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Abstract. Generating molecules with desired biological activities has
attracted growing attention in drug discovery. Previous molecular gener-
ation models are designed as chemocentric methods that hardly consider
the drug-target interaction, limiting their practical applications. In this
paper, we aim to generate molecular drugs in a target-aware manner that
bridges biological activity and molecular design. To solve this problem,
we compile a benchmark dataset from several publicly available datasets
and build baselines in a unified framework. Building on the recent advan-
tages of flow-based molecular generation models, we propose SiamFlow,
which forces the flow to fit the distribution of target sequence embeddings
in latent space. Specifically, we employ an alignment loss and a uniform
loss to bring target sequence embeddings and drug graph embeddings
into agreements while avoiding collapse. Furthermore, we formulate the
alignment into a one-to-many problem by learning spaces of target se-
quence embeddings. Experiments quantitatively show that our proposed
method learns meaningful representations in the latent space toward the
target-aware molecular graph generation and provides an alternative ap-
proach to bridge biology and chemistry in drug discovery.

Keywords: AI for Science · Bioinformatics · Molecular Generation ·
Graph Neural Networks.

1 Introduction

Drug discovery, which focuses on finding candidate molecules with desirable
properties for therapeutic applications, is a long-period and expensive process
with a high failure rate. The challenge primarily stems from the actuality that
only a tiny fraction of the theoretical possible drug-like molecules may have
practical effects. Specifically, the entire search space is as large as 1023 ∼ 1060,
while only 108 of them are therapeutically relevant [45]. In the face of such
difficulty, traditional methods like high-throughput screening [19] fail in terms
of efficiency because of the large number of resources required in producing
minor hit compounds. One alternative is using computational methods [44] such
as virtual screening [51] to identify hit compounds from virtual libraries through
similarity-based searches or molecular docking. Another alternative is automated
molecule design, such as inverse QSAR [53], structure-based de novo design [52],
or genetic algorithms [3].
? Equal Contribution
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Fig. 1. The computational drug discovery pipelines of traditional chemocentric and
target-aware molecular generation. The black arrows denote the main steps, the blue
arrows denote external considerations, and the red boxes denote the post-processing
process of generated molecules.

Recent deep generative models have demonstrated the potential to promote
drug discovery by exploring huge chemical space in a data-driven manner. Vari-
ous forms of variational autoencoder (VAE) [55], generative adversarial networks
(GAN) [47], autoregressive (AR) [58, 46, 62], and normalizing flow (NF) [11, 12,
40, 54, 39] have been proposed to generate molecular SMILES or graphs. Though
these approaches can generate valid and novel molecules to some extent, they re-
main inefficient because the generated candidate molecules need further screened
against given targets. As the primary goal of these chemocentric methods is to
generate drug-like molecules that satisfy specific properties, directly applying
them in drug discovery requires extra effort in predicting the binding affinities
between candidate molecules and target proteins.

While previous molecular generation methods scarcely take biological drug-
target interactions into account, we aim to generate candidate molecules based on
a biological perspective. This paper proposes target-aware molecular generation
to bridge biological activity and chemical molecular design that generate valid
molecules conditioned on specific targets and thus facilitate the development of
drug discovery. As shown in Fig. 1, the pipeline of computational drug discovery
is supposed to be simplified to a great extent with the help of target-aware
molecular generation. Our main contributions are summarized as follows:

– We propose a target-aware molecular generation manner from a biological
perspective, while prior works on chemocentric molecular generation are in-
efficient in practical drug discovery.
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– We establish a new benchmark for the target-aware molecular generation
containing abundant drug-target pairs for evaluating generative models.

– We propose SiamFlow, a siamese network architecture for the conditional
generation of flow-based models. While the sequence encoder and the gen-
erative flow align in the latent space, a uniformity regularization is imposed
to avoid collapse.

2 Related work

2.1 De Novo Molecular Generation

VAE-based VAE has been attractive in molecular generation in the virtue of
its latent space is potentially operatable. CharVAE [14] first proposes to learn
from molecular data in a data-driven manner and generate with a VAE model.
GVAE [31] represents each data as a parse tree from a context-free grammar,
and directly encodes to and decodes from these parse trees to ensure the valid-
ity of generated molecules. Inspired by syntax-directed translation in complier
theory, SD-VAE [7] proposes to convert the offline syntax-directed translation
check into on-the-fly generated guidance for ensuring both syntactical and se-
mantical correctness. JT-VAE [23] first realize the direct generation of molec-
ular graphs instead of linear SMILES (Simplified Molecular-Input Line-Entry
System) strings.

