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ABSTRACT
Representing graph data in a low-dimensional space for sub-
sequent tasks is the purpose of attributed graph embedding.
Most existing neural network approaches learn latent repre-
sentations by minimizing reconstruction errors. Rare work
considers the data distribution and the topological structure
of latent codes simultaneously, which often results in inferior
embeddings in real-world graph data. This paper proposes
a novel Deep Manifold (Variational) Graph Auto-Encoder
(DMVGAE/DMGAE) method for attributed graph data to im-
prove the stability and quality of learned representations to
tackle the crowding problem. The node-to-node geodesic sim-
ilarity is preserved between the original and latent space under
a pre-defined distribution. The proposed method surpasses
state-of-the-art baseline algorithms by a significant margin
on different downstream tasks across popular datasets, which
validates our solutions. We promise to release the code after
acceptance.

Index Terms— Manifold learning, structure information,
graph embedding, crowding problem

1. INTRODUCTION

Attributed graphs are graphs with node attributes/features that
emerge in various real-world applications. Such examples
include social networks [1], citation networks [2], protein-
protein interaction networks [3], etc. From a data represen-
tation perspective, graph embedding is to encode the high-
dimensional, non-Euclidean information about the graph struc-
ture and attributes associated with the nodes and edges into a
low-dimensional embedding space. The learned embeddings
can then be used for various data mining tasks, including clus-
tering [4], recommendation [4] and prediction [5].

Early graph embedding approaches are based on Lapla-
cian eigenmaps [6], matrix factorization [7, 8], and random
walks [9]. Recently, there has been a surge of approaches
focusing on deep learning methods on graphs. Specifically,
Graph Convolutional Network (GCN) based methods such as
graph auto-encoder (GAE) and variational graph auto-encoder
(VGAE) [5], AGC [10], DAEGC [11] and ARGA [12] obtain
embeddings by enforcing the reconstruction constraint, have

‘⋆’ denotes the corresponding author.

made significant progress in many graph learning tasks [13].
Moreover, GraphMAE [14] focuses on feature reconstruc-
tion with a masking strategy to increase its robustness. The
task of most existing deep learning methods requires preserv-
ing information beneficial to reconstruction and fails to opti-
mize embeddings directly to maintain the topological structure
information yet gets inferior representation in many cases.
Worse, when the high-dimensional data is mapped into a low-
dimensional latent space, a crowding problem [15] may occur.
In detail, the embeddings generated from such methods are
insufficiently constrained, resulting in the appearance of cur-
vature folds that do not exist in the original data space and
eventually distorting the embeddings, which means nodes of
the same class are prone to crowd together.

Manifold learning unveils low-dimensional structures from
the input data based on the manifold assumption, i.e., data
lie on a low-dimensional manifold immersed in the high-
dimensional ambient space. Equipped with deep neural net-
works, deep manifold learning (DML) is transferable to graph
data, e.g., MGAE [16] advances the auto-encoder to the graph
domain to embed node features and adjacency matrix. Inspired
by MGAE and DLME [17], DML can be applied in learning
graph embeddings while keeping distances between nodes.
Different from them, we relieve and even tackle the crowd-
ing problem by preserving the topological structure for latent
embeddings of the graph data under a distribution efficiently.
Therefore, we propose the Deep Manifold (Variational) Graph
Auto-Encoder (DMVGAE/DMGAE) method for attributed
graph embedding to improve the representations’ stability and
quality. The problem of preserving the structure informa-
tion is converted into keeping inter-node similarity between
non-euclidean high dimensional latent space and euclidean
input space. For DMVGAE, firstly, we use a variational auto-
encoder mechanism to learn the distribution and get codes
from it. Secondly, we propose a graph geodesic similarity to
collect graph structure information and node feature informa-
tion to measure node-to-node relationships in the input and
latent space. t-distribution is used as a kernel function to fit
the neighborhoods between nodes to balance intra-cluster and
inter-cluster relationships. Therefore, this method takes advan-
tage of both manifold learning based and auto-encoder-based
methods for attributed graph embedding, which is a success-
ful attempt to embed them together, with the reason that we



usually think about graphs in terms of their combinatorial
properties, variational auto-encoder with the data distribution
properties, whereas manifolds in terms of their topological and
geometric properties. Thus, our contributions can be summa-
rized as follows:

• Obtain the topological and geometric properties of
graph data under a pre-defined distribution, improve the
learned representations’ stability and quality, and tackle
the crowding problem.

