAR-100 dataset consists of 60k images from 100 classes,
and each class contains 600 images with 500 for training and
100 for testing. The ImageNet dataset contains 1.3M images
from 1k classes. We adopt ResNet [8] and recent Vision Trans-
former [9] (ViT) as backbones. The data preprocessing strate-
gies and other details are the same as the two original works,
respectively. Additionally, we set the hyperparameter µ as
0.60 in this experiment. We show the results in Table 1, from
which we can observe that WordReg brings ∼ 1.3% accuracy
improvements across ResNet-34 and ViT models on CIFAR-
100 datasets. Similar achievements can also be observed on
the large-scale dataset ImageNet. These verify that WordReg
can benefit various DNNs in the task of image recognition.

4.2. Application to Language Understanding
Pre-trained Language Models (PLMs) such as BERT [10]
have achieved remarkable success in the task of language un-
derstanding. Considering that pre-training such large-scale
language models from scratch are expensive, we only evaluate
WordReg in the fine-tuning stage. Specifically, we fine-tune
two publicly available PLMs: BERT-base [10] and RoBERTa-
large [13] on the GLUE [16] benchmark, which contains 8 text
classification or regression tasks. Note that we substitute KL
divergence with MSE in the regression task (STS-B). For each
task, we tune the hyper-parameter µ in the set {0.2, 0.4, 0.6}.
The evaluation metrics for the above 8 tasks are as follows:
The result for STS-B is the Pearson correlation; Matthew’s
correlation is used for CoLA; Other tasks are measured by



Table 2. Fine-tuned model performances on GLUE language understanding benchmark. The results on the development set are a
median over five runs. Kindly note that it is a common practice not to show the standard deviation on this benchmark.

Model MNLI MRPC QNLI QQP RTE SST-2 STS-B CoLA Avg.
BERT-base [10] 83.8 85.3 90.8 91.0 68.2 92.4 89.3 62.3 82.85

BERT-base + WordReg 85.7 87.8 92.6 91.9 71.7 93.5 90.1 63.2 84.56

XLNet-large [11] 90.8 90.8 94.9 92.3 85.9 97.0 92.5 69.0 89.15
ELECRTA-large [12] 90.9 90.8 95.0 92.4 88.0 96.9 92.6 69.1 89.46
RoBERTa-large [13] 90.2 90.9 94.7 92.2 86.6 96.4 92.4 68.0 88.93

RoBERTa-large + WordReg 91.0 91.9 95.8 92.9 89.0 97.4 92.7 70.7 90.18

Table 3. Accuracy (%) on graph classification tasks. We show
the mean and standard deviation over 10 different runs.

Datasets MUTAG PROTEINS D&D
GCN [18] 69.50±1.78 73.24±0.73 72.05±0.55
GCN + WordReg 71.89±1.01 74.76±0.64 74.14±0.87
GIN [19] 81.39±1.53 71.46±1.66 70.79±1.17
GIN + WordReg 82.45±1.37 72.95±0.75 72.21±0.97

Accuracy. Additionally, we keep other experimental settings
as previous works [10, 13]. The results in Table 2 indicate
that fine-tuning PLMs with WordReg consistently outperforms
vanilla fine-tuning by a notable margin, which further verifies
the effectiveness of WordReg. Also, RoBERTa-large + Wor-
dReg achieves superior performance over the state-of-the-art
(SOTA) PLMs including XLNet-large [11] and ELECTRA-
large [12] in the tasks of language understanding.

4.3. Application to Graph Classification

Graph classification aims to label a given graph with the
maximum probability among several seed categories. We use
3 benchmarks for graph classification from TU datasets [17],
which include MUTAG, PROTEINS, D&D. We employ
GCN [18] and GIN [19] as the base models. Additionally,
we evaluate the model performance with a 10-fold cross-
validation setting, where the dataset split is based on the
conventionally used training/test splits [20]. We use the early
stopping criterion, where we stop the training if there is no
further improvement on the validation loss during 50 epochs.
Furthermore, the maximum number of epochs is set to 500.
We then report the average performances on test sets, by
performing overall experiments 10 times. The results shown
in Table 3 reveal that GNNs with WordReg achieve superior
performance over vanilla GNNs training, which further val-
idates the effectiveness of WordReg in various applications.

4.4. Hyper-parameters Sensitivity Analysis

We substitute the worst-case dropout with random dropout to
study its influence. As shown in Figure 2, WordReg outper-
forms the random dropout across various drop ratios, which
validates that searching for the worst-case dropout is necessary
and conducive. Also, we can make the following observations:
(1) WordReg can achieve better performance when the two
dropout ratios are in a reasonable range (0.2-0.4). (2) WordReg
tends to perform better when the two dropout ratios are close
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Fig. 2. Comparisons between WordReg (right) and random
dropout regularization (left). The experiments are conducted
on CIFAR-100 with ResNet-34. σ0 and σ are dropout ratios
of vanilla drop and worst-case drop, respectively. The left sub-
figure is symmetrical because both two dropouts are random.

Table 4. The influence of the trade-off parameter µ on CIFAR-
100 (ResNet-34) and GLUE benchmark (BERT-base).

µ 0.0 0.2 0.4 0.6 0.8 1.0

CIFAR-100 78.59 79.52 79.85 79.65 79.62 79.13

GLUE Benchmark 82.85 83.91 84.24 84.56 84.32 83.83

or identical. Additionally, we study the trade-off parameter
µ in Table 4. Initially, the prediction performance will be
improved with the increase of µ. However, the performance
sees a dramatic drop after a specific threshold, which can be
attributed to its over-powerful regularization.

5. CONCLUSION

In this paper, we propose a simple yet effective regularization,
dubbed WordReg, to mitigate the gaps between training and in-
ference. Specifically, we formulate the process of searching for
worst-case dropout as a BQP problem and introduce a novel
and more suitable method to obtain the approximate solution.
Extensive experiments verify that WordReg is universally ef-
fective in various scenarios. Due to the limited computational
resources, we have not tested WordReg in the pre-training
stage of BERT, which we leave as future works.
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