GAN-based An alternative is to implement GAN in molecular generation. OR-
GAN [16] adds expert-based rewards under the framework of WGAN [2]. OR-
GANIC [50] improves the above work for inverse design chemistry and imple-
ments the molecular generation towards specific properties. MolGAN [10] pro-
poses GAN-based models to generate molecular graphs rather than SMILES.
Motivated by cycle-consistent GAN [64], Mol-CycleGAN [41] generates opti-
mized compounds with high structural similarity to the original ones.

Flow-based Molecular generation with the normalizing flow is promising as its in-
vertible mapping can reconstruct the data exactly. GraphNVP [40] and GRF [20]
are the early works on flow-based molecular generation. GraphAF [54] combines
the advantages of both autoregressive and flow-based approaches to iteratively
generate molecules. MolFlow [63] proposes a variant of Glow [26] to generate
atoms and bonds in a one-shot manner. MolGrow [32] constrains optimization
of properties by using latent variables of the model, and recursively splits nodes.

Though these approaches have achieved significant performance, we recog-
nize them as chemocentric molecular generation methods that lack biological
connections. We aim to bridge biological and chemical perspectives in molecular
generation for practical drug discovery.

2.2 Drug-target Interaction

Recent progress in artificial intelligence has inspired researchers to utilize deep
learning techniques in drug-target interaction prediction. DeepDTA [43] and
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DeepAffinity [24] are representatives of deep-learning methods that take SMILES
of drugs and primary sequences of proteins as input, from which neural networks
are employed to predict affinities. InterpretableDTIP [13] predicts DTI directly
from low-level representations and provides biological interpretation using a two-
way attention mechanism. DeepRelations [25] embeds protein sequences by hi-
erarchical recurrent neural network and drug graphs by graph neural networks
with joint attention between protein residues and compound atoms. MONN [33]
predicts binding affinities with extra supervision from the labels extracted from
available high-quality three-dimensional structures. Our proposed target-aware
molecular generation builds on the recent advances in data-driven drug-target
interaction prediction. We connect chemical molecular generation with biological
drug-target interaction to promote the efficiency of drug discovery.

2.3 Conditional Molecular Generation

Generating molecules with the consideration of some external conditions is a
promising field. CVAE [14] jointly trains VAE with a predictor that predicts
properties from the latent representations of VAE. [34] proposes applying con-
ditional VAE to generate drug-like molecules satisfying properties at the same
time. [15] employs constrained Bayesian optimization to control the latent space
of VAE in order to find molecules that score highly under a specified objec-
tive function. CogMol [5] and CLaSS [8] pretrain the latent space with SMILES
and train property classifiers from the latent representations. They sample from
the latent space that satisfies high scores from property classifiers to gener-
ate molecules. Though recent molecular generation methods [23, 40, 63, 39] also
present property optimization experiments, they still barely take account of
drug-target interaction. [42] proposes stacks of conditional GAN to generate
hit-like molecules from gene expression signature. While this work focuses on
drug-gene relationships, we instead focus on the drug-protein case.

3 Background and Preliminaries

3.1 Problem Statement

Let T = {Ti}ti=1 be a set of targets, and there exists a set of drugs MTi =

{M (Ti)
j }dij=1 that bind to each target Ti. S(T,M) is defined as a function mea-

suring the interaction between target T and drugM . The target-aware molecular
generation aims to learning a generation model pθ(·|Ti) from each drug-target
pair (M (Ti)

j , Ti) so as to maximize EM |Ti∼pθ [S(M,Ti)].