• Propose a manifold learning loss that considers graph
structure information and node feature information to
preserve the observing node-to-node geodesic similarity.

• Achieve state-of-the-art performance on different tasks
on benchmark through extensive experiments.

2. METHOD

2.1. Problem Statement

An attributed graph is denoted as G = (V,E,X), where
V = {v1, v2, · · · , vn} is the vertex set with n nodes, E
is the edge set, and X = [x1, x2, · · · , xn]

T is the feature
matrix. Compared with original graph G, attributed graph
Ḡ = (V, Ē,X) is a fully connected graph with no uncon-
nected nodes and Ē is the new edge set. The topology structure
of graph G can be denoted by adjacency matrix A:

A = {aij} ∈ Rn×n, aij = 1 if (vi, vj) ∈ E else 0 (1)

ai,j = 1 indicates that there is an edge from node vi to node
vj . We aim to find a set of low-dimensional embeddings
Z = [z1, z2, · · · , zn]T which can relieve and even tackle the
crowding problem via preserving both the local and global
topological features, the resulting embeddings Z can be used to
accomplish a variety of downstream tasks like node clustering,
link prediction, and visualization.

2.2. Proposed method

To increase the nonlinearity of node features, we use L Fully-
Connected (FC) layers to transform the input feature X into
X ′. And then a two-layer GCN is adopted as the graph encoder
like VGAE, which takes a Gaussian prior p(Z) =

∏
ip(zi) =∏

iN (zi|0, I). Generating an approximation q(Z|X ′, A) of
the posterior probability by the variational graph encoder, we
optimize the variational lower bound:

L0 = Eq(Z|(X′,A))[log p(Â|Z)]−KL[q(Z|X ′, A)||p(Z)]
(2)

where KL[q(·)||p(·)] is the Kullback-Leibler divergence be-
tween q(·) and p(·).

For the non-probabilistic graph auto-encoder, we minimize
the reconstruction error of the graph data by:

L1 = Eq(Z|(X′,A))[log p(Â|Z)] (3)

where Â is the reconstructed graph.
In order to relieve and even tackle the crowding problem,

we introduce DML to preserve the geometric structure of the
graph G. In detail, we calculate graph geodesic distance ma-
trices on prior graph GX and on complete graph ḠX in the
input space before training, where the prior graph is the given
graph or k-nearest graph GX = G = (V,E,X), and the com-
plete graph ḠX = (V, Ē,X), as we want to get local (GX)
and global (ḠX) structure features from different aspects. In
experiments, we find that if we only use the given graph or
k-nearest graph GX , the clustered nodes of the same class still
easily get together. In the latent space, we sample K latent
embeddings (Z0, Z1, · · · , Zi, · · · , ZK) from q(Z|X ′, A) and
calculate graph geodesic distance matrices only on local graphs
GZi

= (V,E,Zi) in order to reduce the algorithm complexity
and training time. The details are shown in Algorithm.1. These
operations differ from other DML-based embedding methods,
which contribute to tackling the crowding problem.

for a given graph GX , we define the graph geodesic dis-
tance matrix D(GX) =

{
dGX
ij |i, j = 1, 2, · · · , n

}
, where

dGX
ij is calculated from Euclidean distances of (xi, xj) when

(vi, vj) ∈ E, otherwise, dGX
ij are set to be a large number.

Similarly, we can get D(ḠX) and D(GZi
).

In order to avoid the adverse effects of outliers and neigh-
borhood inhomogeneity on the characterization of the mani-
fold, the distance dij is transformed to di|j :

di|j = dij − ρi (4)

where ρi = min([di0, di1, · · · , din]) is deducted from dis-
tances of all others nodes to node vi for alleviating the influ-
ence of outliers. After getting a distance matrix, we can use a
non-linear function convert it to a similarity matrix. Different
from t-SNE [18] and UMAP [19], the former uses the normal-
ized Gaussian and Cauchy functions and the latter uses the
fitted polynomial function, here we adopt t-distribution as we
find that the degree of freedom ν in t-distribution can be used
as a tool to prevent the training from converging to bad local
minima and control the separation margin between different
manifolds in experiments which means that changing ν can
relieve the crowding problem. The similarity is formulated as
follows:

pi|j(σi, ν) = g(di|j , σi, ν)

= Cν(1 +
di|j

σiν
)−

(ν+1)
2

(5)

Cν =
√
2π

Γ(ν+1
2 )

√
νπΓ(ν2 )

(6)

where the degree of freedom ν ∈ R+, Γ(·) in the coefficient
Cν is the gamma function, and the data-adaptive parameter
σi > 0, is estimated by a binary search method as in the
UMAP: ∑

j ̸=i

pi|j(σi, ν) = log2 Qp (7)



where Qp is a hyperparameter that controls the compactness
of neighbors.

