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Preface

The 2023 edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2023) was held in Turin,
Italy, from September 18 to 22, 2023.

The ECMLPKDD conference, held annually, acts as a worldwide platform showcas-
ing the latest advancements in machine learning and knowledge discovery in databases,
encompassing groundbreaking applications.With a history of successful editions, ECML
PKDD has established itself as the leading European machine learning and data min-
ing conference, offering researchers and practitioners an unparalleled opportunity to
exchange knowledge and ideas.

The main conference program consisted of presentations of 255 accepted papers and
three keynote talks (in order of appearance):

– Max Welling (University of Amsterdam): Neural Wave Representations
– Michael Bronstein (University of Oxford): Physics-Inspired Graph Neural Networks
– Kate Crawford (USC Annenberg): Mapping Generative AI

In addition, there were 30 workshops, 9 combined workshop-tutorials, 5 tutorials,
3 discovery challenges, and 16 demonstrations. Moreover, the PhD Forum provided
a friendly environment for junior PhD students to exchange ideas and experiences
with peers in an interactive atmosphere and to get constructive feedback from senior
researchers. The conference included a Special Day on Artificial Intelligence for Finan-
cial Crime Fight to discuss, share, and present recent developments in AI-based financial
crime detection.

In recognition of the paramount significance of ethics in machine learning and data
mining, we invited the authors to include an ethical statement in their submissions. We
encouraged the authors to discuss the ethical implications of their submission, such as
those related to the collection and processing of personal data, the inference of personal
information, or the potential risks. We are pleased to report that our call for ethical
statements was met with an overwhelmingly positive response from the authors.

The ECML PKDD 2023 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. A
total of 8 grants covering all or part of the registration fee (4 free registrations and 4
with 50% discount) were awarded to individuals who belong to underrepresented com-
munities, based on gender and role/position, to attend the conference and present their
research activities. The goal of the grants was to provide financial support to early-
career (women) scientists and Master and Ph.D. students from developing countries.
The Diversity and Inclusion action also includes the SoBigData Award, fully sponsored
by the SoBigData++ Horizon2020 project, which aims to encourage more diverse par-
ticipation in computer science and machine learning events. The award is intended to
cover expenses for transportation and accommodation.
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The papers presented during the three main conference days were organized in four
different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining;

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging the
gap between practice and current theory;

– Journal Track: papers published in special issues of the journals Machine Learning
and Data Mining and Knowledge Discovery;

– Demo Track: short papers introducing new prototypes or fully operational systems
that exploit data science techniques and are presented via working demonstrations.

We received 829 submissions for the Research track and 239 for the Applied Data
Science Track.

We accepted 196 papers (24%) in the Research Track and 58 (24%) in the Applied
Data Science Track. In addition, there were 44 papers from the Journal Track and 16
demo papers (out of 28 submissions).

We want to thank all participants, authors, all chairs, all Program Committee mem-
bers, area chairs, session chairs, volunteers, co-organizers, and organizers of workshops
and tutorials for making ECML PKDD 2023 an outstanding success. Thanks to Springer
for their continuous support and Microsoft for allowing us to use their CMT software
for conference management and providing support throughout. Special thanks to our
sponsors and the ECML PKDD Steering Committee for their support. Finally, we thank
the organizing institutions: CENTAI (Italy) and Politecnico di Torino (Italy).
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Neural Wave Representations

Max Welling

University of Amsterdam, The Netherlands

Abstract. Good neural architectures are rooted in good inductive biases
(a.k.a. priors). Equivariance under symmetries is a prime example of a
successful physics-inspired prior which sometimes dramatically reduces
the number of examples needed to learn predictive models. In this work,
we tried to extend this thinking to more flexible priors in the hidden vari-
ables of a neural network. In particular, we imposed wavelike dynamics
in hidden variables under transformations of the inputs, which relaxes
the stricter notion of equivariance. We find that under certain conditions,
wavelike dynamics naturally arises in these hidden representations. We
formalize this idea in a VAE-over-time architecture where the hidden
dynamics is described by a Fokker-Planck (a.k.a. drift-diffusion) equa-
tion. This in turn leads to a new definition of a disentangled hidden rep-
resentation of input states that can easily be manipulated to undergo
transformations. I also discussed very preliminary work on how the
Schrödinger equation can also be used to move information in the hidden
representations.

Biography. Prof. Dr. Max Welling is a research chair in Machine Learning at the Uni-
versity of Amsterdam and a Distinguished Scientist at MSR. He is a fellow at the Cana-
dian Institute for Advanced Research (CIFAR) and the European Lab for Learning and
Intelligent Systems (ELLIS) where he also serves on the founding board. His previous
appointments include VP at Qualcomm Technologies, professor at UC Irvine, postdoc
at the University of Toronto and UCL under the supervision of Prof. Geoffrey Hinton,
and postdoc at Caltech under the supervision of Prof. Pietro Perona. He finished his
PhD in theoretical high energy physics under the supervision of Nobel laureate Prof.
Gerard ‘t Hooft. Max Welling served as associate editor-in-chief of IEEE TPAMI from
2011–2015, he has served on the advisory board of the NeurIPS Foundation since 2015
and was program chair and general chair of NeurIPS in 2013 and 2014 respectively. He
was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of
MIDL in 2018. MaxWelling was a recipient of the ECCVKoenderink Prize in 2010 and
the ICML Test of Time Award in 2021. He directs the Amsterdam Machine Learning
Lab (AMLAB) and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the
Bosch-UvA Deep Learning lab (DELTA).



Physics-Inspired Graph Neural Networks

Michael Bronstein

University of Oxford, UK

Abstract. The message-passing paradigm has been the “battle horse” of
deep learning on graphs for several years, making graph neural networks
a big success in a wide range of applications, from particle physics to
protein design. From a theoretical viewpoint, it established the link to
the Weisfeiler-Lehman hierarchy, allowing us to analyse the expressive
power of GNNs.We argue that the very “node-and-edge”-centric mindset
of current graph deep learning schemes may hinder future progress in
the field. As an alternative, we propose physics-inspired “continuous”
learning models that open up a new trove of tools from the fields of
differential geometry, algebraic topology, and differential equations so
far largely unexplored in graph ML.

Biography. Michael Bronstein is the DeepMind Professor of AI at the University of
Oxford. He was previously a professor at Imperial College London and held visiting
appointments at Stanford, MIT, and Harvard, and has also been affiliated with three
Institutes for Advanced Study (at TUM as a Rudolf Diesel Fellow (2017–2019), at
Harvard as a Radcliffe fellow (2017–2018), and at Princeton as a short-time scholar
(2020)). Michael received his PhD from the Technion in 2007. He is the recipient of the
Royal Society Wolfson Research Merit Award, Royal Academy of Engineering Silver
Medal, five ERC grants, two Google Faculty Research Awards, and two Amazon AWS
ML Research Awards. He is a Member of the Academia Europaea, Fellow of the IEEE,
IAPR, BCS, and ELLIS, ACM Distinguished Speaker, and World Economic Forum
Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and
founder of multiple startup companies, including Novafora, Invision (acquired by Intel
in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019).



Mapping Generative AI

Kate Crawford

USC Annenberg, USA

Abstract. Training data is foundational to generative AI systems. From
Common Crawl’s 3.1 billion web pages to LAION-5B’s corpus of almost
6 billion image-text pairs, these vast collections – scraped from the inter-
net and treated as “ground truth” – play a critical role in shaping the
epistemic boundaries that govern generative AI models. Yet training data
is beset with complex social, political, and epistemological challenges.
What happens when data is stripped of context, meaning, and prove-
nance? How does training data limit what and howmachine learning sys-
tems interpret the world? What are the copyright implications of these
datasets?Andmost importantly,what formsof power do these approaches
enhance and enable? This keynote is an invitation to reflect on the epis-
temic foundations of generative AI, and to consider the wide-ranging
impacts of the current generative turn.

Biography. Professor Kate Crawford is a leading international scholar of the social
implications of artificial intelligence. She is a Research Professor at USC Annenberg in
Los Angeles, a Senior Principal Researcher atMSR in NewYork, an Honorary Professor
at the University of Sydney, and the inaugural Visiting Chair for AI and Justice at the
École Normale Supérieure in Paris. Her latest book, Atlas of AI (Yale, 2021) won the
Sally Hacker Prize from the Society for the History of Technology, the ASIS&T Best
Information Science Book Award, and was named one of the best books in 2021 by
New Scientist and the Financial Times. Over her twenty-year research career, she has
also produced groundbreaking creative collaborations and visual investigations. Her
project Anatomy of an AI System with Vladan Joler is in the permanent collection of
the Museum of Modern Art in New York and the V&A in London, and was awarded
with the Design of the Year Award in 2019 and included in the Design of the Decades
by the Design Museum of London. Her collaboration with the artist Trevor Paglen,
Excavating AI, won the Ayrton Prize from the British Society for the History of Science.
She has advised policymakers in the United Nations, theWhite House, and the European
Parliament, and she currently leads the Knowing Machines Project, an international
research collaboration that investigates the foundations of machine learning.
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Abstract. Pool-based active learning (AL) is a promising technology
for increasing data-efficiency of machine learning models. However, sur-
veys show that performance of recent AL methods is very sensitive to
the choice of dataset and training setting, making them unsuitable for
general application. In order to tackle this problem, the field Learning
Active Learning (LAL) suggests to learn the active learning strategy
itself, allowing it to adapt to the given setting. In this work, we propose
a novel LAL method for classification that exploits symmetry and inde-
pendence properties of the active learning problem with an Attentive
Conditional Neural Process model. Our approach is based on learning
from a myopic oracle, which gives our model the ability to adapt to non-
standard objectives, such as those that do not equally weight the error on
all data points. We experimentally verify that our Neural Process model
outperforms a variety of baselines in these settings. Finally, our experi-
ments show that our model exhibits a tendency towards improved sta-
bility to changing datasets. However, performance is sensitive to choice
of classifier and more work is necessary to reduce the performance the
gap with the myopic oracle and to improve scalability. We present our
work as a proof-of-concept for LAL on nonstandard objectives and hope
our analysis and modelling considerations inspire future LAL work.

Keywords: Active Learning · Deep Learning · Neural Process

1 Introduction

Supervised machine learning models rely on large amounts of representative anno-
tated data and the cost of gathering sufficient data can quickly become prohibitive.
Active learning (AL) attempts to mitigate this problem through clever selection of
data points to be annotated, thereby reducing total data requirements. To achieve
this, AL exploits available information about the dataset and/or supervised task
model (e.g. an image classifier) to select data points whose labels are expected to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-43412-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43412-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-43412-9_1


4 T. Bakker et al.

lead to the greatest increase in task model performance. Most classical AL strate-
gies are hand-designed heuristics, based on researcher intuition or theoretical
arguments [49]. Recently, much work has been focused on scaling AL to deep learn-
ing (DL) settings, which are even more data-hungry [47]. Such works for instance
combine heuristics with representations learned by neural networks [8,9,20,51]),
focus specifically on batch acquisition [2,7,44,48,50], or adapt Bayesian Active
Learning by Disagreement (BALD) [17,26,28,32,33,40,52]. Despite these devel-
opments, it has been observed that modern AL strategies can vary wildly in perfor-
mance depending on data setting and that there is no single strategy that consis-
tently performs best [3,12,15,45,47,55]. This observation has spurred the devel-
opment of Learning Active Learning (LAL) methods, which attempt to directly
learn an active learning strategy on some data. The goal is to either learn a method
that is specifically adapted to the data setting at hand [23,27,34], or to learn a
strategy that performs well for various data settings [21,35,38,41]. Such methods
have the potential of adapting to additional properties of the task as well, such as
nonstandard objectives. A prominent real-life example of such objectives appears
in imbalanced data settings, where rare classes are typically more important than
their standard contribution to the loss or accuracy suggests. Current active learn-
ing surveys generally focus on balanced data settings; few large-scale empirical
studies exist for alternative objectives, such as imbalanced data and AL methods
designed to work with imbalanced data. In this paper, we propose a novel Learning
Active Learning (LAL) method for pool-based active learning. The model learns
from a myopic oracle, which gives it the ability to adapt to objectives besides stan-
dard classification accuracy. We validate our model in imbalanced data settings,
where we show that 1) existing AL methods underperform, and 2) the myopic ora-
cle provides a strong signal for learning. Our contributions are as follows:1

1. We show that a wide range of current pool-based AL methods do not outper-
form uniformly random acquisition on average across multiple deep learning
image classification benchmarks. The tested methods generally perform worse
on imbalanced data settings than on balanced data settings, suggesting that
current AL methods may be under-optimised for the former.

2. We present experiments with a myopic oracle that show large performance
gains over standard AL methods on simple benchmarks. We observe that these
gains are larger for imbalanced data settings, suggesting the oracle exploits
specific highly-informative samples during acquisition.

3. We propose a novel LAL method based on Attentive Conditional Neural
Processes that learn from the myopic oracle. The model naturally exploits
symmetries and independence properties of the active learning problem. In
contrast to many existing LAL methods, it is not restricted to heuristics and
requires no additional data and/or feature engineering.

1 Experiment code can be found at: https://github.com/Timsey/npal.

https://github.com/Timsey/npal
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2 Related Work

The field of active learning has a rich history going back decades, with the current
taxonomy of methods founded on the extensive survey by [49]. In this work, we
focus on pool-based active learning, where a ‘pool’ of unlabelled data points is
available, and the goal is to select one or more of these to label (i.e. ‘acquire’ the
label). Here we focus on some relevant works, and refer to the supplementary
material2, for additional discussion.

The aforementioned survey discusses a number of classical pool-based active
learning methods, the most notable among which is Uncertainty Sampling.
Here label acquisition is determined by the uncertainty of the classifier. How
this uncertainty is measured determines the flavour of Uncertainty Sampling:
Entropy selects the points that have maximum predictive entropy, Least Confi-
dent acquires the sample on which the task model is least confident in its predic-
tion, and Margin selects the data point with the smallest difference in predicted
probability for the first and second most likely class. CoreSet [48] instead take a
fully geometric approach to active learning by formulating it as a Core-Set selec-
tion problem. Acquisition proceeds through optimising annotated data coverage
in some representation space. The authors provide a greedy approximation to
their algorithm, called k-Center Greedy, which shows competitive performance
while being cheaper to compute. Learning Loss [54] adds a loss prediction module
to the base task model, motivated by the idea that difficult-to-classify samples
are promising acquisition candidates. This module has the goal of predicting the
task model’s loss on any given data point and is jointly trained with the task
model. Unlabelled samples with the highest predicted loss are then acquired
after training.

One potential goal in doing active learning is to select an annotated dataset
that represents the true data distribution as well as possible. Based on this idea,
Discriminative Active Learning (DAL) [20] learns a classifier (discriminator) to
distinguish labelled and unlabelled data based on a representation learned by
the task model. Acquisition proceeds by annotating the points that the classifier
predicts are most likely to be part of the current unlabelled data pool. Varia-
tional Adversarial Active Learning (VAAL) [51] builds on this idea by setting up
a two-play mini-max game where a Discriminator network classifies data points
as belonging to the labelled or unlabelled set, based on a representation learned
by a Variational AutoEncoder (VAE). The VAE is incentivised to fool the dis-
criminator, such that the resulting discriminator probabilities encode similarity
between any data point and the currently annotated set. Acquisition then occurs
by choosing the least similar points. [8] is a recent Convolutional Graph Neural
Network (GCN) method that represents data points as nodes in a graph instead.
It too is trained to distinguish labelled and unlabelled datapoints; after train-
ing the point with the highest uncertainty according to the GCN is selected for
labelling. By representing the full dataset as a graph, this method can encode

2 Supplementary material can be found at: https://github.com/Timsey/npal/blob/
main/full paper.pdf.

https://github.com/Timsey/npal/blob/main/full_paper.pdf
https://github.com/Timsey/npal/blob/main/full_paper.pdf
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relevant correlations between data points explicitly. [9] extend this method by
using Visual Transformers to learn the graph representation. Although research
into active learning methods continues, it has been widely observed that AL
strategies performance varies heavily depending on data setting and that there
is no single strategy that consistently performs best. Such studies typically focus
on balanced data settings [3,12,15,45,47,55].