3.2 The Flow Framework

A flow model is a sequence of parametric invertible mapping fΘ = fQ ◦ ... ◦ f1
from the data point x ∈ RD to the latent variable z ∈ RD, where x ∼ PX(x), z ∼
PZ(z). The latent distribution PZ is usually predefined as a simple distribution,
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e.g., a normal distribution. The complex data in the original space is modelled
by using the change-of-variable formula:

PX(x) = PZ(z)

∣∣∣∣det ∂Z∂X
∣∣∣∣, (1)

and its log-likelihood:

logPX(x) = logPZ(z) + log

∣∣∣∣det ∂Z∂X
∣∣∣∣

= logPZ(z) +

Q∑
q=1

log

∣∣∣∣det∂fq(z(q−1))∂z(q−1)

∣∣∣∣, (2)

where z(q) = fq(z
(q−1)), and we represent the input z(0) by using z for notation

simplicity.
As the calculation of the Jacobian determinant for fΘ is expensive for arbi-

trary functions, NICE [11] and RealNVP [12] develop an affine coupling trans-
formation z = fΘ(x) with expressive structures and efficient computation of the
Jacobian determinant.

For givenD-dimensional input x and d < D, the output y of an affine coupling
transformation is defined as:

y1:d = x1:d

yd+1:D = xd+1:D � exp(SΘ(x1:d)) + TΘ(x1:d),
(3)

where SΘ : Rd → RD−d and TΘ : Rd → RD−d stand for scale function and
transformation function. For the sake of the numerical stability of cascading
multiple flow layers, we follow Moflow [63] to replace the exponential function
for the SΘ with the Sigmoid function:

y1:d = x1:d

yd+1:D = xd+1:D � Sigmoid(SΘ(x1:d)) + TΘ(x1:d),
(4)

and the invertibility is guaranteed by:

x1:d = y1:d

xd+1:D = (yd+1:D − TΘ(y1:d))/Sigmoid(SΘ(y1:d)).
(5)

The logarithmic Jacobian determinant is:

log
∣∣det∂y

∂x

∣∣ = log

∣∣∣∣det([ I 0
∂yd+1:D

∂x1:d
Sigmoid(SΘ(x1:d))

]
)

∣∣∣∣
= log Sigmoid(SΘ(x1:d)).

(6)

To further improve the invertible mapping with more expressive structures and
high numerical stability, Glow [26] proposes using invertible 1×1 convolution to
learn an optimal partition and actnorm layer to normalize dimensions in each
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channel over a batch by an affine transformation. Invertible 1 × 1 convolution
is initialized as a random rotation matrix with zero log-determinant and works
as a generalization of a permutation of channels. Act norm initializes the scale
and the bias such that the post-actnorm activations per-channel have zero mean
and unit variance and learns these parameters in training instead of using batch
statistics as batch normalization does.

3.3 Flow on the Molecular Graph

Prior works on flow-based molecular graph generation are well developed. In-
spired by the graph normalizing flows of GRevNets [35], GraphNVP [40] proposes
to generate atom features conditioned on the pre-generated adjacency tensors,
which is then followed by other one-shot flow-based molecular graph generation
approaches, e.g., GRF [20] and Moflow [63]. Our proposed SiamFlow follows this
manner, that is, firstly transforms the bonds B of molecules to the latent vari-
ables ZB with Glow [26], and then transforms the atom features A given B into
the conditional latent variable ZA|B with a graph conditional flow.

Let N,K,C be the number of nodes, node types, and edge types, respectively.
A molecular graph G = (A,B) is defined by an atom matrix A ∈ {0, 1}N×K
and a bond tensor B ∈ {0, 1}C×N×N , which correspond to nodes and edges in
the vanilla graph. A[i, k] = 1 represents the i-th atom i has atom type k, and
B[c, i, j] = 1 represents there is a bond with type c between the i-th atom and
j-th atom.

Flow-based molecular graph generation methods decompose the generative
model into two parts:

P (G) = P ((A,B)) ≈ P (A|B; θA|B)P (B; θB), (7)

where θB is learned by the bond flow model hB , and θA|B is learned by the atom
flow model hA|B conditioned on the bond tensor B.

With the strengths of the flow, the optimal parameters θ∗A|B and θ∗B maximize
the exact likelihood estimation:

arg max
θA|B ,θB

E(A,B)∼PG [logP (A|B; θA|B) + logP (B; θB)] (8)

Our work follows the one-shot molecular graph generation manner [40, 20, 63]
that employs Glow [26] as the bond flow model hB and graph conditional flow
as the atom flow model hA|B .

