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ABSTRACT
Datasets with noisy labels present challenges for training
Deep Neural Networks (DNNs) with high generalization abil-
ity. An direct idea is to correct the noisy labels for robust
learning. However, existing label correction methods can not
handle with heavy noise or datasets with samples of many
categories so well. We explain the reasons and introduce a
global label distribution regularization to remedy these defi-
ciencies. With this regularization, we convert the label correc-
tion to the Optimal Transport (OT) formulation and propose
to utilize a fast version of the Sinkhorn-Knopp algorithm for
finding an approximate solution efficiently at scale. Exper-
iments on benchmark datasets with both synthetic and real-
world label noise show that the superiority of our OT Cleaner
in terms of both training efficiency and classification accu-
racy. The code is available at: https://github.com/
junxia97/OT-Cleaner.

Index Terms— Image recognition, label noise, label cor-
rection, optimal transport

1. INTRODUCTION

Deep learning has demonstrated its superiority in various
applications. However, it is extremely expensive and time-
consuming to collect large datasets with human annotated
labels. To address this problem, there are alternative and in-
expensive methods for mining large-scale data with labels,
such as querying commercial search engines [1] and down-
loading social media images with tags [2]. However, these
methods are prone to produce incorrect labels. As is shown
in a recent research [3], an intractable problem is that Deep
Neural Networks (DNNs) can easily over-fit to noisy labels,
which dramatically degrades the generalization performance
of DNNs. Therefore, it is necessary and urgent to design some
valid methods to address this issue.

Previous work showed that during training, DNNs tend
to learn simple patterns first, then gradually memorize all
samples [4], which justified the widely used small-loss trick:
the loss value of clean samples are more likely to be small.
Based on this, several existing works select small-loss samples
as clean ones to train the DNNs robustly [5]. They achieved

‘?’ denotes equal contribution, Stan Z. Li is the corresponding author.

significant performance improvements over regular training.
Although these methods exclude unreliable samples with the
small-loss trick, they may eliminate numerous useful ones
among the large-loss samples. Therefore, for a more robust
training on noisy labels, SELFIE [6] proposes to refurbish a
portion of large-loss samples. However, SELFIE assigns the
DNN’s prediction as label directly similar to [7],

ynew = ypred, (1)

where ypred is the average of DNN’s prediction of several
epochs during training and ynew is the label after correction
respectively. When we train the DNNs with ynew as the la-
bels, a trivial global optimal solution will be obtained where
a network that always predicts constant label for each sample
under high levels of noise. This dilemma has been observed
in previous works [8, 7]. To overcome this issue, they add the
regularization that labels after correction should be evenly dis-
tributed in each batch. However, the samples in each batch are
usually class unbalanced. What is worse, this approximation
can not handle with datasets with samples of many categories
(e.g., CIFAR-100 with 100 classes) so well because the classes
number will be near or even larger than the batch size. The
samples in each batch can not cover all classes and thus the
distribution regularization for each batch can not work well.
The other way is to clean the labels with a convex combination
of the given noisy label and the prediction of DNNs,

ynew = αŷ + (1− α)ypred, (2)

where α ∈ [0, 1] is the label confidence of the given label ŷ.
Although they avoid the trivial solution, they suffer from the
difficulty of accurate estimation of α because α varies across
different samples and training stages [9, 10, 8, 11], which
results in severe false corrections especially when handling
with heavy noise or datasets with samples of many categories.

To tackle these issues, OT Cleaner first selects some small-
loss samples for training and then corrects the noisy labels
of large-loss samples. In case that the network that always
predicts constant label for each sample, OT Cleaner introduces
the global label distribution regularization that the labels after
correction should be evenly distributed among all classes for
all training data instead of each mini-batch (can also be dis-
tributed as the noisy label distribution for imbalanced datasets).
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With this regularization, we find the label correction can be
formulated as optimal transport [12] and utilize a fast version
of Sinkhorn-Knopp algorithm [13] to solve it efficiently. Also,
OT Cleaner does not require estimation of label confidence
and thus alleviates the severe false correction. To conclude,
our key contributions are:

• We explain the poor performance of existing label cor-
rection methods when handling with heavy noise and
datasets with samples of many categories.

• We introduce a global label distribution regularization
to remedy above deficiencies of existing label correc-
tion methods. Besides, we formulate label correction
as optimal transport and propose a fast version of the
Sinkhorn-Knopp algorithm for finding an approximate
solution efficiently at scale.

• Experiments on datasets with both synthetic and real-
world label noise show that OT Cleaner can achieve
competitive performance in terms of training efficiency
and classification accuracy.