Active Learning for Imbalanced Data: Compared to the wealth of research on
active learning, little work has been done on AL for imbalanced datasets specif-
ically. This further motivates imbalanced data settings as relevant nonstan-
dard objectives for active learning. Existing work in this area typically incor-
porates explicit class-balancing strategies or additional exploration towards dif-
ficult examples. Hybrid Active Learning (HAL) [30] is built on the idea that rare
samples may differentiate themselves in feature space. HAL trades off geometry-
based exploration (e.g. some average distance to the currently annotated data)
with informativeness-based exploitation (e.g. as in Uncertainty Sampling). Class-
Balanced Active Learning (CBAL) [5] combines entropy sampling with a regu-
lariser that assigns high values to rare points. This regulariser is the difference
between a desired class-histogram (i.e. fully balanced classes) and the sum of
softmax values of currently sampled points. This intuitively will have the effect
of selecting rare points more often. [10] derives an active learning strategy based
on selecting the example with the highest estimated probability of misclassifi-
cation through Bayes’ theorem and various approximate distributions learned
by VAE. [1] describe a two-step approach that uses the data’s class imbalance
profile to switch from classical AL to a class-balancing acquisition function that
favours pool points close (in embedding space) to the rarest class in the anno-
tated data. [4] suggests that doing active learning using the variation ratio of a
model ensemble may help counteract imbalance in the data.

Learning Active Learning: With the observation that existing AL methods do
not consistently perform well across data settings, interest in learning pool-based
active learning has risen. The seminal paper by [27] formulates Active Learn-
ing By Learning (ALBL) as a multi-armed bandit problem, where the arms are
different AL heuristics. The goal is to learn to select the best heuristic for each
acquisition round. [23] learns to fine-tune existing AL heuristics using a Bayesian
acquisition net trained with the REINFORCE algorithm. [38] instead learn to
imitate actions performed by an approximate oracle. Relatedly, [21] reduce the
imitation learning goal to a learning-to-rank problem. They meta-train on syn-
thetic data and show this generalises to other datasets. [34] formulates learn-
ing active learning as a regression problem. Similarly to our proposed method,
they train a model to predict the reduction in generalisation error expected
upon adding a label to the dataset. However, their method requires handcrafted
global features representing the classification state and annotated dataset as
input to their regressor. In contrast, our method implicitly learns the required
features from the raw data, allowing for more complex relationships and sim-
plifying engineering choices. Finally, both [41] and [35] perform meta-learning
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over various binary classification datasets. The former employs a meta-network
that encodes dataset and classifier states into parameters for a policy, which
is reinforcement learned by the REINFORCE algorithm. The latter employs
reinforcement learning with a Deep Q-Network and eschews the meta-network.
These methods are either still restricted to heuristics [23,27], or require gather-
ing additional representative or synthetic datasets for training [21,35,38,41,46],
as well as dataset-independent features.

3 A Study on Existing Active Learning Methods

In pool-based active learning, we are given a labeled (classification) dataset
Dannot = {(xi,yi)}M

i=0 of size M , where i indexes the data points, xi ∈ R
K are

feature vectors of size K, and yi ∈ {0, 1}C is a (one-hot) label on C total classes.
We are further given an unlabelled dataset Dpool = {xj}N

j=0 of size N and are
tasked with selecting candidates xj from Dpool to annotate: i.e. select the index
j, obtain the label yj , and subsequently add (xj ,yj) to Dannot. The goal of this
procedure is to iteratively improve a task model, e.g. a classifier, trained on the
annotated data Dannot. Improvement is typically measured by some performance
metric, e.g. the accuracy on some test dataset Dtest. Most existing AL methods
depend on combinations of heuristics and representation learning for selecting
the index j. The implicit expectation is that the selections such heuristics make
are also highly performant according to the chosen performance metric. Here we
explore whether this assumption holds in modern deep active learning.

Data: To explore the performance of existing heuristic-based AL strategies, we
perform active learning on four standard ten-class image classification bench-
mark datasets: MNIST [11], FashionMNIST [53], SVHN [39], and CIFAR-10 [37].
We use a standard ResNet18 convolutional neural network [24] as the base classi-
fier. We consider three objective settings for each benchmark: Balanced, Imbal-
anced, and Imbalanced weighted. In imbalanced settings, half the classes are
undersampled by a factor 10. Evaluation is performed with a balanced accuracy
metric, where instances from undersampled classes are upweighted such that all
classes have the same importance. Imbalance weighted additionally takes these
weights into account during training. This mimics objectives in typical imbal-
anced data applications, where rare class instances are often considered more
important than common ones [29]. Following [8], we initialise active learning
with an annotated dataset Dannot of 1000 data points that follow the specified
class ratios; the remaining point also follow these class ratios and are left as
the pool dataset Dpool. Every acquisition step we batch annotate 1000 points
using the specified AL strategy, for a total of ten steps. After each step, we
retrain the classifier from scratch. See the supplementary material for further
implementation details.

AL Strategies: First, we consider the three classical uncertainty sampling strate-
gies [49]: Entropy, Margin and LstConf (least-confident). Second, we include
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the purely geometric approach of [48]: KCGrdy (K-center greedy). Third, active
learning through Learning Loss Module: LLoss [54]. Fourth, Variational Adver-
sarial Active Learning VAAL [51]; a discriminator method based on VAE-
learned representations. Fifth, two variations on the same convolutional graph
neural network method – UncGCN and CoreGCN [8] – that employ a jointly
learned discriminator and graph embedding; unlike VAAL, this approach can
explicitly model inter-datapoint correlations. Sixth, we employ HAL [30] and
CBAL [5] as baselines specifically developed for active learning in imbalanced
data settings. HAL is further split into HALUni and HALGau, depending on
the exploration scheme (uniform or Gaussian). Finally, Random is the uniformly
random sampling baseline, corresponding to no active learning.

Fig. 1. Random vs. best and average of remaining AL strategies for CIFAR-10 dataset
and ResNet18 classifier, 1000 acquisitions per step, and 1000 initial labels. Shaded
region represents standard deviation over three seeds.

Results: In Fig. 1 we plot CIFAR-10 test accuracy as a function of acquisition
step for Random, the best performing AL method, and the average of all AL
methods (excluding Random). AUAC is the Area Under the Acquisition Curve,
which is computed as the area under the curves of Fig. 1. It measures performance
of the whole AL trajectory. We observe that the average active learning strategy
does not perform significantly better than Random in any setting. The best
performing AL strategy (by AUAC) does outperform Random. These results
suggest that AL can be useful, but only if an appropriate strategy is found for the
data at hand; a mismatched strategy can lead to performance worse than uni-
formly random labelling. Note that there is no consistent best performer among
the AL methods. This variation in (relative) performance across benchmarks has
been previously observed in the literature [3,12,15,45,47,55]. We refer to the
supplementary material for implementation details and additional results. We
further argue in the supplementary that the tested AL methods generally per-
form worse on the imbalanced objective settings than on the balanced settings,
suggesting that current AL methods may be under-optimised for the former.
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4 Myopic Oracle Active Learning

Given the results of the previous section, we may wonder if stronger AL strate-
gies can be found. In particular, it would be valuable to develop strategies that
perform well out of the box on many different settings. To this end, the field
of Learning Active Learning (LAL) has emerged. The motivating idea is that
information about the problem setting should be used for constructing the AL
strategy: LAL-methods attempt to do this through learning. What is learned can
vary from a choice between existing heuristics [27], to a fine-tuning of such heuris-
tics [23], to a labelling policy that tries to generalise over datasets [21,35,38,41],
to the direct improvement to the underlying classifier upon annotating a data
point in the given dataset [34]. Ideally, the learned AL strategy should not be
constrained to be close to human heuristics, as there is no guarantee that opti-
mal strategies can be represented as such. Additionally, we will only require the
availability of a single dataset to train an AL strategy, since finding additional
datasets representative of the problem setting at hand is often not feasible in
real-world applications. That leaves us with strategies similar to those in e.g.
[34], where the AL strategy tries to learn a function mapping the features of an
unlabelled datapoint to the expected improvement of the classifier after retrain-
ing with that datapoint labelled. Before attempting to train such a strategy, we
should quantify whether such a method – if properly learned – actually improves
much over existing methods. To this end, we introduce the myopic oracle strategy
– denoted Oracle in the below – which computes the actual classifier improve-
ment on the test data for an unlabelled datapoint xj in Dpool, by treating the
corresponding label yj as known and retraining the classifier with this addi-
tional label. This improvement is stored, the classifier is reset, and the process
is repeated for every datapoint in Dpool. Pseudocode for obtaining improvement
scores with the Oracle is presented in the supplementary. Oracle then selects
the datapoint (x∗,y∗) corresponding to the largest classifier improvement and
this point is added to the annotated dataset Dannot. This oracle uses information
that is typically unavailable during the AL process, namely the true labels yj

and the exact classifier improvements on the test set. The oracle is myopic, as it
greedily acquires the best datapoint every acquisition step, rather than planning
ahead: looking ahead t acquisition steps requires retraining the classifier

(|Dpool|
t

)

times, which is infeasible.

Classifiers: Even for t = 1, the myopic oracle strategy requires retraining the
underlying classifier |Dpool| times every acquisition step, which is computa-
tionally intractable for neural network classifiers. For this reason, our exper-
iments in this setting use simpler classification models. We run experiments
with logistic regression classifiers and provide additional experiments with sup-
port vector machine (SVM) classifiers in the supplementary material. These
are both quick-to-train models that have a long history of being used in AL
research [16,36,49,55], including within the subfield of LAL [27,34,35,46]. For
both classifiers, we employ the default scikit-learn implementations [43], with
class-weighting when specified.
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Table 1. AL strategy AUAC and final-step test accuracy on UCI waveform dataset
with logistic regression classifier, 1 acquisition per step, and 100 initial labels. Averages
and standard deviations are computed over nine seeds.

Strategy Balanced Imbalanced Imbalanced weighted

AUAC Test acc. AUAC Test acc. AUAC Test acc.

Oracle 9.14± 0.12 0.93± 0.01 8.84± 0.39 0.89± 0.04 9.22± 0.18 0.93± 0.02

UncSamp 8.67± 0.17 0.87± 0.01 8.40± 0.49 0.85± 0.04 8.55± 0.33 0.86± 0.02

KCGrdy 8.68± 0.28 0.87± 0.03 8.29± 0.49 0.84± 0.04 8.58± 0.37 0.86± 0.03

HALUni 8.66± 0.26 0.87± 0.03 8.11± 0.55 0.81± 0.06 8.45± 0.46 0.85± 0.05

HALGau 8.68± 0.23 0.87± 0.02 8.16± 0.54 0.82± 0.05 8.48± 0.45 0.85± 0.04

CBAL 8.67± 0.15 0.87± 0.02 8.30± 0.45 0.84± 0.04 8.65± 0.34 0.87± 0.03

Random 8.65± 0.23 0.87± 0.02 8.17± 0.54 0.82± 0.05 8.42± 0.48 0.85± 0.05

NP 8.69± 0.19 0.87± 0.02 8.25± 0.53 0.83± 0.05 8.61± 0.33 0.87± 0.03

Data: These simpler classifiers do not perform well on the image datasets of
Sect. 3. In order to properly study the effects acquisition has on model perfor-
mance, we instead use simpler datasets. A popular choice in the field of learning
active learning [35,38,46] are binary classification datasets from the UCI data
repository [13]. We use the ‘waveform’, ‘mushrooms’ and ‘adult’ datasets, since
these contain sufficient samples for our experiments post-imbalancing. Data is
imbalanced by a factor of ten, as in the previous experiments. In all experiments
we initialise the runs with 100 annotated examples and acquire one additional
label in each of ten acquisition steps. We set aside 200 datapoints as test data
Dtest for evaluating the classifiers; oracle scores are also computed on this test
data.

AL Strategies: We first compare Oracle with a logistic regression classifier
to the same set of AL strategies we compared to in Sect. 3. However, we skip
the comparisons to LLoss, VAAL, UncGCN, and CoreGCN, since these all
require neural network classifiers as their base. Additionally, the three uncer-
tainty sampling methods Entropy, Margin, and LstConf reduce to the same
algorithm for binary classification: we henceforth denote this method as Unc-
Samp. Our goal is to work towards a general-purpose AL method that can be
trained using only available data. Therefore, we do not include the discussed
LAL methods in our baselines, as these methods either adapt existing heuristics
or require heavy feature engineering and/or additional datasets to train.

Results: Table 1 compares the performance of the Oracle to pre-existing AL
methods on the waveform dataset for the logistic regression classifier. The NP
method will be introduced and discussed in the next section. It is clear that
Oracle dominates all other AL strategies in all settings. Note that AL is only
responsible for a small fraction of the total datapoints in the final step here
(10 of 110), whereas in the experiments of the previous section, it was respon-
sible for the majority of datapoints (10000 of 11000). As may be observed in



Learning Objective-Specific Active Learning 11

the table, such a small number of points is enough to obtain meaningful differ-
ences in scores between AL strategies. This indicates that this benchmark con-
tains sufficient variability between strategies to observe meaningful differences in
AL quality, making it an appropriate environment for learning active learning.
These results suggest that the function represented by Oracle is a strong active
learner that adapts to the given objective. Moreover, we note that the perfor-
mance gap between Oracle and Random – and more generally between the
various AL strategies – is larger in the imbalanced settings, providing evidence
that acquisition choice is more important in these settings; something Oracle
can directly exploit. We refer to the supplementary material for implementation
details and additional results. In the next section, we turn our attention to an
attempt at learning an approximation to the Oracle using a Neural Process
model.

5 Learning Active Learning with a Neural Process

Our approach will be to learn an approximation to Oracle, by training a model
to predict classifier improvement values for every point in Dpool, given a context
of annotated datapoints and classifier state. However, we cannot train on the
true myopic oracle values, as this requires pool data labels and test data that
we do not have access to at training time. Instead, we opt to simulate active
learning scenarios by subsampling Dannot. For these simulated settings we can
compute the improvement values that provide the training signal. Our approach
will perform the following procedure at every step of the acquisition process:

1. Simulate many active learning scenarios by subsampling Dannot into Nsim

pairs of annotated and pool data
(
S(i)

annot, S(i)
pool

)
, with i ∈ [1, Nsim].

2. Use the myopic oracle to compute – for each point in all the S(i)
pool – the

classifier improvement observed after retraining with that point and its label
to the current dataset S(i)

annot.
3. Train a model to predict these improvements from the input

(
S(i)

annot, S(i)
pool

)
.

The challenge is now to design a model and training setup that can generalise
strategies learned in the simulated settings to the full test-time AL setting rep-
resented by Dannot and Dpool. Here we describe our considerations and resulting
approach to this challenge. First, the classifier improvements used for training
should not be computed using test data, as this data is not available during
training. Instead, we compute these scores on a held-out ‘reward’ dataset Dval.
In practice, this reward set was used instead of a validation set, so the usual
train-val-test split suffices for training our active learner. Second, our problem
setup contains permutation symmetries that can be exploited: the (simulated)
annotated dataset forms the context that informs the predictions (improvement
scores) of our model, but the order of these points does not matter for the predic-
tion: the context representation should be permutation invariant. Additionally, if
our model predicts scores for every (simulated) pool datapoint, then these scores
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should be permutation equivariant: exchanging the index of two pool points
should simply exchange the scores. Third, in the myopic setting, the score of
any pool point is independent of any other pool point, so all point points should
be treated individually (i.e., not exchange information). This imposes that the
model should be invariant to the number of points in Dpool. Note that the inde-
pendence condition is broken in the non-myopic setting, as combinations of pool
points can lead to stronger improvements than the individual myopic scores
would suggest. The combination of the second and third conditions/inductive
biases heavily restrict the choice of model. A natural choice is to use Neural
Process (NP) models [14,18,19,31] to learn the approximate Oracle.