4 SiamFlow

4.1 Overview

While current flow-based molecular graph generation methods [40, 20, 54, 63, 32,
39] learn from drug-like datasets and generate without the invention of targets,
our proposed SiamFlow aims to serve as a conditional flow toward molecular
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graph generation. Though the conditional flow has been well developed in com-
puter vision [36, 28, 1, 30, 48], there are limited works that can fit graph genera-
tion, especially when it comes to the molecular graph.

In this section, we introduce SiamFlow, a novel molecular graph generative
model conditioned on specific targets. As shown in Fig. 2, SiamFlow learns the
distribution of sequence embedding instead of the isotropic Gaussian distribution
like other flow-based methods.
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Fig. 2. The framework of our proposed SiamFlow. In the training phase, the target
sequence embedding ZT aligns with the drug graph embedding ZM , while a uniformity
regularization term forces its distribution as a spherical uniform distribution. In the
generation phase, the target sequence embedding ZT is fed into reverse flows to generate
the desired drug.

4.2 Alignment Loss

Given a pair of target T and drug M , we decompose the drug M into an atom
matrix A ∈ RN×K and a bond tensor B ∈ RC×N×N . The sequence encoder gT
can be arbitrary mapping that maps the target sequence T into the sequence
embedding ZT ∈ RD. The flow model contains a glow hB : RC×N×N → RD

2 and
a graph conditional flow hA|B : RN×K → RD

2 . The drug graph embedding ZM
is the concatenation of ZA|B and ZB .

Instead of directly learning the isotropic Gaussian distribution, we impose
alignment loss between the target sequence embedding ZT and the drug graph
embedding ZM so that ZT can be used as the input of the generation process.
Thus, the generated atom matrix and the bond tensor are:

A′ = h−1A|B(ZT [1 :
D

2
]), B′ = h−1B (ZT [

D

2
: D]). (9)

While traditional flow-based models assume the latent variables follow the Gaus-
sian distribution, SiamFlow forces the flow model to learn the distribution of the
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condition information instead of a predefined distribution. We define the align-
ment loss Lalign as:

Lalign : = E(T,M)∼Pdata
||ZT − ZM ||2

= E(T,M)∼Pdata
||ZT − [ZA|B , ZB ]||2

(10)

where [ZA|B , ZB ] denotes the concatenation of the atom embedding ZA|B and
the bond embedding ZB , and the pair of protein target T and molecular drug
M is sampled from the data Pdata.

The alignment loss bridges the connections between the target sequence em-
bedding ZT and the drug graph embedding ZM in the latent space, but there
are still challenges that will be revealed in Sec. 4.3 and Sec. 4.4.

4.3 Uniformity Loss

Simply aligning the target sequence embedding ZT and the drug graph embed-
ding ZM is not enough. There still remains three challenges: (1) the distribution
of ZT is uncertain, so that the alignment learning may be difficult to converge;
(2) sampling from an unknown distribution is indefinite in the generation pro-
cess; (3) the alignment loss alone admits collapsed solutions, e.g., outputting the
same representation for all targets.

To overcome the above issues, we design an objective to force the target
sequence embedding ZT to follow a specific distribution, in our case the uni-
form distribution on the unit hypersphere [49, 29, 18, 60]. We recognize angles
of embeddings are the critical element that preserves the most abundant and
discriminative information. By fitting the hyperspherical uniform distribution,
the projections of target sequence embeddings on the hypersphere are kept as
far away from each other as possible; thus, discriminations are imposed. Specif-
ically, we project the target sequence embedding ZT into a unit hypersphere
SD−1 by L2 normalization and require the embeddings uniformly distributed on
this hypersphere, as shown in Fig. 3.

L2-Norm Uniform

Fig. 3. The schematic diagram of the uniformity loss.

The uniform hypersphere distribution can be formulated as a minimizing
pairwise potential energy problem [38, 4, 60] while higher energy implies less dis-
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criminations. Let ẐT = ZT
‖ZT ‖ ∈ C, and C is a finite subset of the unit hypersphere

SD−1 ∈ RD. We define the f -potential energy [6] of C to be:∑
Ẑ

(x)
T ,Ẑ

(y)
T ∈C,x 6=y

f(|Ẑ(x)
T − Ẑ(y)

T |
2). (11)

where Ẑ(x)
T and Ẑ(y)

T denote normalized sequence embeddings with index x, y.
Definition. (Universally optimal [6]). A finite subset C ⊂ SD−1 is universally
optimal if it (weakly) minimizes potential energy among all configurations of |C|
points on SD−1 for each completely monotonic potential function.