2. METHOD

2.1. Problem Statement

We consider the problem of K-class classification task using
a DNN with a softmax output layer. Suppose that X ⊂ Rd
is the input feature space and Y = {0, 1}K be the ground-
truth label space in one-hot manner. In a typical classification
problem, we are provided a training set D = {(xi, yi)}Ni=1

obtained from a joint distribution over X × Y . The goal is to
learn the mapping function F(·; θ), a DNN parameterized by
θ, to convert the input into a vector of class scores. Then the
class scores are mapped to class probabilities with a softmax
operator:

s(θ, xi) = softmax(F(xi; θ)), (3)

We optimize θ by minimizing the average cross entropy loss:

L(θ) = − 1

N

N∑
i=1

K∑
j=1

yi,j log sj(θ, xi). (4)

In this paper, we focus on learning with noisy labels. Namely,
we are provided with a noisy training dataset D̂ = {(xi, ŷi)}Ni=1

obtained from a noisy joint distribution over X × Y , where
ŷi is a noisy label which may not be true. The label matrix
Ŷ = [ŷ1, ..., ŷN ] ∈ RN×K . Our goal is to mitigate the adverse
effects of noisy labels to ensure DNNs generalize well on test
data.

2.2. Our method

LetDm be the mini-batch samples set. For each batch, we first
select some clean samples Ds based on the widely used small-
loss trick [5, 6, 14]. Following previous work [6], we treat

(1 − τ) × 100% of small-loss samples as clean ones, where
τ is the noise rate. If τ is unknown, we can also infer it with
cross-validation as previous methods [15, 6]. We denote the
left large-loss samples as Dl and we will substitute their labels
with refurbished labels during training. Generally speaking,
the part of label correction in our method can be described as
follows. We first initialize the label matrix Ỹ to be optimized
with the given unclean label matrix Ỹ , i.e., Ỹ = Ŷ . Then
we alternate model learning and label correction as bi-level
optimization. More specifically, we first learn the model (θ)
to obtain the prediction matrix P ∈ RN×K whose (i, j)-th
entry is− log sj(θ, xi) with Ỹ as the regular training of DNNs.
Then we refurbish the label matrix Ỹ with optimal transport.
We consider label correction as an optimization problem where
we attempt to minimize the training loss. With the new labels
matrix Ỹ ∈ RN×K whose (i, j)-th entry is ỹi,j , we can then
rewrite Eq. (4) as:

L(θ, Ỹ ) = − 1

N

N∑
i=1

K∑
j=1

ỹi,j log sj(θ, xi). (5)

In the case of minimizing Eq. (5) with Eq. (1), we will ob-
tain a trivial global optimal solution that the network always
predicts constant label for any training sample. To overcome
this problem, we add the regularization that the assignments
of all labels should be evenly distributed among K classes as
previous works about label-noise learning [7, 8]. However,
they approximate the label distribution of each class in training
data with the label distribution in each mini-batch, which is
sub-optimal as analysed in the introduction. Instead, we add
this regularization on the total training set:

min
θ,Ỹ
L(θ, Ỹ ), (6)

s.t. ∀j : ỹi,j = {0, 1} ,
N∑
i=1

ỹi,j =
N

K
; ∀i :

K∑
j=1

ỹi,j = 1.

(7)
We can then formulate label correction as optimal transport
problem after relaxing Ỹ :

min
Ỹ ∈RN×K+

〈
Ỹ , P

〉
F
, (8)

s.t. Ỹ 1K = 1N , Ỹ >1N =
N

K
· 1K , (9)

where
〈
Ỹ , P

〉
F

= −
∑
i,j ỹi,j log sj(θ, xi) is Frobenius in-

ner product of matrices. Note that
〈
Ỹ , P

〉
F
= N × L(θ, Ỹ ).

We omit N here because it is a constant for particular dataset.
This is a linear programming which can be solved through

simplex algorithm or interior point techniques with compu-
tational complexity O(N3 log N) [16]. In label correction,
however, we have to handle with large-scale datasets (e.g.
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Algorithm 1 OT Cleaner