Fig. 2. Computational graph for the Attentive Conditional Neural Process model. The
model takes sets of datapoints as input and predicts improvement values for the target
points. Context points correspond to annotated data and target points to pool data.
All MLPs are applied pointwise. The top two MLPs (in purple) share weights. (Color
figure online)

The Neural Process: The Neural Process comprises a class of models for meta-
learning context-conditional predictors and is a natural choice for our approxima-
tor. Given a context C and target input features fτ , the Neural Process outputs
a distribution p(sτ |fτ ; C) over target predictions sτ . To apply this model to our
problem, we identify the context C with the information stored in the annotated
data and the classifier state, the target input features fτ with the features of pool
datapoints, and the target predictions sτ with the predicted classifier improve-
ments associated to those pool points. We can then train the NP by performing
supervised learning – maximising the log likelihood of target improvements yτ –
on simulated AL scenarios. At test time we apply the trained model with the full
Dannot as context and Dpool as target input. In particular, we utilise an Attentive
Conditional NP (AttnCNP) [18,31], with cross-attention between the pool and
annotated points. The CNP factorises the predictive distribution conditioned on
the context set, as

p(sτ |fτ ; C) =
T∏

t=1

p(s(t)|f (t)
τ ; C), (1)
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where T is the number of target datapoints. This modelling choice satisfies the
independence of pool point predictions. The context C should be permutation
invariant and is typically encoded into a global representation R. The NP is
parameterised by a neural network with parameters {θ, φ} and each factor is
typically set to be a Gaussian density [14], as:

pθ,φ(sτ |fτ ; C) = pθ,φ(sτ |fτ ;R) =
T∏

t=1

pθ,φ(s(t)|f (t)
τ ;R) =

T∏

t=1

N (s(t);μ(t), σ2(t)),

(2)
where R = Encθ(C) encodes the context and (μ(t), σ2(t)) = Decφ(R,f

(t)
τ ) decodes

the context encoding and the target features into target predictive parameters.
The AttnCNP extends this model by replacing the global representation R with
a target-specific representation R(t) through the use of an attention mechanism.
In particular, we use the attention mechanism taken from the Image Transformer
[42] to perform cross-attention between context and target features, construct-
ing R(t). Here context features fC are treated as keys and target features fτ as
queries. Values are constructed from fC by applying a pointwise MLP with 2
hidden layers of size 32 and ReLU activations. Our implementation does not use
self-attention on the context or target features, as applying self-attention to the
target features violates the independence of the pool point scores. In prelimi-
nary experimentation, we found that omitting the attention mechanism – e.g.
R(t) = R – resulted in performance drops due to underfitting the target func-
tion, as has been observed in the Neural Process literature [31]. A computational
graph of our model is presented in Fig. 2. This model satisfies the required permu-
tation symmetries while allowing scores of pool points to be given by expressive
functions that depend on the context and pool point. In this proof-of-concept
study we do not explore the use of uncertainty information for acquisition, rather
opting to acquire the datapoint for which μ(t) – the predicted mean score – is
maximal, as j = arg maxt∈[1,T ] μ

(t). We then acquire the pool datapoint with
index j, completing a single step in the Active Learning process. The Neural
Process is then initialised from scratch, in preparation for the next acquisition
step.

Data: The experiments for our Neural Process model (NP) are performed on
the datasets described in the previous section. In order to train the NP model,
we simulate active learning scenarios by sampling from the existing annotated
dataset Dannot. We define a set of fractions Q and uniformly sample from these
a total of Nsim times, leading to a set of annotation fractions {qi}Nsim

i=1 . For each
value of i, we then assign the corresponding fraction qi of datapoints from Dannot

to a simulated annotated dataset S(i)
annot; the remaining points are assigned to

a simulated pool dataset S(i)
pool. This procedure results in a set of Nsim simu-

lated/sampled active learning problems of various sizes. We then compute ora-
cle scores of all pool points in each of the resulting AL problems (S(i)

annot,S(i)
pool).

Since we do not have access to test data at train time, the oracle scores are
instead computed on the held-out Dval. We present pseudocode in Algorithm 1.
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Algorithm 1: Training the NP model.
Data: Annotated dataset Dannot, Neural Process model NPθ, number of

simulations Nsim, set of fractions Q, oracle Oracle, base classifier
model C, scoring function score evaluated on Dval.

Result: Trained parameters θ∗ for NP.
for i = 1, 2, ..., Nsim do

qi ← sample(Q) ; /* Uniformly sample an ‘annotation fraction’ */

S
(i)
annot ← ∅ ; /* Initialise a simulated annotated set */

S
(i)
pool ← Dannot ; /* Initialise a simulated pool set */

while |S(i)
annot| < round(qi · |Dannot|) do

Sample index j of datapoints in Dannot uniformly without replacement ;

S
(i)
annot ← S

(i)
annot ∪ (xj ,yj) ;

S
(i)
pool ← S

(i)
pool \ (xj ,yj) ;

end

Vi ← Oracle
(
S

(i)
annot, S

(i)
pool, C, score

)
; /* Obtain improvement scores

with Oracle (pseudocode in supplementary) */

end

θ∗ ← NPθ.fit
(
{S

(i)
annot, S

(i)
pool, Vi}Nsim

i=1

)
; /* Train the NP on the simulated

AL settings */

return θ∗

Experimentally we find that simulating with a variety of fractions in Q improves
generalisation to the target problem over using a fixed single fraction. Our exper-
iments use Q = {0.1, 0.2, ..., 0.8, 0.9} and Nsim = 300. Preliminary experimen-
tation showed no performance increase for larger values of Nsim, while using
Nsim = 100 led to slight performance decreases. The held-out dataset Dval con-
sists of the same 100 datapoints for all i.

Results: Table 1 shows the performance of our method – NP – on the UCI
waveform dataset with logistic regression classifier. Ignoring Oracle, the Neu-
ral Process ranks best of all active learning methods in AUAC on the Balanced
setting, second on Imbalanced weighted, and fourth on Imbalanced. In Fig. 3
we show the performance difference between our method and a chosen baseline.
Here we choose the average of AL strategies – AL average – as the baseline,
where we exclude Oracle, Random, and NP from the average. This choice of
baseline allows us to clearly see whether any particular method is expected to
improve over a naive application of active learning. We also show the perfor-
mance of the best AL strategy – Best – again excluding Oracle, Random,
and NP from the selection. This represents the relative performance of choosing
the best AL strategy post-hoc. We observe that NP performs on par with Best
for Balanced and Imbalanced weighted, and performs similarly to AL average
for the Imbalanced setting. In all cases, the gap with Oracle remains large,
indicating potential room for improvement. Shaded regions correspond to twice
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Fig. 3. Relative performance of acquisition strategies for waveform dataset and logistic
regression classifier, 1 acquisition per step, and 100 initial labels. Accuracy differences of
Random, Oracle, NP and the best remaining AL strategy (Best) are computed w.r.t.
the average of remaining AL strategies (AL average). The shaded region represents
twice the standard error of the mean over nine seeds.

the standard error of the mean, i.e., 2 · σ√
n
, where σ is the standard deviation

and n the number of runs. Peformance tables and figures for the mushrooms and
adult dataset are provided in the supplementary material. NP at least slightly
outperforms AL average on Imbalanced and Imbalanced weighted for these
datasets and in half those cases achieves near-Best performance. However, NP
ranks near the bottom in the Balanced setting here. Interestingly, Random out-
performs almost all methods on Balanced, possibly indicating increased difficulty
in active learning, although Oracle does still demonstrate a large performance
gap.

Fig. 4. Relative AUAC rank of AL strategies averaged over the three UCI datasets for
logistic regression. The standard deviation of this rank is denoted by the error bars.

Our method is partially motivated by the need for AL algorithms that per-
form more stably across different data settings. To this end, Fig. 4 shows the
average AUAC ranking of every AL method across the three UCI datasets. We
observe that NP is the best performing AL method on average for the Imbal-
anced weighted setting and has more middling performance for the other two
settings, with Balanced being the worst for our model. Inspecting the ranking
standard deviation, we further see that our model achieves a relatively stable
ranking across the three datasets in the Imbalanced weighted setting. This sta-
bility again degrades for Imbalanced and even further for Balanced. However,
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note that low standard deviation is only desirable for models with low perfor-
mance rank, as it otherwise indicates a stable underperformance. These results
suggest that NP is better able to exploit information encoded by the Oracle
in imbalanced settings. We present results for the SVM classifier in the supple-
mentary. This setting seems more difficult for NP to learn, suggesting that the
choice of the underlying classifier is important.

6 Conclusion and Discussion

It has been observed in the literature that a wide range of current pool-based
active learning methods do not perform better than uniform acquisition on aver-
age across standard deep learning benchmarks. We have experimentally verified
these results and extended them to imbalanced data settings, which are rele-
vant alternative objectives for many real-world applications. We have explored
the validity of using a myopic oracle as a target function for learning active
learning (LAL) and have shown its dominating performance on simple active
learning tasks. Finally, we have identified symmetry and independence proper-
ties of such active learning problems and have modelled these using an Attentive
Conditional Neural Process. Unlike existing LAL methods, our model (NP) is
not based on existing heuristics, and requires no feature engineering and/or
additional datasets to train. Our model generally outperforms the average of
the competing AL methods in imbalanced data settings, and occasionally all of
them individually. However, future work is needed to evaluate performance on
additional datasets, reduce the performance gap with the myopic oracle, and
improve scalability. We present our work as a proof-of-concept for LAL on non-
standard objectives – with a focus on imbalanced data settings – and hope our
analysis and modelling considerations inspire future LAL work.

Limitations: The primary limitation of our Neural Process approach is scal-
ability. Supervised learning on the myopic oracle requires retraining the base
classifier a large number of times during NP training, which is infeasible for
large neural network models. Future work may explore to which degree func-
tions learned on simple classifiers can be transferred to more powerful models.
Next, the acquisition procedure may be improved through the use of uncer-
tainty information present in the NP. Finally, the NP input may be augmented
with additional features – e.g., predicted class probabilities of pool points – to
potentially improve learning. Preliminary experimentation showed little effect
on performance: we leave further exploring the use of extra features for future
work.

Ethical Considerations. In recent years, machine learning has had a large
impact on society by enabling the development of a variety of new, widely-
deployed technologies. Opinions on the value of such technologies vary, but it
is clear that they have had both positive and negative impacts. Our research
topic of active learning is a promising technology for increasing the efficiency of
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machine learning model training. Developments in active learning may reduce
barrier-to-entry for training and deploying high-performing predictive models,
which potentially has both positive and negative downstream consequences. On
the positive side, wider access to strong models may increase the adoption of
life-saving or simply quality-of-life-improving technologies. Additionally, it may
allow relatively less powerful interest groups to not fall behind larger or more
powerful institutions in capabilities, thus supporting democratisation of AI. On
the negative side, improved active learning has the potential to exacerbate the
negative effects of machine learning applications as well. Such exacerbation may
happen through widening the aforementioned capability gap between less and
more powerful institutions (e.g., by potentially easing model scaling), or through
reinforcing existing model biases during training. Additionally, training large-
scale models consumes a large amount of energy, potentially worsening the cur-
rent energy and climate crises. Finally, any machine learning capabilities research
potentially exacerbates the future risks of AI misalignment; risks that are wor-
rying to an increasing share of the research community [22,25].
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https://efficientdeeplearning.nl) research programme, which is financed by the Dutch
Research Council (NWO) domain Applied and Engineering Sciences (TTW). We are
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Abstract. Given a limited labeling budget, active learning (al) aims to
sample the most informative instances from an unlabeled pool to acquire
labels for subsequent model training. To achieve this, al typically mea-
sures the informativeness of unlabeled instances based on uncertainty
and diversity. However, it does not consider erroneous instances with
their neighborhood error density, which have great potential to improve
the model performance. To address this limitation, we propose Real,
a novel approach to select data instances with Representative Errors
for Active Learning. It identifies minority predictions as pseudo errors
within a cluster and allocates an adaptive sampling budget for the clus-
ter based on estimated error density. Extensive experiments on five text
classification datasets demonstrate that Real consistently outperforms
all best-performing baselines regarding accuracy and F1-macro scores
across a wide range of hyperparameter settings. Our analysis also shows
that Real selects the most representative pseudo errors that match
the distribution of ground-truth errors along the decision boundary.
Our code is publicly available at https://github.com/withchencheng/
ECML PKDD 23 Real.

Keywords: Active learning · Text classification · Error-driven

1 Introduction

Labeling data for machine learning is costly, and the budget on the amount of
labels we can gather is often limited. Therefore, it is crucial to make the training
process of machine learning models more label-efficient, especially for applica-
tions where labels are expensive to acquire. Active learning (al) is to select a
small amount of the most informative instances from an unlabeled pool, aim-
ing to maximize the model performance gain when using the selected instances
(labeled) for further training. Identification of the most informative instances
from the unlabeled data pool is critical to the success of al.

The al techniques can be classified into three groups: uncertainty-
based, diversity-based, and hybrid methods. Uncertainty-based methods select
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 20–37, 2023.
https://doi.org/10.1007/978-3-031-43412-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43412-9_2&domain=pdf
http://orcid.org/0009-0006-6805-5894
http://orcid.org/0000-0002-0092-0793
http://orcid.org/0000-0002-9973-3305
http://orcid.org/0000-0002-2239-4472
http://orcid.org/0000-0002-5757-9135
https://github.com/withchencheng/ECML_PKDD_23_Real
https://github.com/withchencheng/ECML_PKDD_23_Real
https://doi.org/10.1007/978-3-031-43412-9_2


Real: A Representative Error-Driven Approach for Active Learning 21

Fig. 1. An illustrative example of Real. The solid thick lines denote the model decision
boundaries, separating data points into three predicted classes (rectangles, circles, and
triangles). The dashed irregular circles are clusters of data points. Real samples the
minority predictions as pseudo errors ( ) in cluster C1 and C2 for labeling. If our
budget exceeds the number of pseudo errors, Real will pick blue instances ( ) where
the model has the least confidence in its predictions. (Color figure online)

instances whose prediction probability is more evenly distributed over classes [27,
28], instances with a larger expected loss/gradient [3,44], or those closer to deci-
sion boundaries [13,37]. However, solely relying on instance-level uncertainty
metrics may cause redundancy in samples [45]. Hence, diversity-based methods
try to mitigate the redundancy problem by selecting a small but diverse set of
data instances to represent the whole unlabeled pool [23]. However, they ignore
the fact that training on errors is more label-efficient [7]. Hybrid methods try
to select instances that are both uncertain and diverse [45,46]. Our proposed
method belongs to the hybrid category. Our novelty is to seek representative-
ness for the errors rather than the whole unlabeled pool, by selecting instances
with a larger error probability and higher neighborhood error density. Figure 1
shows an illustrative example of our method. Specially, we first cluster the unla-
beled instances by their representations. The majority prediction in a cluster is
expected to be correct even with limited labeled training data [1,6,39], owing
to the strong representation power of the pretrained models for images [18] or
texts [31]. Also, it is common for al to achieve a decent test accuracy after the
warm-up training on the initial limited labeled data [33,45]. Consequently, we
treat the majority prediction in a cluster as the pseudo label for all the instances
in the cluster. We call instances in a cluster whose predictions disagree with the
cluster pseudo label as pseudo errors. More pseudo errors with a lower prediction
probability (larger disagreement) on the pseudo label will bring a larger sam-
pling budget to its affiliated cluster. In this way, we emphasize dense areas of
errors, and thus adaptively select more representative errors.
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To our best knowledge, Real is the first approach to sample representative
errors to achieve label-efficient active learning. By taking text classification as
an example application, we demonstrate the effectiveness of Real. In summary,
the major contributions of this paper can be summarized as follows:

– We propose a new al sampling algorithm, Real, that explores selecting rep-
resentative errors from the unlabeled pool.