In SiamFlow, we consider the Gaussian function kernel Gt(x, y) : SD−1 ×
SD−1 → R as the potential function f , which is defined as:

Gt(x, y) = e−t|x−y|
2

. (12)

This kernel function is closely related to the universally optimal configuration,
and distributions of points convergence weak* to the uniform distribution by
minimizing the expected pairwise potential.
Theorem. (Strictly positive definite kernels on SD [4]). Consider kernel Kf :
SD × SD → (−∞,+∞] of the form Kf (x, y) := f(|x − y|2), if Kf is strictly
positive definite on SD × SD and the energy IKf [σD] is finite, then σD is the
unique measure on Borel subsets of SD in the solution of minµ∈M(SD) IKf (µ),
and the normalized counting measure associated with any Kf -energy minimizing
sequence of point configurations on SD converges weak* to σD.

This theorem reveals the connections between strictly positive definite kernels
and the energy minimizing problem. The Gaussian function is strictly positive
definite on SD × SD, thus well tied with the uniform distribution on the unit
hypersphere.
Proposition 1. (Strictly positive definite of the Gaussian function) For any
t > 0, the Gaussian function kernelGt(x, y) is strictly positive definte on SD×SD.

Though Riesz s-kernels Rs(x, y) := |x−y|−s are commonly used as potential
functions, we argue that the Gaussian function is expressive because it maps
distances to infinite dimensions like radial basis functions, benefiting from the
Taylor expansion of exponential functions. Moreover, the Gaussian function is a
general case of Riesz s-kernels and can represent Riesz s-kernels by:

Rs(x, y) =
1

Γ (s/2)

∫ ∞
0

Gt(x, y)t
s/2−1dt. (13)

where Γ (s/2) =
∫∞
0
e−tts/2−1 for s > 0.

As the Gaussian function kernel is an ideal choice of potential functions, we
define the uniformity loss as the logarithm of the pairwise Gaussian potential’s
expectation:

Lunif := logE(T (x),T (y))∼PT [Gt(Ẑ
(x)
T , Ẑ

(y)
T )], (14)

where T (x) and T (y) are two different targets sampled from the target data PT .
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4.4 One Target to Many Drugs

Implementing the alignment loss and the uniformity loss above, the flow model
can already generate validated molecular drugs conditioned on specific targets.
However, there are multiple affinable drugs for a single target in most cases. To
deal with this one-to-many problem, we reformulate learning target embeddings
into learning spaces of target embeddings in the latent space, as shown in Fig. 4.

Sampling space Sampling points

Fig. 4. The schematic diagram of the one-to-many strategy. The blue circles denote
the possible spaces around the target sequence embeddings, and the green triangles
denote the instances sampled from the possible spaces.

As the target embeddings have been pushed by the uniformity loss to stay
as far away as possible on the hypersphere, they preserve abundant and dis-
criminative information to a large extent. We design an adaptive space learning
strategy that holds the discriminative angle information with a limited scope.
For a set of target sequence embeddings ZT = {Z(0)

T , ..., Z
(L)
T }, we first calculate

their standard deviation by:

σ(ZT ) =

√√√√ 1

L

L∑
i=1

(Z
(i)
T − µ(ZT )), (15)

where µ(ZT ) = 1
L

∑L
i=1 Z

(i)
T is the mean of the set ZT . Then, we define a space

for each target sequence embedding:

Ω(ZT ) = {ZT + Z ′T |Z ′T ∈ N (0, λσ2(ZT ))}, (16)

where λ is the hyperparameter that controls the scale of the space and is empir-
ically set as 0.1.

Note that we define the space on ZT instead of the normalized ẐT , as nor-
malized embeddings lose the length information to the extent that the available
space is limited. Thus, we modify the alignment loss as:

Lalign = E(T,M)∼Pdata
|Ω(ZT )− ZM |. (17)

In the generation process, sampling from the same space is permissible to gen-
erate desired drugs.