We can get the graph geodesic similarity:

P = {pij |i, j = 1, 2, · · · , n} (8)

where pij is the joint probability by symmetrizing the graph
geodesic similarity pi|j , which is performed by:

pij = pi|j + pj|i − 2pi|jpj|i (9)

Using above equations, we can calculate graph geodesic
distance and get node similarity matrices P (GX), P (ḠX)
and P (GZi

) on different graphs GX = G = (V,E,X),
ḠX = (V, Ē,X) and GZi

= (V,E,Zi) to preserve local
and global structure features from different perspectives by
a manifold learning loss which is different from graph em-
bedding methods that only take features or structures as input
without information maintaining. Here, we adopt a logistic
loss:

LM(a, b) = a log
a

b
+ (1− a) log

1− a

1− b
(10)

therefore, the loss for structure-preserving is constructed as
follows:

L2 =
1

K

K∑
i=0

(LM(P (GX), P (GZi
))+

αLM(P (ḠX), P (GZi
)))

(11)

where α is a weight hyper-parameter, K is the number of
samples.

Manifold learning loss L2 has ability to tackle the crowd-
ing problem as the distance of each pair of nodes is equally
calculated on the fully-connected graph ḠX , while distances
of the given graph GX is only performed on the neighbouring
nodes, which are both expected to be preserved with distances
on graph GZi

in the latent space. Because L2 tries intra-
manifold points to transform into a cluster in the latent space
and pushes away inter-manifold point pairs from each other.
The final loss L (DMVGAE) and L′ (DMGAE) is combined
as:

L = L2 + βL0 (12)

and
L′ = L2 + βL1 (13)

where β is used to balance the reconstruction loss and the
manifold learning loss.

We use the prior graph instead of the fully-connected graph
in the latent space as well as a well-established mini-batch-
based training method to reduce training complexity. Thus,
the complexity is O(KBsNn) with Nn neighbours (Nn < n),
where Bs is the batch size. In experiments, we find that K = 1
is enough to learn a good representation without much perfor-
mance degradation. The complexity is reduced to O(BsNn).

Algorithm 1 DMVGAE/DMGAE
Input: Graph with links and features:G[V,E,X], weight
hyper-parameters: α, β, number of FC layers: L, number
of samples : K, learning rate: lr, batch size: Bs, epochs: T ,
perplexity: Qp, degree of freedom: ν
Output: Graph Embedding Z
Initialization
Calculate D(GX) and D(ḠX), transform them to P (GX)
and P (ḠX) by Eq.4-Eq.9
while t = 0, 1, · · · , T − 1 do

Get X ′ from the input data X by FC layers
Generate an approximation q(Z|X ′, A) of the posterior

probability by the variational graph encoder like VGAE
Calculate loss L0 by Eq.2 or loss L1 by Eq.3 and gener-

ate K latent embeddings Z0, Z1, · · · , ZK from q(Z|X ′, A)
while k = 0, 1, · · · ,K − 1 do

Calculate D(GZi
) and transform it to P (GZi

) by
Eq.4-Eq.9

Get LM(P (GX), P (GZi
)), LM(P (ḠX), P (GZi

))
by Eq.10

end while
Calculate Loss L2 by Eq.11
Calculate Loss L by Eq.12 or Loss L′ by Eq.13
Update network parameters with its stochastic gradient

end while

3. EXPERIMENTS

3.1. Datasets and settings

Our experiments are conducted on four popular benchmark
datasets: Cora, CiteSeer, PubMed, and Wiki. For all datasets,
the degree of freedom ν in the input space is set to 100. We
directly set σi = 1 and ρi = 0 in the latent space as a trade-off
between the speed and performance, the necessity of calculat-
ing them additionally becomes not so much in the latent space
as the layer goes deeper after some nonlinear manifold unfold-
ing. All codes are implemented using the PyTorch library and
run on NVIDIA v100 GPU. The best results for each indicator
are shown in bold.
Baselines and metrics. We compare our model with sev-
eral prevalent and concurrent algorithms: DeepWalk [9], K-
means [20], various DML and graph embedding methods,
GAE and VGAE [5], DGI [21], ARGA [12], AGE [22], GIC
[23], MGAE [16], PANE [24]. We employ three metrics for
node clustering: Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), and balanced F1-score (F1) [25]. For link pre-
diction, we partition datasets following AGE [22], and report
Area Under Curve (AUC), and Average Precision (AP).