– We show Real consistently beats all the best-performing baselines on five text
classification benchmark datasets in terms of both accuracy and F1-macro
scores.

– We empirically investigate error distribution and find that 1) most errors are
distributed along the decision boundary; 2) the distribution of selections made
by Real align well with that of ground-truth errors.

2 Preliminaries

2.1 Related Work

Uncertainty-Based. Uncertainty-based sampling is to sample the most uncer-
tain instances for model training. Three classical metrics for the uncertainty of
model prediction probabilities are: entropy [27,28], least confidence [27,29], and
smallest margin [36]. Recent research studies take the expected loss [44], expected
generalization error reduction [24], or distance to the decision boundary [37] as
surrogates for uncertainty. Cal [33] selects contrastive examples that are sim-
ilar in the feature space of pre-trained language model (Plm) and maximally
different in the output probabilities. Unlike Cal which ignores the correctness
of sampled instances, our method aims to mine the yet-to-be errors. OPAL [25]
computes the expected misclassification loss reduction, but is limited to binary
classification using the outdated Parzen window classifier.
Diversity-Based. Diversity-based sampling aims to maximize the diver-
sity of sampled instances. Cluster-Margin [9] selects a diverse of instances
with the smallest margin using hierarchical agglomerate clustering. Sener and
Savarese [38] proposed a coreset approach to find a representative subset from
the unlabeled pool. Kim et al. [23] assessed the density of unlabeled pool and
selected diverse samples mainly from regions of low density. Meanwhile, genera-
tive adversarial learning [17] is applied in al as a binary classification task. They
trained an adversarial classifier to confuse data from the training set and that
from the pool. However, our method cares about the density of errors rather
than the whole unlabeled pool.
Hybrid. Hybrid al methods try to combine uncertainty and diversity sampling.
Such a combination can be achieved by meta learning [5,19] and reinforcement
learning [14,30], which automatically learn a sampling strategy in each al round
instead of using a fixed heuristic. Badge [3] and Alps [46] both compute uncer-
tainty representations of instances and then cluster them. Badge transforms
data into gradient embeddings that encode the model confidence and then apply
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K-Means++ [2]. Alps first utilizes the self-supervision loss of Plm as uncer-
tainty representation. AcTune [45] uses weighted K-Means clustering to find
highly uncertain regions. The K-Means clustering in AcTune is weighted by
some uncertainty measure, e.g., entropy or Cal [33]. AcTune deliberately tries
to separate the uncertain regions from the confident regions via weighted clus-
tering, with an implicit assumption that the two kinds of regions are separable.

2.2 Problem Definition

We take text classification as an example to illustrate the core idea of our app-
roach. Given a small labeled set Dl = {(xi, yi)}L

i=1 (warm-up dataset) for ini-
tial model training and a large unlabeled data pool Du = {(xi, )}U

i=1, where
xi is the i−th input instance (e.g., the token sequence for text classification),
yi ∈ {1, . . . , Y } is the target label, and Dl � Du, we want to select and obtain
the labels of the most informative instances in Du for training model M, so that
the performance of M can be maximized given a fixed labeling budget B1. M
is trained iteratively. Suppose there are T al rounds in total, then the budget
for each round is b = B/T . In each al round, a sampling function α(Du,M)
selects b samples from Du based on the previously learned model M, and then
moves the labeled b samples into Dl. Model M is trained on the updated Dl and
then evaluated on a hold-out test set. The al process terminates when the total
budget B is exhausted or the model performance is good enough. The core of
an al method is to study the sampling function α.

3 Representative Pseudo Errors

3.1 Overview of Representative Error-Driven Active Learning

We aim to explore one critical research question for active learning: how will
learning from errors improve the active learning accuracy for models? Intuitively,
sampling more errors for model training will prevent the model from making the
same mistakes on the test set, thus improving the test accuracy. Errors bring
larger loss values, making them more informative for model training [44]. Though
one existing work [7] tries to directly calculate the erroneous probability for some
image using the Bayesian theorem, it ignores the density of errors. Other than
computing a single unlabeled instance’s erroneous probability, we develop a sense
of representativeness for the selected errors into our approach.

The al process starts from training the model M on the initial labeled
data set D(0)

l . Formally, we minimize the average cross entropy loss � for all the

1 Following the convention in machine learning community [9,24,28,30], we ignore the
cognitive difference for labeling different instances studied in the HCI community[8,
34], and assume the labeling cost is 1 for every instance. For example, if our total
labeling budget is B = 800 and we have T = 8 rounds of al, then b = 100 is the
budget per round.
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instances in D(0)
l :

min
θ

1

|D(0)
l |

∑

(xi,yi)∈Dl

�(M(xi, θ
(0)), yi). (1)

In each of the following al rounds, Real (Algorithm 1) selects a set of rep-
resentative errors Q consisting of b instances from Du, obtains their labels, and
then adds Q into Dl for subsequent model training. Algorithm1 consists of two
components: pseudo error identification and adaptive sampling of representative
errors.

3.2 Pseudo Error Identification

The first challenge is to select instances from Du where the model M makes
mistakes, which is non-trivial since we do not have access to the ground truth
labels before selection. However, prior studies [1,39,49] have shown that Plm can
effectively learn the sentence representations and support accurate classifications
very well by simply clustering the embedded representations of sentences [39].
Also, it is commonly-seen that active learning will be employed after the machine
learning models have achieved a reasonable performance [33,45]. Building upon
these facts, it is safe to expect the majority prediction in a cluster by the Plm
has a high probability to be the ground truth label, even with a small amount
of training data. Thus, we assume that the majority prediction is the correct
label for all the instances in the cluster. Our preliminary experiments also show
a relatively high and stable accuracy of our pseudo-label assignment strategy,
i.e., over 0.80 for all the chosen datasets. Since the majority prediction is treated
as the pseudo label to each cluster, pseudo errors are defined as those instances
whose predictions disagree with the majority prediction in each cluster. As will
be shown in Sect. 5, the sampled pseudo errors usually have higher error rates
when compared with ground truths, indicating that such a way of defining pseudo
labels and pseudo errors is effective.

In round t (1 ≤ t ≤ T ) of active learning, we first obtain the representations
of instances in Du by feeding them into model M’s encoder Φ(.). Specifically,
we only take the [CLS] token embedding from the output in the last layer of
encoder Φ(.). Then K-Means++ [2] is employed as an initialization of the seeding
scheme for the following clustering process. We denote the k-th cluster as C(t)

k =
{xi|c(t)i = k}, k ∈ {1, . . . , K}, where c

(t)
i is the cluster id for the instance xi at al

round t. After obtaining K clusters with the corresponding data C(t)
k , we assign

a pseudo label for each cluster. First, the pseudo label for an individual instance
xi at round t of al is computed as:

ỹi = argmax
j∈{1,...,Y }

[M(xi; θ(t))]j , (2)

where M(xi; θ(t)) ∈ R
Y is the probability distribution for instance xi over the

Y target classes, and [M(xi; θ(t))]j is the j-th entry denoting the probability of
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xi belonging to the target class j, inferenced by the current model. Then the
majority vote (the pseudo label of cluster C(t)

k ) is derived as:

ymaj = argmax
j

(
∑

i∈C(t)
k

1{ỹi = j})/|C(t)
k |. (3)

The instances that are not predicted as ymaj are defined as pseudo errors in the
corresponding cluster C(t)

k .

3.3 Adaptive Sampling of Representative Errors

For each round of active learning, assuming that the labeling budget is b, we need
to decide how we should select the b samples from the unlabeled pseudo errors.
To ensure the representativeness of selected samples, we allocate the sampling
budget b to each cluster according to the density of pseudo errors in the cluster,
i.e., the percentage of the pseudo errors within a cluster over the total number
of pseudo errors in the whole unlabeled data pool. A larger sampling budget will
be allocated to the cluster with a higher pseudo error density. The density of
pseudo errors εk for cluster C(t)

k is defined as:

εk =
∑

xe∈ ˜Ek

ε(xe), (4)

Algorithm 1. Round t of Real

Input: unlabeled pool Du, budget for one iteration b, classification model M, number
of clusters K, model’s encoding part Φ(.)

Output: sampled set Q
1 C(t)

k = KMeans
(
Φ(Du)

)
, (k ∈ {1, . . . , K}) � Clustering Du

2 for k ∈ {1, . . . , K} do � Process cluster Ck

3 Run Eq. 2 for cluster Ck to get the instance-level pseudo labels
4 Run Eq. 3 to find the cluster-level pseudo label ymaj for Ck

5 Init pseudo error set Ẽk in Eq. 4
6 Compute the error density εk for cluster Ck by Eq. 4

7 end
8 Get the sampling budget bk based on error density for each cluster using Eq. 6
9 if

∑
k bk < b then

10 Δ = b − ∑
k bk � Budget residual

11 end
12 bk += 1, ∀k ∈ Δ-argmaxk(bk) and bk > 0 � Allocate residual to top-Δ largest bk
13 Q = ∅ � Init the sample set
14 for k ∈ {1, . . . , K} do

15 Random sample min(|Ẽk|, bk) instances from Ẽk into Q
16 end
17 if |Q| < b then
18 Q = Q ∪ {(b − |Q|) instances from Du with top ε(.) scores (Eq. 5) and not in Q}
19 end
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where Ẽk = {xe|xe ∈ C(t)
k and ỹe �= ymaj} is the pseudo error set in the k-th

cluster, and ε(xe) is one pseudo error xe’s contribution to the cluster-level error
density:

ε(xe) = 1 − [M(xe; θ(t))]maj . (5)

The sampling budget bk for the k-th cluster is then normalized as:

bk =
⌊
b

εk∑
i εi

⌋
,∀k ∈ {1 . . . K}. (6)

Apart from selecting pseudo errors, we also try to select errors near the classi-
fication decision boundary by emphasizing clusters with denser pseudo errors.
The empirical evidences in Sect. 5 also show that our adaptive budget allocation
is able to pick more representative pseudo errors along the decision boundary.

In real-world applications of al, it is possible that there may not be enough
pseudo errors to be sampled in a cluster (i.e., |Ek| < bk). For instance, when
the model is already well-trained via active learning, most of the data instances
will be correctly classified. In those cases, we complement the sampled set Q by
instances with a higher erroneous probability within all the unlabeled pool Du

(Line 18 in Algorithm 1), which are illustrated as blue instances ( ) in Fig. 1.
The complexity of Real consists of two parts: the inference time O(|Du|)

and the time for K-Means clustering O(dK|Du|), where d is the encoder feature
dimension |Φ(.)|. K-Means implemented in faiss [22] costs only 2 or 3 s even for
large datasets such as agnews and pubmed in Sect. 4.

4 Experimental Setup

4.1 Datasets

Following prior research [33,45,46], We conduct experiments on five text classifi-
cation datasets from different application domains, i.e., sst-2 [40], agnews [48],
pubmed [11], snips [10], and stov [43]. Table 1 shows their detailed statistics.
Due to the limited computational resources, we follow the prior study [45] and
take a subset of the original training set and validation set if they are too large.
Specifically, we randomly sample 20K×Y instances form each training set if its
size exceeds 20K×Y , where Y is the number of target classes. We also keep the
size of validation set no more than 3K to speed up the validation process.

Table 1. Dataset statistics.

dataset label type #train #val #test #classes

sst-2 Sentiment 40K 3K 1.8K 2

agnews News Topic 80K 3K 7.6K 4

pubmed Medical Abstract 100K 3K 30.1K 5

snips Intent 13K 0.7K 0.7K 7

stov Question 8.0K 1K 1K 10
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4.2 Baselines and Implementation Details

We compare Real against 8 baselines: (1) Entropy selects instances with
the most even distribution of prediction probability [27]; (2) Plm-km [46] is
a diversity-based baseline which selects b instances closest to K-Means centers
of the [CLS] token embeddings; (3) Badge [3] transforms data into gradient
embeddings that encode the model confidence and then use K-Means++ to
select; (4) Bald [16] defines uncertainty as the mutual information among dif-
ferent versions (via multiple MC dropouts [15]) of the model’s predictions; (5)
Alps [46] selects by masked language modeling loss in Plm; (6) Cal [33] tries to
sample the most contrastive instances along the classification decision boundary;
(7) AcTune [45] selects the unlabeled samples with high uncertainty for active
annotation and those with low uncertainty for semi-supervised self-training by
weighted K-Means; Since semi-supervised self-training is out of the scope of our
current work, we remove the self training part from AcTune for a fair compar-
ison. (8) Random uniformly samples data from the unlabeled pool Du.

For the text classification model M, we follow the prior study [45] and use
RoBERTa-base [31] implemented in the HuggingFace library [42] for our exper-
iments. We train the model on the initial warm-up labeled set for 10 epochs,
and continually train the model for 4 epochs after each round of active sam-
pling to avoid overfitting. We evaluate the model 4 times per training epoch
on the validation set and keep the best version. At the end of training, we test
the previously-saved best model on the hold-out test set. We choose the best
hyperparameters for baselines as indicated in their original papers. We set the
al rounds to be 8 for all the 9 al methods. Following [33,46], all of our methods
and baselines are run with 4 different random seed and the result is based on the
average performance on them. This creates 5 (datasets) × 4 (random seeds) ×
13 (8 baselines + 1 Real + 4 Real variants) × 8 (rounds) = 2080 experiments,
which is almost the limit of our computational resources. More details on the
experiment setup can be found in our code repository.

5 Results

In the experimental study, we try to answer the following research questions:

– RQ1. Classification Performance: How is the classification performance of
Real compared to baselines? (Sect. 5.1)

– RQ2. Representative errors: What are the characteristics of the samples, e.g.,
error rate and representativeness? (Sect. 5.2)

– RQ3. Ablation & hyperparameter : What is the performance of different
design variants of Real? How robust is Real under different hyperparameter
settings? (Sect. 5.3)

5.1 Classification Performance

For RQ1, we compare the classification performance of Real against state-
of-the-art baselines. Following the existing work of text classification [26], we



28 C. Chen et al.

use two criteria: accuracy and F1-macro to measure the model performances.
Accuracy is the fraction of predictions our model got right. F1-macro is the
average of accuracy independently measured for each class (i.e., treating different
classes equally).