In summary, the objective is a linear combination of the modified alignment
loss and uniform loss:

Ltotal = Lalign + Lunif (18)
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5 Experiments

Baselines Since we present a novel generative approach conditioned on tar-
gets, we primarily compare our approach to other conditional generative mod-
els, i.e., conditional VAE (CVAE) [56], CSVAE [27], PCVAE [17]. Furthermore,
an attention-based Seq2seq [57, 59] neural translation model between the target
protein sequence and drug SMILES is considered a straightforward solution in
our setting. An explainable substructure partition fingerprint [22] is employed for
sequential drug SMILES and protein sequences. We also involve GraphAF [54],
GraphDF [39], and MolGrow [32] in the generative comparison.

Datasets To evaluate the ability of our proposed SiamFlow, we collect a dataset
based on four drug-target interaction datasets, including BIOSNAP [65], Bind-
ingDB [37], DAVIS [9], and DrugBank [61]. We remove all the negative samples
in the original datasets, and only keep the positive samples. Our dataset contains
24,669 unique drug-target pairs with 10,539 molecular drugs and 2,766 proteins.
The maximum number of atoms in a molecular drug is 100 while 11 types of
common atoms are considered. We split drug-target pairs by target protein se-
quence identity at 30%, and define the dataloader to ensure zero overlap protein
in the training, validation, and test set.

Metrics To comprehensively evaluate the conditional generative models in terms
of target-aware molecular generation, we design metrics from two perspectives:
(1) Generative metrics. Following the common molecular generation settings, we
apply metrics including: Validity which is the percentage of chemically valid
molecules in all the generated molecules, Uniqueness which is the percentage
of unique valid molecules in all the generated molecules, Novelty which is the
percentage of generated valid molecules which are not in the training dataset. (2)
Biochemical metrics. We evaluate the similarities between the generated drugs
and the nearest drugs in the training set including: Tanimoto similarity which
is calculated based on hashed binary features, Fraggle similarity which focus
on the fragment-level similarity,MACCS similarity which employs 166-bit 2D
structure fingerprints, and Binding Score predicted by DeepPurpose [21].

Empirical Running Time We implement our proposed method SiamFlow and the
other two baselines Seq2seq, CVAE by Pytorch-1.8.1 framework. We train them
with Adam optimizer with a learning rate of 0.001, batch size 16, and 100 epochs
on a single NVIDIA Tesla V100 GPU. To evaluate the validity and chemical
similarities, we employ the cheminformatics toolkit RDKit in the assessment
phase. Our SiamFlow completes the training process of 100 epochs in an average
of 1.06 hours (38 seconds/ epoch), while CVAE and Seq2seq take an average of
1.14 hours (41 seconds/ epoch) and 8.33 hours (5 minutes/ epoch) respectively.
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5.1 Target-aware Molecular Graph Generation

We conduct experiments on molecular drug generation with specific targets for
comparisons. For each experiment, we repeat three trials with different random
seeds and report the mean and standard deviation.

Table 1 shows the results on generative metrics of our SiamFlow model in
comparison to the baselines. Our proposed SiamFlow inherits the strengths of
the flow and far surpasses other baselines in generative metrics. It can be seen
that Seq2seq suffers from low validity, uniqueness, and novelty, which indicates
Seq2seq’s generation relies on its memorization. CVAE has higher uniqueness
and novelty than Seq2seq though its validity is even lower. Besides, the stan-
dard deviations of metrics on CVAE are relatively high, suggesting it is volatile
to train. Moreover, compared to other baselines, SiamFlow obtains superior per-
formance with relatively low volatility.

Table 1. Evaluation results on generative metrics of SiamFlow v.s. baselines; high is
better for all three metrics.