3.2. Results on Node clustering

In the node clustering task, the generated embeddings are
clustered into several clusters by the K-means algorithm in



Table 1. Experimental results of node clustering.

Methods Input Cora Citeseer PubMed Wiki
ACC NMI F1 ACC NMI F1 ACC NMI F1 ACC NMI F1

K-means Feature 0.347 0.167 0.254 0.385 0.170 0.305 0.573 0.291 0.574 0.334 0.302 0.245
DeepWalk Graph 0.467 0.318 0.381 0.362 0.970 0.267 0.619 0.167 0.471 0.385 0.324 0.257

GAE Both 0.533 0.407 0.420 0.413 0.183 0.291 0.641 0.230 0.493 0.173 0.119 0.154
VGAE Both 0.560 0.385 0.415 0.444 0.227 0.319 0.655 0.251 0.510 0.287 0.303 0.205
MGAE Both 0.634 0.456 0.380 0.636 0.398 0.395 0.439 0.082 0.420 0.501 0.480 0.392

DGI Both 0.713 0.564 0.682 0.688 0.444 0.657 0.533 0.181 0.186 - - -
ARGA Both 0.640 0.449 0.619 0.573 0.350 0.546 0.591 0.232 0.584 0.414 0.395 0.383
AGE Both 0.712 0.559 0.682 0.569 0.348 0.544 - - - 0.519 0.494 0.408
GIC Both 0.725 0.537 0.694 0.696 0.453 0.654 0.673 0.319 0.704 0.505 0.486 0.438

Ours(DMGAE) Both 0.741 0.578 0.703 0.698 0.452 0.666 0.752 0.384 0.760 0.534 0.493 0.479
Ours(DMVGAE) Both 0.745 0.584 0.702 0.701 0.459 0.668 0.758 0.382 0.765 0.538 0.511 0.476

an unsupervised manner, which are then evaluated by true
external labels. Results are shown in Table 1. In order to get a
fair comparison, we used K-means for the embeddings of AGE.
Algorithms, whether they use feature and graph information
or not, are presented. We can see that DMVGAE outperforms
almost all of these state-of-the-art methods on the four datasets.
The results of DMVGAE are much better than those of VGAE,
which indicates that the manifold learning loss L2 is essential
to get better graph embeddings for node clustering.

3.3. Link Prediction Results

In the link prediction task, some edges are hidden randomly
in the input graph and the goal is to predict the existence of
hidden edges based on the computed embeddings. We follow
the setup in [5]. Results are shown in Table 2. Our proposed
method achieves the highest average values on these datasets.

Table 2. Link prediction performance on Cora, Citeseer, and
PubMed.

Methods Cora Citeseer PubMed
AUC AP AUC AP AUC AP

DeepWalk 0.831 0.850 0.805 0.836 0.844 0.841
VGAE 0.914 0.926 0.980 0.920 0.964 0.965

GIC 0.935 0.933 0.970 0.968 0.937 0.935
AGE 0.924 0.932 0.924 0.930 0.968 0.971

PANE 0.933 0.918 0.932 0.919 0.985 0.977
Ours(DMGAE) 0.966 0.961 0.979 0.981 0.965 0.947

Ours(DMVGAE) 0.968 0.977 0.981 0.978 0.968 0.966

3.4. Visualization

To evaluate our proposed method, we visualize the distribution
of the learned latent representations on Cora compared to

each node’s input features in two-dimensional space using
UMAP. As shown in Fig. 1, GIC and AGE suffer from a more
severe crowding problem, and our proposed method tackles
this problem, performing much better.

(a) GIC (b) AGE (c) Proposed

Fig. 1. Comparison of visualization results on Cora using
UMAP. Colors represent label categories.

4. CONCLUSION

This paper proposed a deep manifold (variational) graph
auto-encoder method (DMVGAE/DMGAE) for attributed
graph embedding. Assuming the observed data lies on a
low-dimensional manifold and Considering the limitations of
current auto-encoder-based methods, we introduce DML to
graphs and try to preserve the structure information to tackle
the crowding problem for the learned embeddings. Experi-
ments on standard benchmarks demonstrate our solution. For
future work, we plan to introduce different types of noise in
the given graph, which is significant in real life to prevent
attacks and improve model robustness.
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