Table 2. Mean accuracy (top half) and mean F1-macro (bottom half).

dataset Entropy Plm-km Bald Badge Alps Cal AcTune Random Real

sst-2 91.95 90.74 90.23 90.90 90.88 91.49 91.82 89.91 92.41

agnews 90.34 90.19 89.73 90.11 89.70 90.65 90.57 89.23 91.08

pubmed 80.99 80.90 79.06 81.28 79.93 81.26 81.53 80.60 82.17

snips 95.99 95.51 95.26 95.52 94.93 96.07 96.16 94.81 96.63

stov 86.56 85.83 85.40 86.39 85.62 86.67 86.27 84.82 87.37

sst-2 91.94 90.47 90.22 90.90 90.95 91.48 91.82 89.90 92.41

agnews 90.35 89.84 89.66 90.12 89.60 90.26 90.66 89.31 90.96

pubmed 73.92 74.21 71.54 74.82 73.48 74.99 75.30 73.90 75.78

snips 96.06 95.60 95.35 95.58 94.82 96.13 96.22 94.86 96.69

stov 86.76 85.96 85.46 86.53 85.72 86.83 86.41 84.99 87.53

Table 2 shows the average accuracy and F1-macro scores of different al
strategies on all the datasets. The detailed accuracy for each al round is shown
in Fig. 2. Real outperforms all the baselines by 0.43%–0.70% performance gain
w.r.t. the mean accuracy of all the eight al rounds. The two most recent base-
lines, Cal and AcTune rank in the second or third places in most cases, which
is consistent with the reports in their original papers. Entropy is also a strong
baseline and performs better than Plm-km and Alps. The relatively good per-
formance of Entropy can be explained by pretrained language model’s good
uncertainty estimations [12]. It stands out in sst-2 dataset, probably because it
is relatively easy to pick samples around the decision boundary for the binary
classification task. As shown in Fig. 2, pubmed is a difficult dataset to learn. The
model’s test accuracy on it is less than 85% even with the full training set. It is
probably because the professional medical text is rarely seen in RoBERTa and
the label distribution of pubmed is a skewed. Entropy and Bald perform very
badly on pubmed, since they heavily rely on the distribution of the prediction
probability. Compared to other baseline methods, Real has a clear advantage
on pubmed.

5.2 Representative Errors

We address RQ2 by investigating whether Real can sample representative
errors and comparing it with those baselines. Specifically, we evaluate the capa-
bility of Real in selecting representative error samples from the following two
perspectives:
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– The error rate and initial training loss of samples (Table 3 and Fig. 4);
– The distribution divergence between samples and boundary errors (Fig. 4).

Error Rate and Initial Training Loss of Samples. Table 3 shows the mean
error rates and initial training loss (for all al rounds) of samples Q for different
al strategies across all the datasets. The error rate ε(Q) is the proportion of
wrongly-predicted instances in Q by comparing the model prediction with the
ground truth label for each instance. It is inappropriate to directly compare
the error rates ε(Q) of different al strategies, because the error rates ε(Du) in
the whole unlabeled pool Du are different. It is more easier to achieve a high
sampling error rate ε(Q) given a high background error rate ε(Du). Therefore,
we compares the lift of sampling error rate, which is defined as ε(Q)/ε(Du),
which implies how effective does an al strategy select errors, compared with
random selection. Another metric is the average cross entropy loss �0 of samples
Q in the first training step , which is a more fine-grained version of error rate.
Many previous research work [20,32,41,47] have already validated that samples
with higher loss are usually more informative to the model.

Fig. 2. The accuracy of different active learning rounds on each dataset. The height of
the shadow area denotes the std of accuracy.

Table 3 shows Real usually has a large lift of sampling error rate, second
only to Entropy, despite the fact that the unlabeled pool error rate ε(Du)
of Real is the lowest. The large lift of sampling error rate implies Real
successfully identifies the errors in Du. It is worth mentioning that ε(Du) can
serve as test set because we don’t use Du in the previous al rounds for training or
validation. Real has the lowest error rate on 4 out of 5 datasets, which means
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the highest accuracy when testing on Du. The initial training loss of Real’s
samples is also the largest in the last four datasets. Figure 4 shows more detailed
loss distribution for each al round.

Representativeness. We investigate how Real’s samples align with ground-
truth errors on decision boundary compared to baselines. Based on theoretical
studies on margin theory for active learning [4], selecting instances close to the
decision boundary can significantly reduce the number of annotations required
[21,33,37,50]. Though identifying the precise decision boundaries for deep neural
networks is intractable [13], we use the basic grid statistics on t-SNE embeddings
as an empirical solution. Specifically, we apply t-SNE to the [CLS] token embed-
dings of Φ(Du) and project the original token embeddings of 768 dimensions to
2D plane, as shown in Fig. 3. Then, we split the bounding box of Du on 2-D
plane into 50 × 50 uniform grids, where gi denotes the number of instances that
fall into the i-th grid.

We keep only the ground-truth errors within the decision boundaries. Our
intuition of decision boundary is where instances have similar representations

Table 3. Sampling error rate ε(.), lift, and the average first step training loss �0.

dataset metric Entropy Plm-km Badge Cal AcTune Random Real

sst-2 ε(Q) 0.4959 0.1841 0.2308 0.4821 0.4334 0.1284 0.4739

ε(Du) 0.1194 0.1251 0.1259 0.1215 0.1170 0.1338 0.1212

lift 4.1530 1.4713 1.8325 3.9670 3.7055 0.9596 3.9113

�0 0.6984 0.8100 1.0538 0.6915 0.8526 0.6660 0.9938

agnews ε(Q) 0.6092 0.1904 0.2246 0.5637 0.5325 0.1142 0.5537

ε(Du) 0.1009 0.1039 0.1041 0.0995 0.0991 0.1115 0.0959

lift 6.0377 1.8320 2.1576 5.6667 5.3730 1.0239 5.7737

�0 1.2504 0.8597 0.9477 1.0926 1.3009 0.5707 1.3636

pubmed ε(Q) 0.6701 0.3164 0.3634 0.6103 0.6231 0.1987 0.6046

ε(Du) 0.1943 0.1971 0.1928 0.1941 0.1907 0.1998 0.1858

lift 3.4487 1.6048 1.8845 3.1452 3.2670 0.9943 3.2531

�0 1.5117 1.3533 1.6009 1.2871 1.4494 1.0222 1.7040

snips ε(Q) 0.4107 0.1226 0.1120 0.4237 0.2963 0.0276 0.4002

ε(Du) 0.0268 0.0337 0.0308 0.0280 0.0265 0.0393 0.0231

lift 15.3183 3.6410 3.6338 15.1568 11.1895 0.7023 17.2902

�0 1.0176 0.5209 0.5080 1.0470 0.9491 0.1842 0.9356

stov ε(Q) 0.7328 0.2536 0.3506 0.6904 0.6659 0.1307 0.7162

ε(Du) 0.1048 0.1263 0.1209 0.1094 0.1101 0.1386 0.1045

lift 6.9934 2.0079 2.8994 6.3114 6.0509 0.9435 6.8548

�0 2.1434 1.0260 1.3874 2.0255 2.0062 0.6331 2.1131
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but different predictions [4]. We hypothesize that the pseudo errors selected
by Real is near to the model’s decision boundary because 1) instances in the
same cluster have similar representations; and 2) pseudo errors have different
predictions than the majority in a cluster. To verify this hypothesis, we compute
the distribution entropy of ground-truth labels for each grid, and reserve only
the top 0.15 grids with high entropy values. We call grids with top 15% high
entropy values as boundary grids. gε

i denotes the number of ground-truth errors
fall into i-th boundary grid.

We compare the Jensen-Shannon divergence (JSD) between boundary grids
set {gε

i }m
i=1 (m is the number of boundary grids) and {si}m

i=1, where si is the
number of sampled instances in the i-th grid. Together with previously intro-
duced sampling loss, we plot the divergence in Fig. 4 for the two largest datasets
agnews and pubmed. Real clearly has the lowest divergence, which means our
samples’ distribution aligns well with the ground-truth errors on the boundary.

Fig. 3. The t-SNE based visualization for the sample/error distribution. Visualizations
in the first row are from the first round active selection on agnews and the second
row from the second round. Two subfigures in the middle (b and e) are all instances
in Du. The four colors in b and e indicate different correctly predicted categories,
except black. Black dots indicate the ground truth errors. Purple dots in the left side
two visualizations are Entropy’s selections and the right side are Real’s selections.
(Color figure online)

Besides the lowest divergence, Real also has the largest sampling loss. As
shown in Fig. 4, Real’s samples clearly distribute in the upper left corner. In
contrast, Random’s samples lie in the lower right corner. The least sampling loss
and largest divergence from boundary errors may be the reason why Random
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fails. To our surprise, darker dots usually appear in higher positions, in Fig. 4,
which means samples in later al rounds provide larger loss. The reason may be
that the model in later al rounds is stable and confident in its predictions, thus
introducing new samples will cause a larger loss.

Figure 3 provides the case studies of our samples against Entropy on
agnews. We can see that most errors distribute near the decision boundaries.
Entropy tends to miss some decision boundary areas and is lack of diversity.
Real matches the boundary errors better.

5.3 Ablation and Hyperparameter Study

In this section, we address RQ3 by extensive ablation (Fig. 5) and hyperparam-
eter studies (Fig. 6) to understand the important components in Real.
A. Ablation Study. (1) We test Real with different budget allocation strate-
gies (Eq. 6) per cluster. (1.1) Ignore the idea of “allocation by cluster”. Specifi-
cally, we rank all the instances in Du based on its erroneous probability (Eq. 5),
and select top-b instances per round (REAL pool). (1.2) For each cluster, uni-
formly sample B/K pseudo errors, i.e., ignore cluster error weights in Eq. 6.
(REAL uniform)
(2) Real randomly samples within each cluster’s pseudo errors (line 15 in Algo-
rithm1) based on the adaptive budget. Given the adaptive budget in each cluster,
we also try to sample: (2.1) Instances with the largest erroneous probabilities in
Eq. 5 (REAL cluster); (2.2) Pseudo errors with the largest prediction entropy
(REAL entropy).

Fig. 4. Loss v.s. sample-error divergence. Each dot represents a sample set Q from one
al round. The dot shape and color hue indicate al strategy. The dot transparency
indicates different al rounds. More transparent dot comes from earlier al round, and
darker dot comes from later al round. Real clearly shows a lower divergence to the
ground truth errors on the decision boundary, and a larger sampling loss.

Figure 5 show that most of Real’s variants still perform better than the best
baseline AcTune on large datasets agnews and pubmed. However, the results
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on sst-2 are unstable. The reason may be that the decision boundary of binary
classification is too simple so that dedicated methods are not necessary. REAL
cluster fails only on sst-2. REAL uniform is slightly worse than AcTune in
later rounds, which indicates the importance of weighted budget allocation for
Real. REAL pool is very close to AcTune on pubmed, possibly because lacking
diversity hurts it on the most difficult dataset.

B. Hyperparameter Study. We study the impact of varying the number of
clusters K. Experiment results in Fig. 6 shows our method stably beats the best
baseline across a wide range of K (on a scale of tens to hundreds).

Fig. 5. Ablation study on different variants of Real.

Fig. 6. Mean acc under a wide range of #clusters K for Real against the best baseline
AcTune on our largest two datasets.

6 Conclusion and Future Work

We present Real, a novel al sampling strategy that selects representative pseudo
errors for efficient model training. We define pseudo errors as minority predic-
tions within each cluster. The sampling budget per cluster is adaptive to the
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cluster’s total estimated error density. Experiments on five datasets demonstrate
that Real performs better than other AL sampling strategies consistently. By
analyzing the actively sampled instances, we find that Real improves over all
the best-performing baselines by guiding uncertainty sampling in errors near the
decision boundary. The ablation study shows most alternative designs of Real
still beat the state-of-the-art baseline.

Future work will investigate the theoretical effectiveness of selecting errors
near decision boundary for al and the diversity within pseudo errors. Currently
we only take text classification as an example to illustrate the effectiveness of
Real. But the framework of Real can be easily adapted to other tasks such as
image classification implemented in neural classification architectures.
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Abstract. The deployment of Deep Learning (DL) models is still pre-
cluded in those contexts where the amount of supervised data is limited.
To answer this issue, active learning strategies aim at minimizing the
amount of labelled data required to train a DL model. Most active strate-
gies are based on uncertain sample selection, and even often restricted to
samples lying close to the decision boundary. These techniques are the-
oretically sound, but an understanding of the selected samples based on
their content is not straightforward, further driving non-experts to con-
sider DL as a black-box. For the first time, here we propose to take into
consideration common domain-knowledge and enable non-expert users
to train a model with fewer samples. In our Knowledge-driven Active
Learning (KAL) framework, rule-based knowledge is converted into logic
constraints and their violation is checked as a natural guide for sample
selection. We show that even simple relationships among data and out-
put classes offer a way to spot predictions for which the model need
supervision. We empirically show that KAL (i) outperforms many active
learning strategies, particularly in those contexts where domain knowl-
edge is rich, (ii) it discovers data distribution lying far from the initial
training data, (iii) it ensures domain experts that the provided knowl-
edge is acquired by the model, (iv) it is suitable for regression and object
recognition tasks unlike uncertainty-based strategies, and (v) its compu-
tational demand is low.

Keywords: Active Learning · Knowledge-aided Learning ·
Neurosymbolic Learning

1 Introduction

Deep Learning (DL) methods have achieved impressive results over the past
decade in fields ranging from computer vision to text generation [29]. However,
most of these contributions relied on overly data-intensive models (e.g. Trans-
formers), trained on huge amounts of data [31]. With the advent of Big Data,
sample collection does not represent an issue any more, but, nonetheless, in some
contexts the number of supervised data is limited, and manual labelling can be
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expensive [51]. Therefore, a common situation is the unlabelled pool scenario [33],
where many data are available, but only some are annotated. Historically, two
strategies have been devised to tackle this situation: semi-supervised learning
which exploits the unlabelled data to enrich feature representations [55], and
active learning which selects the smallest set of data to annotate to improve the
most model performances [43].

The main assumption behind active learning strategies is that there exists
a subset of samples that allows to train a model with a similar accuracy as
when fed with all training data. Iteratively, the strategy indicates the optimal
samples to be annotated from the unlabelled pool. This is generally done by
ranking the unlabelled samples w.r.t. a given measure, usually on the model
predictions [35,43,48], or on the input data distribution [39,54] and by selecting
the samples associated to the highest rankings [37,52]. While being theoretically
sound, an understanding of the selected samples based on their content is not
straightforward, in particular to non-ML experts. This issue becomes particularly
relevant when considering that Deep Neural Networks are already seen as black
box models [11,19] On the contrary, we believe that neural models must be linked
to Commonsense knowledge related to a given learning problem. Therefore, in
this paper, we propose for the first time to exploit this symbolic knowledge in the
selection process of an active learning strategy. This not only lower the amount
of supervised data, but it also enables domain experts to train a model leveraging
their knowledge. More precisely, we propose to compare the predictions over the
unsupervised data with the available knowledge and to exploit the inconsistencies
as a criterion for selecting the data to be annotated. Domain knowledge, indeed,
can be expressed as First-Order Logic (FOL) clauses and translated into real-
valued logic constraints (among other choices) by means of T-Norms [27] to
assess its satisfaction [14,21,34].

In the experiments, we show that the proposed Knowledge-driven Active
Learning (KAL) strategy (i) performs better (on average) than several standard
active learning methods, particularly in those contexts where domain-knowledge
is rich. We empirically demonstrate (ii) that this is mainly due to the fact
that the proposed strategy allows discovering data distributions lying far from
the initial training data, unlike uncertainty-based approaches. Furthermore, we
show that (iii) the KAL strategy can be easily employed also in regression and
object-detection contexts, where standard uncertainty-based strategies are not-
straightforward to apply [24], (iv) the provided knowledge is acquired by the
trained model, (iv) KAL can also work on domains where no knowledge is avail-
able if combined with a XAI technique, and, finally, (vi) KAL is not computa-
tionally expensive unlike many recent methods.