Method % Validity % Uniqueness % Novelty

Seq2seq 16.08±4.14 13.87±1.74 14.89±11.41
CVAE 12.54±7.56 72.30±20.33 99.72±0.39
CSVAE 76.53±2.4 60.31±6.56 99.37±0.59
PCVAE 78.81±2.4 89.32±2.74 99.59±0.32
GraphAF 100.00±0.00 98.68±0.40 100.00±0.00
GraphDF 100.00±0.00 96.97±0.23 100.00±0.00
MolGrow 100.00±0.00 99.57±0.01 100.00±0.00
SiamFlow 100.00±0.00 99.61±0.16 100.00±0.00

In addition to generative metrics, we also report chemical metrics in Table 2.
The generated molecular drugs are expected to have a chemical structure sim-
ilar to the ground-truth drugs in order to have a high binding affinity to the
target. SiamFlow is consistently better than other baselines in both the Tani-
moto and Fraggle similarity while obtaining relatively lower MACCS similarity
than Seq2seq. Considering that MACCS measures the similarity of encodings
of molecules, the sequence partition rules of Seq2seq may help it. Thus, we
pay more attention to the Tanimoto and Fraggle similarity because they are
structure-centric metrics.

We visualize the distribution of the Tanimoto similarity and the Fraggle sim-
ilarity evaluated on these methods in Fig. 6. SiamFlow consistently outperforms
other methods and generates desirable molecular drugs. The examples of gener-
ated drugs are shown in Fig. 5.
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Table 2. Evaluation results on biochemical metrics of SiamFlow v.s. baselines.

Method % Tanimoto (↑) % Fraggle (↑) % MACCS (↑) Binding Score (↓)

Seq2seq 26.27±9.91 25.84±7.27 37.98±7.70 8.83±4.70
CVAE 7.76±6.61 12.31±5.81 16.42±7.17 10.92±5.28
CSVAE 18.49±3.92 16.67±2.71 17.91±3.21 6.91±3.10
PCVAE 39.59±2.17 24.56±3.17 25.74±1.14 4.87±2.34
SiamFlow 48.55±0.97 34.41±0.35 29.30±1.07 2.07±0.15

Similarity(↑): 0.73

Similarity(↑): 0.97

Cytochrome P450 2A13 Phenacetin

MidostaurinMast/stem cell growth 
factor receptor Kit

Vina score(↓): -9.4

Vina score(↓): -6.0

Fig. 5. Examples of the generated drugs.

5.2 Ablation Study

We conduct the ablation study and report the results in Table 3 and Table 4.
It can be seen from Table 3 that simply aligning the target sequence embedding
and drug graph embedding will result in extremely low uniqueness. Our one-to-
many strategy enriches the latent space so that one target can map to different
drugs. The absence of Lunif does not harm the generative metrics because it
only constrains the distribution of target sequence embeddings but has a limited
impact on the generation process.

Table 3. Ablation results on generative metrics.

Method % Validity % Uniqueness % Novelty

SiamFlow 100.00 99.39 100.00
w/o one-to-many 100.00 12.55 100.00
w/o Lunif 100.00 100.00 100.00

Table 4 demonstrates the chemical metrics are well without the one-to-many
strategy. If we generate only one drug for a particular target, the nearest drug
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Fig. 6. The distribution of generative metrics evaluated on SiamFlow and baselines.

similarity degrades to a special case, i.e., comparing the generated drug with its
corresponding one in the training set. Moreover, removing Lunif severely impairs
the chemical performance, suggesting uniformity loss promotes the expressive
abilities of target sequence embeddings.

Table 4. Ablation results on chemical metrics.

Method % Tanimoto % Fraggle % MACCS

SiamFlow 49.43 34.62 29.55
w/o one-to-many 48.83 34.93 31.23
w/o Lunif 18.49 15.70 17.91

6 Conclusion and Discussion

In this paper, we delve into the topic of target-aware molecular graph generation,
which involves creating drugs that are specifically conditioned on particular tar-
gets. While existing methods focus on developing drugs similar to those found in
drug-like datasets, target-aware molecular generation combines drug-like molec-
ular generation with target-specific screening to simplify the drug-target interac-
tion step. To thoroughly explore this problem, we compile a benchmark dataset
using several public datasets. Furthermore, we leverage recent progress in flow-
based molecular graph generation methods and propose SiamFlow as a solution
for target-aware molecular generation. Through the use of alignment and uniform
loss, our proposed method can effectively generate molecular drugs conditioned
on protein targets. Additionally, we address the challenge of generating multiple
drugs for a single target by aligning the embedding space, rather than relying
on a single embedding. Extensive experiments and analyses demonstrate that
SiamFlow is a highly promising solution for target-aware molecular generation.
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