Input:D̂ = {(xi, ŷi)}Ni=1,max epochs E, K, ε, F(·; θ),
warm up epochsEw, max iterations of sinkhorn algorithm I ,
optimization schedule To = {tk}Tk=1, T is the optimization
times during training.
Output: model parameters θT .
Initialize θ0, Ỹ0 = Ŷ .
for t = 0, 1, 2, ..., E − 1 do

for j = 1 to |D̂|
|Dm| do

if t < Ew then . Warm up
θt+1 = θt − α∇( 1

|Dm|
∑
x∈Dm L(x, ŷ; θt))

else
Ds ← (1− τ)× 100% of small-loss samples

in Dm; . Sample Selection
Dl = Dm \ Ds;
θt+1 = θt − α∇( 1

|Dm| (
∑
x∈Ds L(x, ŷ; θt))+∑

x∈Dl L(x, ỹt; θt))); . Model training
end if

end for
if t /∈ To then Ỹt+1 = Ỹt;
else . Label correction

P ← {− log(softmax(F(xi; θt+1)))}Ni=1;
M = e−

P
ε , v = 1K

K , l = 0;
while l ≤ I and not converge do

u = 1N

Mv ,v = N
K ·

1K

M>u
; . Sinkhorn’s iteration

end while
Ỹt+1 = diag(u)Mdiag(v)

end if
end for

Clothing1M) with millions of samples. The computational
complexity of simplex algorithm or interior point techniques
limits their application in such scale. To address this issue, we
resort to the entropy-regularized optimal transport problem:

min
Ỹ ∈RN×K+

〈
Ỹ , P

〉
F
+ εH(Ỹ ), (10)

s.t. Ỹ 1K = 1N , Ỹ >1N =
N

K
· 1K , (11)

where H(Ỹ ) =
∑
i,j ỹi,j log ỹi,j is the entropy regular-

ization and ε > 0 is the regularization parameter. Adding an
entropy regularization to optimal transport problem is compu-
tationally more friendly, since it allows the usage of first-order
algorithms and it can well approximate the original optimal
transport problem with a small enough ε [13]. Let Lf be the
Lagrangian function of Eq. (10) and Eq. (11):

Lf =
〈
Ỹ , P

〉
F
+ εH(Ỹ )− ξ>(Ỹ 1K − 1N )

−ζ>(Ỹ >1N −
N

K
· 1K),

(12)

where ξ and ζ are dual variables. The KKT condition implies
that the optimal solution can be formulated using the optimal

dual variables ξ∗ and ζ∗ as [17],

Ỹ ∗ = diag(u∗)Mdiag(v∗), (13)

u∗ = e
ξ∗
ε ,M = e−

P
ε , v∗ = e

ζ∗
ε , (14)

here exponent is element-wise. We can obtain u∗ and v∗ with
Sinkhorn’s fixed point iteration,

u(l+1) =
1N

Mv(l)
, v(l+1) =

N

K
· 1K

M>u(l+1)
, (15)

where the division is entrywise and v(0) = 1K

K . We can then
obtain the new label matrix Ỹ for training samples by:

ỹi,j =

{
1, if argmax1≤j≤K Ỹ

∗
i,j = j

0, otherwise.
(16)

The time complexity of these steps is O(NK). It is neither
O(N2K) nor O(NK2) because the diagonal matrix exists
in Eq. (13). The time complexity scales linearly with the
number of samples and thus OT Cleaner can be applied in large-
scale datasets. In practice, our algorithm also demonstrates its
superiority over competing methods when it comes to training
time. Algorithm 1 shows all the steps of our OT Cleaner.

3. EXPERIMENTS

3.1. Experimental settings

Datasets and settings. Our experiments are conducted on
three benchmark datasets: CIFAR-10, CIFAR-100 and Cloth-
ing1M [18]. For CIFAR datasets, we consider symmetric noise
which is generated by flipping labels in each class randomly to
incorrect labels of other classes. We also evaluate our method
on various noise rate τ , with τ ∈ {20%, 50%, 80%}. Besides,
Clothing1M consists of 1 million training images collected
from online shopping websites with labels generated from sur-
rounding texts. Thus, it has been widely adopted in evaluating
algorithms in real-world setting [8, 19].
Baselines. We compare our OT Cleaner with the following
label correction methods: (1) Basemodel, which refers to
train on noisy datasets with cross entropy loss directly; (2)
Bootstrap [9]; (3) F-correction [20]; (4) M-correction [8]; (5)
D2L [10]; (6) SELFIE [6]; (7) AdaCorr [19], which is the
most recent label correction method.
Implementation details. We utilize ResNet-18 for CIFAR-

10 and CIFAR-100 datasets. Besides, Adam optimizer (mo-
mentum=0.9) is utilized with an initial learning rate of 0.001,
and the batch size is set to 128. We run 200 epochs in total and
linearly decay learning rate to zero from 80 to 200 epochs. The
aforementioned settings are the same as previous works [5, 21]
for fair. For initial convergence of the algorithm, we “warm
up” the model for 20 epochs by training on all training data
using the standard cross-entropy loss. For Clothing1M, we use
ResNet-50 with ImageNet pretrained weights.
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Table 1. Average test accuracy (±std in 4 runs) over the last ten epochs on CIFAR-10 and CIFAR-100 with symmetric noise
ranging from 20% to 80%. The best and the second best results are highlighted in bold and italic bold respectively.