The paper is organized as follows: in Sect. 2 the proposed method is explained
in details, with first an example on inferring the XOR operation and then con-
textualized in more realistic active learning domains; the aforementioned exper-
imental results on different datasets are reported in Sect. 3, comparing the pro-
posed technique with several active learning strategies; in Sect. 4 the related work
about active learning and about integrating reasoning with machine learning is
briefly resumed; finally, in Sect. 5 we conclude the paper by considering possible
future work.
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2 Knowledge-Driven Active Learning

In this paper, we focus on a variety of learning problems, ranging from clas-
sification to regression and also object-detection. Therefore, we consider the
problem f : X → Y , where X ⊆ R

d represents the feature space which may
also comprehend non-structured data (e.g., images) and d represents the input
dimensionality and Y the output space. More precisely, in classification problems
we consider a vector function f = [f1, . . . , fc], where each function fi predicts
the probability that x belongs to the i-th class. When considering an object-
detection problem, instead, for a given class i and a given image x ∈ X, we
consider as class membership probability fi the maximum score value among all
predicted bounding boxes around the objects belonging to the i-th class. For-
mally, fi(x) = maxs∈Si(x) s(x) where Si(xj) is the set of the confidence scores of
the bounding boxes predicting the i-th class for sample x. Finally, in regression
problems the learning function fi represents the predicted value for the i-th class
and takes values outside the unit interval, i.e. fi(x) ∈ R.

In the Active Learning context, we also define Xs ⊂ X as the portion of
input data already associated to an annotation yi ∈ Ys ⊂ Y and n the dimen-
sionality of the starting set of labelled data. At each iteration, a set of p samples
Xp ⊂ Xu ⊂ X is selected by the active learning strategy to be annotated from
Xu, the unlabelled data pool, and be added to Xs. This process is repeated
for q iterations, after which the training terminates. The maximum budget of
annotations b therefore amounts to b = n + q · p.

Let us also consider the case in which additional domain knowledge is avail-
able for the problem at hand, involving relationships between data and classes.
By considering the logic predicate f associated to each function f , First-Order
Logic (FOL) becomes the natural way of describing these relationships. For
example, ∀x ∈ X, x1(x) ∧ x2(x) ⇒ f(x), meaning that when both predicates
are true also the output function f(x) needs to be true and where x1(x),x2(x)
respectively represent the logic predicates associated to the first and the sec-
ond input features. Also, we can consider relations among classes, such as
∀x ∈ X, fv(x) ∧ fz(x) ⇒ fu(x), meaning that the intersection between the v-th
class and the z-th class is always included in the u-th one. Finally, we can con-
sider predicates defined over open f(x) > k or closed intervals, k1 < f(x) < k2.

2.1 Converting Domain-Knowledge into Loss Functions

Among different approaches that allow to inject domain knowledge into a learn-
ing problem (see [20] for a complete review of approaches), in this work we
employ the Learning from Constraints framework [14,21] which converts domain
knowledge into numerical constraints. Among a variety of other type of con-
straints (see, e.g., Table 2 in [21]), it studies the process of handling FOL formulas
so that they can be either injected into the learning problem (in semi-supervised
learning [32]) or used as a knowledge verification measure (as in [34] and in the
proposed method). Going into more details, the FOL formulas representing the
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Fig. 1. A visual example of KAL working principles on the XOR-like problem. We
depict network predictions with different colour degrees. Also, we depict in orange
the samples selected by the active strategy in the current iteration and in blue those
selected in previous iterations (or initially randomly annotated). Notive how the pro-
posed method immediately discovers the data distribution not covered by the initial
random sampling (right-bottom quadrant).

domain knowledge are converted into numerical constraints using the Triangu-
lar Norms (T-Norms, [27]). These binary functions generalize the conjunction
operator ∧ and offer a way to mathematically compute the satisfaction level of
a given rule.

Following the previous example, x1(x) ∧ x2(x) ⇒ f(x)1 is converted into
a bilateral constraint φ(f(x)) = 1. By first rewriting the rule as a conjunc-
tion of terms ¬((x1 ∧ x2) ∧ ¬f)2 and by employing the product T-Norm which
replaces the ∧ with the product operators and ¬x with 1 − x, the bilateral
constraint becomes 1 − (x1x2(1 − f)) = 1. With ϕ(f(x)) = 1 − φ(f(x)) we
indicate the loss function associated to the bilateral constraints, which measures
the level of satisfaction of the given constraints and has its minimum value in
zero. Again, recalling the previous example, the associated loss function would
be ϕ(f(x)) = x1x2(1− f), which indeed is satisfied when either x1 or x2 is zero
or f is approximately one. For further detail on how to convert FOL formulas
into numerical constraints check the supplementary material and [32] which also
proposed an automatic computation of the loss function ϕ associated to a rule.

Based on this assumption, we can detect whether the predictions made by
the model on unlabelled data are coherent with the domain knowledge, and we
select the data associated to the highest violations as those to be annotated.
More precisely, considering the set K of all available FOL formulas for the given
problem, we select the points x� which violate the most the constraints as follows:

KAL : x� = argmax
x∈Xu

∑

ϕ∈K
ϕ(f(x)) (1)

At each iteration, the KAL strategy selects p samples x� to annotate from the
unlabelled pool Xu.

1 Practically, the predicate xi(x) is obtained applying a steep logistic function over
the i-th input feature: xi = σ(xi) = 1/(1 + e−τ(xi−h)), where τ is a temperature
parameter and h represents the midpoint of the logistic function (h = 0.5). For
predicates expressing inequalities, e.g., f(x) > k we simply need to set h = k.

2 For the sake of simplicity, we drop the argument (x) of the logic predicates.
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2.2 An Intuitive Example: The XOR-like Problem

A well-known problem in machine learning is the inference of the eXclusive OR
(XOR) operation. To show the working principles of the proposed approach,
we propose a variant of this experiment, in which a neural network learns the
XOR-like operation from a distribution of non-boolean samples. Specifically, we
sampled 105 points x ∈ [0, 1]2, and we assigned a label y(x) as following: y(x) = 1
if (x1 > 0.5 ∧ x2 ≤ 0.5) ∨ (x1 ≤ 0.5 ∧ x2 > 0.5) else y(x) = 0. Also, we express
the XOR operation through a FOL formula (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ⇔ f . As
seen before, through the T-Norm operation we can convert the logic rule into a
numerical constraint, compute its violation as:

ϕx1⊕x2→f = (x1 + x2 − 2x1x2)(1 − f),
ϕf→x1⊕x1 = f(1 − (x1 + x2 − 2x1x2))

(2)

In Fig. 1, we reported an example of the proposed strategy starting from
n = 10 randomly selected labelled data and by selecting p = 5 samples at each
iteration violating the most Eq. 2, and for q = 100 iterations. We can appreciate
how, as is often the case, the initial random sampling (blue points-figure on
the left) does not well represent the whole data distribution: no samples drawn
from the bottom-right quadrant. Nonetheless, the proposed method immediately
discovers the data distribution not represented by the initial sampling (orange
points-figure on the left), by selecting the samples violating x1 ⊕x2 → f . After
5 iterations (figure at the centre) the network has mostly learnt the correct
data distribution. Later, the proposed strategy refines network predictions by
sampling along the decision boundaries (blue points-figure on the right), allowing
the network to almost already solve the learning problem (accuracy ∼100%) in
just 10 iterations. As it will be seen in the next section, standard random selection
(but also uncertainty-based ones) will require many more iterations.

2.3 Real-Life Scenario: Partial Knowledge and Different Type
of Rules

It is clear that, in the case of the XOR-like problem, the knowledge is complete:
if we compute the predictions directly through the rule, we already solve the
learning problem. However, the purpose of this simple experiment is to show
the potentiality of the proposed approach in integrating the available symbolic
knowledge into a learning problem. In real-life scenarios, such a situation is unre-
alistic, but still we might have access to some partial knowledge that may allow
solving more quickly a given learning problem. Also, it may facilitate domain
experts to accept and understand the active learning labelling process, since here
the samples to label are the ones violating the knowledge they provided.

More precisely, when we consider structured data (e.g., tabular data), a
domain expert may know some simple relations taking into consideration few
features and the output classes. This knowledge may not be sufficient to solve
the learning problem, but a KAL strategy can still exploit it to drive the network
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to a fast convergence, as we will see in Sect. 3. On the opposite, when we con-
sider unstructured data (e.g., images or audio signals) the employed knowledge
cannot directly rely on the input features. Nonetheless, in multi-label learning
problems, a user may know in advance some relations between the output classes.
Let us consider, as an example, a Dog-vs-Person classification: we might know
that a main a dog is composed of several parts (e.g., a muzzle, a body, a tail).
A straightforward translation of this compositional property into a FOL rule is
Dog ⇒ Muzzle ∨ Body ∨ Tail. Formulating the composition in the opposite
way is correct as well i.e., Muzzle ⇒ Dog. Also, in all classification problems,
at least one of the main classes needs to be predicted, i.e., Dog ∨ Person,
with main classes being mutually exclusive in standard multi-class problems,
i.e., Dog ⊕ Man. Finally, we can always incorporate an uncertainty-like rule
requiring each predicate to be either true or false, i.e., Dog ⊕ ¬Dog.

3 Experiments

In this work, we considered six different learning scenarios, comparing the pro-
posed technique with several standard active strategies. We evaluated the pro-
posed method on two standard classification problems [4], the inference of the
XOR-like problem (already introduced in Sect. 2.2), and the classification of IRIS
plants given their characteristics. To assess the validity of the proposed method
on regression tasks, we experimented on the Insurance dataset3, which requires
to model insurance charges based on insured persons features. We also consid-
ered two standard image-classification tasks: the ANIMALS dataset, represent-
ing 7 classes of animals extracted from ImageNet [13], and the Caltech-UCSD
Birds-200-2011 dataset (CUB200, [47]), a fine-grained classification dataset rep-
resenting 200 bird species. At last, as a proof of concept, we analysed the per-
formances of the KAL in the simple DOGvsPERSON object recognition task, a
novel publicly available dataset that we extracted from PASCAL-Part [7]. For
more details regarding the latter, please refer to supplementary material. For
each dataset, n, p, q, as well as the number of training epochs and the network
structure are arbitrarily fixed in advance according to the number of classes, the
dataset size and the task complexity. Reported average results are computed on
the test sets of a k-fold Cross Validation (with k = 10 in the first three tasks and
k = 5 in the computer vision ones). More details regarding each experimental
problem, as well as the tables reporting all the rules employed, are available in
the supplementary material. The code to run all the experiments is published
on a public GitHub repository4. A simple code example is also reported in the
supplementary material, showing how to solve the XOR-like problem with the
KAL strategy. All experiments were run on an Intel i7-9750H CPU machine with
an NVIDIA 2080 RTX GPU and 64 GB of RAM.

3 Available from Kaggle https://www.kaggle.com/datasets/teertha/ushealthinsurance
dataset.

4 KAL repository: github.com/gabrieleciravegna/Knowledge-driven-Active-Learning.

https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://github.com/gabrieleciravegna/Knowledge-driven-Active-Learning
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Compared Methods. We compared KAL with 12 active learning strategies com-
monly considered in literature [37,53]. As representatives of uncertainty-based
strategies, we considered Entropy [43] selecting samples associated to predic-
tions having maximum entropy, Margin [35] predictions with minimum margin
between the top-two classes, and LeastConf [48] predictions with the lowest
confidences, together with their Monte Carlo Dropout versions [3] (respectively
EntropyD, MarginD, LeastConfD), which, by applying dropout a test time,
compare the predictions of Monte Carlo sampled networks to better asses uncer-
tain predictions. As more recent uncertainty-based strategies, we compared with
Bayesian Active Learning by Disagreements BALD [17], with two strategies
computing the margin by means of adversarial attacks ADVDEEPFOOL [16],
ADVBIM [53] and with SupLoss a simplified upper bound of the method pro-
posed in [50] employing the actual labels (available only on benchmarks). As
Diversity-based methods, we selected KMeans [54] and KCenter a greedy ver-
sion of the CoreSet method [42]. More details are reported in the supplementary
material, together with a table resuming the associated losses.

3.1 KAL Provides Better Performance Than Many Active
Strategies

For a quantitative comparison of the different methods, we evaluated the network
accuracy when equipped with the different active learning strategies. In Fig. 2
we reported the average F1 scores (R score for regression) budget curves when
increasing the number of selected labelled data. In Table 1 we also report the
Area Under the Budget Curves (AUBC), as defined in [52].

XOR-like, IRIS. In both standard machine learning problems, we can observe
how KAL and KALD (the corresponding Monte-Carlo Dropout version) reach
the highest performance with a 4–10% higher AUC over standard uncertainty-
based strategies in both cases. The only competitive methods in both cases are
the CoreSet-based approach KCenter and the SupLoss method. This behaviour
will be better analysed in Sect. 3.3. Interestingly, when analysing the corre-
sponding plots in Fig. 2 we can appreciate how the proposed methods not only
allows to reach a higher overall accuracy, but it also enables the network to
learn more quickly the given tasks w.r.t. the other ones. While this was an
expected behaviour on the XOR-like task since the provided rules completely
explain the learning problem, on the IRIS classification task it is surprising since
only 3 simple rules are given, considering a maximum of 2 features each (e.g.,
¬Long_Petal ⇒ Setosa).

Insurance (R). Also in the regression scenario, KAL results to be the most
effective active learning strategy, with only the CoreSet-based approach KCenter
reaching similar performance (top-right plot in Fig. 2). Other methods, instead,
report average performance at least 10% lower than KAL. Furthermore, also
in this case, KAL employs simple relations like ¬Smoker ∧ Age < 40 ⇔
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Fig. 2. Average test performance growth when increasing the number of labelled sam-
ples in terms of F1 or R score (%) in the regression task. Confidence intervals are
not reported for better readability. Method variants (e.g., the Monte-Carlo Dropout
versions) are displayed with the same colour.

Charge < 7500. Uncertainty-based strategies are not reported in this case, as
they cannot be applied in regression problems (unless using auxiliary models to
estimate confidence over open intervals as in [10]).

ANIMAL, CUB200. A slightly-different situation can be observed in the image
classification tasks (bottom plots in Fig. 2). Here we notice the importance
of employing well-structured knowledge. In the ANIMALS task, indeed, only
17 rules are provided relating animal species and their characteristics (e.g.,
Fly ⇒ ¬Penguin). In this case, the results with KAL are only on average
w.r.t. uncertainty-based approaches (better than LeastConf, BALD and ADV
but worse than Margin and Entropy). On the contrary, KAL performs much
better than KCENTER and KMEANS which are unable to correctly repre-
sents data distributions in complex scenarios even though being applied in
the network latent space. In the CUB200 task instead, where 311 rules are
employed in the KAL strategy considering bird species and their attributes (e.g.,
WhitePelican ⇒ BlackEye ∨ SolidBellyPattern ∨ SolidWingPattern),
the proposed approaches are once again the best two strategies. SupLoss, instead,
provide low performances in the computer vision problems. We believe that
selecting samples with high supervision loss is not an optimal active strategy in
this scenario, as it might mostly select outliers.
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Table 1. Comparison of the methods in terms of the mean F1 score (R score on
the regression dataset) AUBC and standard deviation when increasing the number of
labelled points. On top, starting and ending labelling budget for each dataset. The
two best results are reported in bold. Uncertainty strategies are reported with – in the
regression task, since they cannot be applied in this context.

Dataset XOR IRIS Insurance (R) Animals CUB200
Strategy Budget 10-100 10-50 10-300 100-2500 2000-7000

KAL 93.44 ±3.39 92.05 ±4.19 67.52 ±7.28 55.57 ±1.55 51.98 ±0.29

KALD 93.38 ±3.31 91.47 ±4.51 66.54 ±9.04 55.52 ±1.68 52.10 ±0.24

ADVBIM 82.77 ±11.06 90.60 ±3.92 − 53.93 ±0.42 50.77 ±0.50

ADVDEEPFOOL 83.79 ±9.49 90.45 ±4.59 − 54.35 ±1.02 50.41 ±0.29

BALD 78.13 ±9.75 75.21 ±10.18 − 53.87 ±1.36 51.17 ±0.62

KCENTER 91.84 ±1.73 90.55 ±4.76 66.04 ±6.04 43.37 ±3.29 48.90 ±0.39

KMEANS 83.53 ±3.89 86.49 ±9.80 53.63 ±12.99 52.87 ±1.18 49.90 ±0.33

Entropy 81.98 ±10.77 75.04 ±10.05 − 56.85 ±0.92 51.91 ±0.12

EntropyD 83.21 ±10.98 75.07 ±9.88 − 57.68 ±0.95 51.92 ±0.39

LeastConf 83.12 ±11.31 80.21 ±15.74 − 53.95 ±1.99 50.17 ±0.28

LeastConfD 84.77 ±10.95 80.50 ±15.91 − 54.31 ±2.17 50.07 ±0.45

Margin 83.12 ±11.31 81.85 ±16.90 − 57.59±1.24 51.64 ±0.30

MarginD 84.77 ±10.95 80.88 ±16.24 − 56.88 ±1.33 51.54 ±0.48

Random 88.96 ±2.90 88.08 ±6.39 56.66 ±12.87 54.22 ±1.11 50.63 ±0.25

SupLoss 90.81 ±2.13 90.24 ±3.60 42.44 ±5.65 54.14 ±1.48 49.42 ±0.23

These results prove that KAL is a very effective active learning strategy
when the provided knowledge sufficiently represents the given task, both in stan-
dard and in computer vision problems. In the ANIMALS task, instead, where
the provided knowledge is scarce, KAL performance are only on average w.r.t.
uncertainty strategies.

3.2 Ablation Studies

Amount of Knowledge Directly Proportional to Performance Improvement. To
further show the importance of having a diverse and rich set of rules as intro-
duced in Sect. 3.1, we performed here an ablation study. Table 2 reports the
performance of the network when equipped with a KAL strategy considering
only 0%, 25%, 50%, 75% or 100% of the available knowledge. The results show
evidently that the amount of knowledge is directly proportional to the perfor-
mance improvement, up to +1.8%. In the 0% scenario, the only rule employed is
the uncertainty-like rule, which was always retained. Notice how 50.13 is similar
to the LeastConf result (50.20), suggesting that KAL without any further knowl-
edge results in an uncertainty-based strategy. In the supplementary material, we
report the complete table showing that this result is valid for all experimented
scenarios.
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Table 2. Ablation study on the quantity of knowledge employed to support the KAL
strategy on the CUB200 dataset. The amount of knowledge is directly proportional to
the increase of performance.

KAL0% KAL25% KAL50% KAL75% KAL100%

50.13 50.19 50.22 51.28 51.98

Selecting Diverse Constraint Violations and Employing Uncertainty-Like Rule
Improves the Performance Given a set of rules K, the proposed method might
in theory select p samples all violating the same rule φk(f(x)). To avoid this
issue, we select a maximum number r of samples violating a certain rule k,
similarly to [5] introducing diversity in margin-based approaches. Specifically,
we group samples x ∈ Xu according to the rule they violate the most, and
we allow a maximum number of p/2 samples from each group (still following
the ranking given by Eq. 1). In the supplementary material, we report a table
showing how requiring samples violating diverse constraints improves the overall
quality of the KAL selection process. Also, we show the importance of adding
the uncertainty-like rule

∧
i fi ⊕ ¬fi introduced at the end of Sect. 2.3. Together,

these two features allow improving the average performances of the network up
to 2%.

3.3 KAL Discovers Novel Data Distributions, Unlike Uncertainty
Strategies

To further analyse the results obtained, in Fig. 3 we report the samples selected
by some compared strategies at the last iteration on the XOR-like task (100
labelled data), starting from the same randomly selected samples of Fig. 1. As
introduced in Sect. 2.2, the KAL strategy enables to discover novel data distribu-
tion (leftmost figure) even when they are not represented by the initial random
sampling. On the contrary, uncertainty-based strategies (like Margin but also
BALD, central figures) are unable to discover new data distributions. Indeed, all
the data required to label is selected along the decision boundaries of already

Fig. 3. Comparison of the sample selection process on the XOR-like task after 100
labelled samples (starting from the same points as in Fig. 1). Notice how uncertainty-
based strategies (BALD, Margin) have not discovered the novel data distribution (right-
bottom quadrant).
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Table 3. Violation of the KCUB−S knowledge computed as the increased percentage
over the violation of a model actively trained to respect this knowledge (KALsmall). The
lower, the better. The proposed method ensures domain experts that their knowledge
is acquired by the model.

KALsmall Random BALD Entropy LeastConf

+0.00% +483.10% +720.25 +861.74% +1334.50%

known distributions. For this reason, they provide mediocre results on average
on the XOR-like and IRIS tasks and very high variance (>10–15% on IRIS ).
The CoreSet representative strategy, instead, has covered the four quadrants.
However, by only working on input features statistics and without notion on the
predictions, this strategy does not choose points along the decision boundaries,
preventing the network from reaching high accuracy performances. More figures
are reported in the supplementary material.

3.4 KAL Ensures Domain Experts that Their Knowledge is
Acquired

It may be the case that domain experts are provided with a small corpus of
rules which is crucial to be respected by the trained model, e.g., because it has
to be deployed in a sensitive context. By always selecting the data that violate
this corpus of rules, KAL ensures them that their knowledge is aquired by the
model. To simulate this scenario, we computed the argument of Eq. 1 over a
small part of the CUB knowledge KCUB−S (where −S stands for small) on the
test data XT for the f b model trained with all the budget: ϕ(KCUB−S , f b,XT ) =∑

x∈XT

∑
k∈KCUB−S

ϕk(f b(x)). In Table 3 we report the increased percentage of
the violation by models trained following a few compared methods w.r.t. the
violation of a model trained following the KAL strategy and equipped with
the small corpus of rules (KALsmall). The complete table together with more
experimental detail is reported in the supplementary material. For the sake of
completeness, this model reaches a lower test F1 AUBC (49.04). Nonetheless, it
ensures domain experts that the provided knowledge is respected significantly
more than using Random selection, or, worse, standard active learning strategies.

3.5 KAL Can Be Used Even Without Domain-Knowledge

It might be argued that the proposed strategy can be employed only when a
domain knowledge is available. However, recent works in the eXplainable AI
(XAI) field [2,9,23,38] have shown that we can extract the same knowledge from
a trained model. In general, they achieve this by training a white-box model (e.g.
a decision tree) to globally explain the behaviour of a neural network. Here, we
propose to employ these FOL-based explanations (KXAI) as the base knowledge
of the proposed strategy when no other knowledge is available (KALXAI). More
precisely, after each iteration, we employ a simple decision tree as proposed in [23]
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Table 4. Accuracy of the KAL strategy coupled with a XAI method, extracting the
knowledge from the same network. Notice how the AUCB reduction of performance is
always smaller than 1–2%.

XOR IRIS Animals CUB

KAL 93.44 ±3.39 92.05 ±4.19 55.57 ±1.55 51.98 ±0.29

KALXAI 92.18 ±2.64 90.00 ±5.99 54.07 ±2.21 50.33 ±0.47

to extract the knowledge. More details on how we trained the XAI method
are reported in the supplementary material. However, the knowledge may be
partial, particularly during the first iterations, since it is extracted on the training
distribution only. Therefore, we use Eq. 1 to select only 60% of the samples, with
the remaining randomly selected. This allows to eventually recover the complete
knowledge. In Table 4, we report the performance of the network when equipped
with this strategy (KALXAI), together with the performance of the standard
strategy. Notice how the reduction of performance is less than 1–2%, confirming
the validity of the proposed approach even in this scenario. The amount of
randomly chosen samples has not been cross-validated, therefore we expect to
get even higher results by fine-tuning this parameter.

3.6 KAL Can Be Employed in Object Recognition Tasks

To test the proposed method in an object recognition context, as a proof of con-
cept, we experimented on the simple DOGvsPERSON dataset. On this task, we
compute the AUBC of the mean Average Precision curves. Also in this case, the
network increases more its performances when equipped with the KAL strategy
(55.90 ±0.39) with respect to standard random sampling (51.41 ±1.25 ) but also
compared to the SupLoss method (55.30 ±0.54 ), proving the efficacy of the KAL
strategy also in this context. A figure showing the three budget curves is reported
in the supplementary material. Reported results are averaged over 3 initializa-
tion seeds. We only compared with Random selection and the simplified version
of [50], since uncertainty-based strategies are not straightforward to apply in
this context [24]. Finally, we wamt to highlight that the SupLoss performance
reported here is an upper bound of the performance of the method proposed
in [50]. Particularly in this context, we believe that the object recognition loss
might not be easily learnt by an external model, thus reducing the performance
of the SupLoss method (Table. 5).

3.7 KAL Is Not Computationally Expensive

When devising novel active learning techniques, of crucial importance is also the
computational effort. Indeed, since re-training a deep neural network already
requires a substantial amount of resources, the associated active strategy should
be as light as possible. In [53], authors used as a term of comparison the average
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Table 5. Comparison of the methods in terms of the test mAP (%) AUBC [52] when
increasing the number of labelled points on the object recognition task.

Dataset Random SupLoss KAL

Dog vs Person 51.27 ±1.41 55.30 ±0.54 55.90 ±0.39

Table 6. Computational demand of some of the compared methods computed as the
proportional increase over the time required for random sampling as defined in [53]. The
lower, the better. Notice how the proposed method is less computationally expensive
than many recent methods. Standard deviation is not reported for better readability.

Strategy XOR Iris Insurance (R) Animals CUB200

KAL 5.22 16.92 20.52 41.34 180.22

KALD 15.79 23.80 31.43 53.41 197.05

ADVBIM 36.93 657.37 − 5600.65 7440.67

ADVDEEPFOOL 401.73 6451.91 − 57950.46 188435.28

BALD 20.70 21.50 − 157.47 613.48

KCENTER 31.82 42.89 158.28 2379.57 8713.37

KMEANS 7.90 142.36 28.75 718.70 4724.60

Entropy 4.00 13.07 − 14.58 39.02
EntropyD 14.51 18.79 − 22.83 52.77

time needed to randomly sample a novel batch of data. In Table 6, we report
the proportional increased computational time w.r.t. random sampling. KAL
strategies are not computationally expensive (5–180 times slower than random
sampling). On the contrary, BALD (20-613) and, more importantly, KMEANS
(8-4724), KCENTER (30-8713) and ADV-based (37-188435) strategies demand
considerable amounts of computational resources, strongly reducing the usabil-
ity of the same methods. Standard uncertainty-based techniques like Entropy,
instead, are not computationally demanding, with only the Dropout versions
increasing 14–52 times the computational demand of random sampling (simi-
larly to KALD). The complete table is reported in the supplementary material.

4 Related Work

Active Learning. In the literature, two main approaches have been followed:
uncertainty sampling which selects the data on which the model is the least con-
fident; curriculum learning which focuses first on easy samples and then extends
the training set to incorporate more difficult ones while also targeting more
diversity. Standard uncertainty-based strategies choose samples associated to
maximal prediction entropy [25] or at minimum distance from the hyperplane in
SVM [40] or with the highest variation ratio in Query-by-committee with ensem-
ble methods [3,15]. Establishing prediction uncertainty is more difficult with DL
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models. Indeed, they tend to be over-confident, particularly when employing
softmax activation functions [46]. Furthermore, as there is no easy access to
the distance to the decision boundary, it needs to be computed. This problem
has been tackled by devising different uncertain strategies, such as employing
Bayesian Neural Network with Monte Carlo Dropout [17], by calculating the min-
imum distance required to create an adversarial example [16], or even predicting
the loss associated to unlabelled sample [50]. As pointed out by [36], however,
uncertain strategy may choose the same categories many times and create unbal-
anced datasets. To solve this, uncertain sample selection can be coupled with
diversity sampling strategies. Diversity can be obtained by preferring batches of
data maximizing the mutual information between model parameters and predic-
tions [26], or selecting core-set points [41], samples nearest to k-means cluster
centroids [54], or even by learning sample dissimilarities in the latent space of a
VAE with an adversarial strategy [44] or by means of a GCN [6].
Hybrid Models. It has been pondered that human cognition mainly consists
in two different tasks: perceiving the world and reasoning over it [45]. While
these two tasks in humans take place at the same times, in artificial intelligence
they are separately conducted by machine learning and logic programming. It
has been argued that joining these tasks (to create a so-called hybrid model)
may overcome some of the most important limits of deep learning, among which
the “data hungry” issue [31]. In the literature, there exists a variety of proposals
aiming to create hybrid models, ranging from Statistical Relational Learning
(SRL) [28] and Probabilistic Logic Programming [12] which focuses on integrat-
ing learning with logic reasoning, to enhanced networks focusing on relations or
with external memories [22,39]. Recently, several approaches have been devised
to computes and enforce the satisfaction of a given domain knowledge within DL
models [1,30,49], (see survey [20] for a complete list of works in this domain).
Among these options, in this work we chose to employ the learning from con-
straints framework [14,21] since it provides the great logical expressivity (both
universal and existential quantifier) and a straightforward implementation.

5 Conclusions

In this paper, we proposed an active learning strategy leveraging avail-
able domain knowledge to select the data to label. The performance of a
model equipped with such a strategy outperforms standard uncertainty-based
approaches in context where the domain knowledge is sufficiently rich, with-
out being computationally demanding. Furthermore, we think that KAL could
induce more trust in DL, since it enables non-expert users to train models lever-
aging their domain knowledge and ensuring them that it will be acquired by the
model. A main limitation of the proposed approach is in computer vision con-
texts, if no attributes about main classes are known. A possible solution could
be to automatically extract such concepts from the latent space of the network,
as proposed in [8,18]. Also, if the domain knowledge is highly complex, FOL
may not be able to fully express it and higher-order logic may be required.



52 G. Ciravegna et al.

Acknowledgments. This work was supported by the EU Horizon 2020 project
AI4Media, under contract no. 951911 and by the French government, through the
3IA Cóte d’Azur, Investment in the Future, project managed by the National Research
Agency (ANR) with the reference number ANR-19-P3IA-0002.