Datasets CIFAR-10 CIFAR-100

Methods/Noise rate 0.2 0.5 0.8 0.2 0.5 0.8

Basemodel 84.81 ± 0.24 61.49 ± 0.58 28.98 ± 0.26 57.79 ± 0.44 33.75 ± 0.46 8.46 ± 0.22

Bootstrap 86.90 ± 0.40 82.49 ± 0.32 50.28 ± 0.25 58.49 ± 0.13 52.05 ± 0.23 19.89 ± 1.61
F-correction 87.44 ± 0.15 83.1 ± 0.80 52.16 ± 0.78 60.25 ± 0.10 52.24 ± 0.27 20.64 ± 0.58

Label correction methods M-correction 89.73 ± 0.12 84.25 ± 0.19 53.93 ± 1.21 67.26 ± 0.15 57.25 ± 0.18 22.69 ± 2.36
D2L 85.13 ± 0.21 82.37 ± 0.35 50.46 ± 0.65 62.20 ± 0.41 56.98 ± 0.15 26.75 ± 0.35

SELFIE 89.07 ± 0.35 83.67 ± 0.24 51.32 ± 0.48 66.82 ± 0.17 55.67 ± 1.21 25.32 ± 0.85
AdaCorr 91.00 ± 0.31 83.06 ± 0.47 49.33 ± 0.82 67.77 ± 0.21 57.12 ± 0.63 24.6 ± 1.13

OT Cleaner 91.40 ± 0.14 85.43 ± 0.29 56.93 ± 0.34 67.38 ± 0.24 58.86 ± 0.13 31.20 ± 0.85

0.2 0.5 0.8
Noise rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

La
be
l a
cc
ur
ac
y

Bootstrap
F-correction
M-correction
D2L
SELFIE
AdaCorr
OT Cleaner

Fig. 1. Label accuracy after correction of various label correc-
tion methods on CIFAR-10 with symmetric noise.

3.2. Results on symmetric label noise

The classification accuracies under symmetric label noise on
CIFAR-10 and CIFAR-100 are reported in Table 1. It is ob-
vious that our OT Cleaner outperforms other baselines. The
superior performance is more pronounced when the noise rates
are extremely high. As shown in Figure 1,we also compare
OT Cleaner with other label correction methods by evaluating
their label correction ability. We can draw the conclusion that
OT Cleaner is better at correcting the noisy labels than existing
methods, especially under high noise rate and datasets with
more categories.

3.3. Results on large-scale dataset with real-world noise

We compare OT Cleaner with existing label correction based
methods on Clothing1M with real-world label noise. Note
that some previous works conduct experiments by sampling
a class-balanced training subset in each epoch (e.g., current
state-of-the-art method Dividemix [22]), while others train the
model on the full training set [20].To compare with state-of-
the-art method and keep fair simultaneously, we thus conduct

Table 2. Test accuracy (mean±std in 3 runs) on Clothing1M.
Training sampling Standard Noisy-class-balanced

Method Test accuracy Training time Test accuracy Training time

Basemodel 68.94 - 71.12 ± 0.32 2.61 ± 0.08h
F-correction 69.84 - 71.28 ± 0.27 2.74 ± 0.05h
M-correction 71.05 ± 0.15 11.17 ± 0.43h - -

AdaCorr 71.23 ± 0.26 9.68 ± 0.28h - -

Co-teaching 70.19 ± 0.28 15.06 ± 0.33h 72.14 ± 0.28 4.51 ± 0.07h
Dividemix - - 73.81 ± 0.41 18.78 ± 0.32h

OT Cleaner 71.82 ± 0.22 12.36 ± 0.31h 73.38 ± 0.15 5.69 ± 0.09h

experiments on both settings and report the results respectively.
For standard sampling setting, our OT Cleaner adopts the regu-
larization that the labels after correction must be distributed as
the noisy label distribution. For noisy-class-balanced setting,
we randomly sample 18976 instances per class for all baselines
and adopt the equipartition regularization. The results can be
seen in Table 2, which shows that OT Cleaner outperforms
other label correction methods. We also present the average
training time. Although OT Cleaner falls behind of current
state-of-the-art method Dividemix [22] in noisy-class-balanced
setting, it is more efficient.

4. CONCLUSION

In this paper, we propose OT Cleaner for robust training
against label noise. More specifically, we first select small-
loss samples for training and then refurbish large-loss samples
with optimal transport. The experimental results demonstrate
significant performance gain over competing label correction
methods. For the future work, we plan to explore more effec-
tive methods for instance-dependent label noise.
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