References

1. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor net-
works. Artif. Intell. 303, 103649 (2022)

2. Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-
based logic explanations of neural networks. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 36, pp. 6046–6054 (2022)

3. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles
for active learning in image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)

4. Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 4. Springer, New
York (2006)

5. Brinker, K.: Incorporating diversity in active learning with support vector
machines. In: ICML, pp. 59–66 (2003)

6. Caramalau, R., Bhattarai, B., Kim, T.K.: Sequential graph convolutional network
for active learning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9583–9592 (2021)

7. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what
you can: detecting and representing objects using holistic models and body parts.
In: CVPR, pp. 1971–1978 (2014)

8. Chen, Z., Bei, Y., Rudin, C.: Concept whitening for interpretable image recog-
nition. Nat. Mach. Intell. 2(12), 772–782 (2020). https://doi.org/10.1038/s42256-
020-00265-z

9. Ciravegna, G., et al.: Logic explained networks. Artif. Intell. 314 (2023). https://
doi.org/10.1016/j.artint.2022.103822. https://www.sciencedirect.com/science/
article/abs/pii/S000437022200162X

10. Corbiere, C., Thome, N., Saporta, A., Vu, T.H., Cord, M., Perez, P.: Confidence
estimation via auxiliary models. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6043–
6055 (2022)

11. Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence
(XAI): a survey. arXiv preprint arXiv:2006.11371 (2020)

12. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

14. Diligenti, M., Gori, M., Sacca, C.: Semantic-based regularization for learning and
inference. Artif. Intell. 244, 143–165 (2017)

15. Ducoffe, M., Precioso, F.: Active learning strategy for CNN combining batchwise
dropout and query-by-committee. In: ESANN (2017)

16. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin
based approach. arXiv:1802.09841 (2018)

17. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image
data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR
(2017)

https://doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1016/j.artint.2022.103822
https://www.sciencedirect.com/science/article/abs/pii/S000437022200162X
https://www.sciencedirect.com/science/article/abs/pii/S000437022200162X
http://arxiv.org/abs/2006.11371
http://arxiv.org/abs/1802.09841


Knowledge-Driven Active Learning 53

18. Ghorbani, A., Wexler, J., Zou, J.Y., Kim, B.: Towards automatic concept-based
explanations. In: Advances in Neural Information Processing Systems, vol. 32
(2019)

19. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an overview of interpretability of machine learning. In: 2018 IEEE
5th International Conference on Data Science and Advanced Analytics (DSAA),
pp. 80–89. IEEE (2018)

20. Giunchiglia, E., Stoian, M.C., Lukasiewicz, T.: Deep learning with logical con-
straints. arXiv preprint arXiv:2205.00523 (2022)

21. Gnecco, G., Gori, M., Melacci, S., Sanguineti, M.: Foundations of support con-
straint machines. Neural Comput. 27(2), 388–480 (2015)

22. Graves, A., et al.: Hybrid computing using a neural network with dynamic external
memory. Nature 538, 471–476 (2016)

23. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti,
F.: Local rule-based explanations of black box decision systems. arXiv preprint
arXiv:1805.10820 (2018)

24. Haussmann, E., et al.: Scalable active learning for object detection. In: IEEE IV
Symposium, pp. 1430–1435. IEEE (2020)

25. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for
classification and preference learning (2011)

26. Kirsch, A., Van Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch
acquisition for deep Bayesian active learning. NeurIPS 32, 7026–7037 (2019)

27. Klement, E., Mesiar, R., Pap, E.: Triangular Norms, vol. 8. Springer, Dordrecht
(2013). https://doi.org/10.1007/978-94-015-9540-7

28. Koller, D., et al.: Introduction to Statistical Relational Learning. MIT Press, Cam-
bridge (2007)

29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

30. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
ProbLog: neural probabilistic logic programming. In: Advances in Neural Informa-
tion Processing Systems, vol. 31 (2018)

31. Marcus, G.: Deep learning: a critical appraisal. arXiv:1801.00631 (2018)
32. Marra, G., Giannini, F., Diligenti, M., Gori, M.: Lyrics: a general interface layer

to integrate logic inference and deep learning. In: ECML/PKDD (2019)
33. McCallumzy, A.K., Nigamy, K.: Employing EM and pool-based active learning for

text classification. In: ICML, pp. 359–367. Citeseer (1998)
34. Melacci, S., et al.: Domain knowledge alleviates adversarial attacks in multi-label

classifiers. IEEE PAMI 44, 9944–9959 (2021). https://doi.org/10.1109/TPAMI.
2021.3137564

35. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011). http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf

36. Pop, R., Fulop, P.: Deep ensemble Bayesian active learning: addressing the mode
collapse issue in Monte Carlo dropout via ensembles. arXiv:1811.03897 (2018)

37. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR)
54(9), 1–40 (2021)

38. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32 (2018)

http://arxiv.org/abs/2205.00523
http://arxiv.org/abs/1805.10820
https://doi.org/10.1007/978-94-015-9540-7
http://arxiv.org/abs/1801.00631
https://doi.org/10.1109/TPAMI.2021.3137564
https://doi.org/10.1109/TPAMI.2021.3137564
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://arxiv.org/abs/1811.03897


54 G. Ciravegna et al.

39. Santoro, A., et al.: A simple neural network module for relational reasoning. In:
NeurIPS, vol. 30 (2017)

40. Schohn, G., Cohn, D.: Less is more: active learning with support vector machines.
In: ICML, October 2000

41. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set
approach. In: ICLR (2018)

42. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set
approach. arXiv preprint arXiv:1708.00489 (2017)

43. Settles, B.: Active learning literature survey (2009)
44. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5972–5981 (2019)

45. Solso, R., MacLin, M., MacLin, O.: Cognitive Psychology. Pearson Education, New
Zealand (2005)

46. Thulasidasan, S., Chennupati, G., Bilmes, J., Bhattacharya, T., Michalak, S.: On
mixup training: improved calibration and predictive uncertainty for deep neural
networks. In: NeurIPS, vol. 32 (2019)

47. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Technical report, CNS-TR-2011-001, CalTech (2011)

48. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: 2014
International Joint Conference on Neural Networks (IJCNN), pp. 112–119. IEEE
(2014)

49. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.: A semantic loss function for
deep learning with symbolic knowledge. In: International Conference on Machine
Learning, pp. 5502–5511. PMLR (2018)

50. Yoo, D., Kweon, I.: Learning loss for active learning. In: IEEE CVPR, pp. 93–102
(2019)

51. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construc-
tion of a large-scale image dataset using deep learning with humans in the loop.
arXiv:1506.03365 (2015)

52. Zhan, X., Liu, H., Li, Q., Chan, A.B.: A comparative survey: benchmarking for
pool-based active learning. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4679–4686. Inter-
national Joint Conferences on Artificial Intelligence Organization, August 2021.
https://doi.org/10.24963/ijcai.2021/634

53. Zhan, X., Wang, Q., Huang, K., Xiong, H., Dou, D., Chan, A.B.: A compara-
tive survey of deep active learning (2022). https://doi.org/10.48550/ARXIV.2203.
13450. https://arxiv.org/abs/2203.13450

54. Zhdanov, F.: Diverse mini-batch active learning. arXiv:1901.05954 (2019)
55. Zhu, X., Goldberg, A.: Introduction to Semi-supervised Learning. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, pp. 1–130
(2009). https://doi.org/10.1007/978-3-031-01548-9

http://arxiv.org/abs/1708.00489
http://arxiv.org/abs/1506.03365
https://doi.org/10.24963/ijcai.2021/634
https://doi.org/10.48550/ARXIV.2203.13450
https://doi.org/10.48550/ARXIV.2203.13450
https://arxiv.org/abs/2203.13450
http://arxiv.org/abs/1901.05954
https://doi.org/10.1007/978-3-031-01548-9


ActiveGLAE: A Benchmark for Deep
Active Learning with Transformers

Lukas Rauch1(B), Matthias Aßenmacher2,3, Denis Huseljic1, Moritz Wirth1,
Bernd Bischl2,3, and Bernhard Sick1
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Abstract. Deep active learning (DAL) seeks to reduce annotation costs
by enabling the model to actively query instance annotations from which
it expects to learn the most. Despite extensive research, there is cur-
rently no standardized evaluation protocol for transformer-based lan-
guage models in the field of DAL. Diverse experimental settings lead to
difficulties in comparing research and deriving recommendations for prac-
titioners. To tackle this challenge, we propose the ActiveGLAE bench-
mark, a comprehensive collection of data sets and evaluation guidelines
for assessing DAL. Our benchmark aims to facilitate and streamline the
evaluation process of novel DAL strategies. Additionally, we provide an
extensive overview of current practice in DAL with transformer-based
language models. We identify three key challenges - data set selection,
model training, and DAL settings - that pose difficulties in comparing
query strategies. We establish baseline results through an extensive set
of experiments as a reference point for evaluating future work. Based on
our findings, we provide guidelines for researchers and practitioners.

Keywords: Deep Active Learning · Transformer · NLP ·
Benchmarking

1 Introduction

Transformer-based pre-trained language models (PLMs) have exhibited state-
of-the-art (SOTA) performance in various natural language processing (NLP)
applications, including supervised fine-tuning [9] and few-shot learning [6,36].
The commonality of these deep neural networks (DNNs) is their ability of general
language understanding acquired through self-supervised pre-training [12,40,41].
While pre-training reduces the need for annotated data for a downstream task,
obtaining annotations (e.g., class labels) from humans is still time-intensive and
costly in practice [10,42]. Additionally, real-world applications require reliable
models that can quickly adapt to new data and learn efficiently with few anno-
tated instances [54]. Active Learning aims to minimize annotation cost by allow-
ing the model to query annotations for instances which it expects to yield the
highest performance gains [16,51].
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Fig. 1. DAL cycle with three essential challenges that influence the evaluation protocol.

However, in the context of deep learning, evaluating deep active learning
(DAL) is challenging due to several reasons [18,43]. First, to ensure the practical
applicability of query strategies, it is essential to have a wide range of diverse data
sets (i.e., tasks). Second, the iterative fine-tuning of PLMs in each cycle iteration
with multiple influential factors (i.e., model hyperparameters and DAL settings)
results in substantial runtime overhead. Third, in a realistic scenario, DAL poses
a one-time learning problem with no validation set for hyperparameter optimiza-
tion, requiring careful consideration during evaluation [20]. These challenges lead
to researchers simplifying their experimental design, compromising the compara-
bility of results and practical recommendations [18]. Thus, the benefits of apply-
ing DAL in a realistic scenario are still ambiguous [30]. For example, it remains
unclear whether employing DAL query strategies yields any benefits compared to
randomly querying instances. Despite current efforts to enhance comparability of
DAL research in the vision domain [3,18,22,26,30], a standardized evaluation pro-
tocol or a widely-accepted benchmark for DAL in the NLP domain with PLMs is
lacking.

To overcome these challenges, we propose the Active General Language
Adaption Evaluation (ActiveGLAE) benchmark. ActiveGLAE comprises a
wide range of NLP classification tasks, along with guidelines for a realistic and
comparative evaluation of DAL. We aim to encourage research to employ a more
comparable experimental design of DAL with PLMs, hopefully enabling the iden-
tification of best practices for real-world scenarios. Following our guidelines, we
provide an extensive experimental study, which yields baseline results for three
SOTA PLMs utilizing various popular DAL strategies. Our main contributions
can be summarized as follows:

1. We highlight current practice and limitations in existing research in DAL
with transformer-based PLMs through an extensive literature analysis reveal-
ing three critical challenges for a comparative and realistic evaluation. More
specifically, the evaluation of a DAL process is heavily influenced by the selec-
tion of data sets (C1), the model training (C2), and the DAL setting (C3).
Figure 1 illustrates these challenges along with their influential underlying
factors.
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2. We propose the ActiveGLAE benchmark comprising ten NLP classifica-
tion tasks that cover a diverse range of genres, sizes, class cardinalities, and
degrees of difficulty. Additionally, we provide guidelines to enable a standard-
ized evaluation protocol. To streamline the evaluation process in DAL, we
will contribute ActiveGLAE to Huggingface Datasets [24].

3. We conduct an extensive empirical study that provides baseline results for the
ActiveGLAE benchmark. These serve as a reference for assessing novel DAL
processes and establish a minimum level of performance query strategies must
exceed to be considered effective. Moreover, analyzing these baseline results
and additional ablations regarding the identified challenges allows us to derive
best practices for researchers and guidelines for practitioners.

4. We provide the code1 for all experiments to facilitate further research. The
implementations are based on Huggingface [58] to improve reusability. By pro-
viding each experiment’s queried instances, we offer insights into the under-
lying DAL process to ensure reproducibility. Additionally, all experimental
results are publicly available2 through Weights and Biases [4].

2 Problem Setting

We consider text classification problems where a D-dimensional instance is
mapped to a feature vector x ∈ X with the feature space X = R

D. An instance
x is linked to a ground truth class label y ∈ Y with Y = {1, ..., C} as the space
of C classes. We denote a model at cycle iteration t through its parameters
θt, equipped with a pre-trained encoder backbone and a sequence classifica-
tion head. The model fθt : X → R

C maps an instance x to a vector of class
probabilities p̂ = fθt(x) corresponding to a prediction of the categorical class
distribution. We investigate a pool-based DAL scenario with an unlabeled pool
data set U(t) ⊆ X and a labeled pool data set L(t) ⊆ X × Y. We initialize the
DAL process at t = 0 with a randomly sampled set of annotated instances.
At each cycle iteration t, the DAL query strategy aggregates the most-useful
instances in a batch B(t) ⊂ U(t) with the size b. We denote an annotated batch
as B∗(t) ∈ X × Y. We update the unlabeled pool U(t+1) = U(t) \ B(t) and the
labeled pool L(t+1) = L(t) ∪ B∗(t) with the annotated batch. At each cycle
iteration t, the model θt can be retrained from scratch (model cold-stat) or ini-
tialized with model parameters from the previous iteration (model warm-start).
This leads to an update of the model parameters θt+1. The DAL process ends
upon depletion of the budget B, representing the maximum number of queries.

1 Github repository.
2 Weights and Biases project.

https://github.com/dhuseljic/dal-toolbox/tree/main/experiments/aglae
https://wandb.ai/dal-nlp/active-glae
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3 Current Practice in Evaluating Deep Active Learning

The current trend towards data-centric methods [64] and the adaptive capabil-
ities of DNNs [54] has led to numerous studies on DAL with transformer-based
PLMs. However, comparing DAL results is a complex challenge [35], as indicated
by varying evaluation protocols in current work. This lack of standardization
makes it difficult to determine a given task’s most effective query strategy. We
identified three challenges that researchers need to address when designing a
DAL process (cf. Fig. 1). In the following, we analyze the current practice con-
cerning these challenges and briefly describe our suggested benchmark approach.
While we focus on the NLP domain, we also include insights from (CV) where
we observe a trend towards unified evaluation protocols [3,18,22,26,30,35].

Table 1. Data sets employed in current work with transformers in DAL.

3.1 (C1) Data Set Selection

Developing robust DAL processes that can be applied out-of-the-box (or at least
task-specifically) is critical since they cannot be tested beforehand, and models
only have one attempt to learn in a practical setting [20]. Additionally, a lack of
variation in the selection of data sets may lead to biased and non-generalizable
results. Thus, to ensure generalizable results, a DAL process needs to be evalu-
ated on data sets covering a diverse range of text genres, pool sizes, class car-
dinalities, task difficulties, and label distributions. At the same time, a diverse
data set selection across publications leads to difficulties in comparing results.
Current Practice. There is an abundance of benchmark classification data sets
in NLP leading to a disjoint selection between publications [44]. Table 1 provides
an overview of data sets employed in related work. While some specific data sets
(e.g., AGN, SST2, TREC6) are used more frequently, the research landscape
needs to be more cohesive. This lack of consensus reduces the comparability
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of results [2]. Current work reports diverse and contradictory findings across
data sets, stressing the importance of further investigating the benefits of apply-
ing query strategies compared to randomly selecting instances. Additionally, we
found that related studies often employ data sets covering similar tasks, training
data volumes, and task difficulties. We assume data sets are often bypassed due
to a large unlabeled pool, which can result in high query times.
Our Study. We propose ActiveGLAE, a selection of data sets as a benchmark
suite similar to (Super)GLUE [55,56]. We consider a wide variety of real-world
tasks, aiming at spurring the applicability of DAL. This diverse set of tasks
allows us to highlight task-specific challenges and derive evaluation guidelines.
We intend to improve the generalizability and comparability of DAL research.

3.2 (C2) Model Training

Conventional hyperparameter-tuning cannot be performed when simulating a
real-world setting in a DAL process for several reasons [20]: First, a validation
data set contradicts the purpose of DAL to reduce annotation effort (i.e., vali-
dation paradox [30]). Second, model hyperparameters (e.g., number of learning
steps and learning rate) can only be determined once at the beginning of the
cycle. Third, the iterative nature of DAL would necessitate hyperparameter opti-
mization at each cycle iteration, leading to runtime overhead. Overcoming these
challenges is crucial for successfully employing DAL in practice [35].
Current Practice. Table 4 in Appendix3 A depicts the adjustable model hyper-
parameters and the current practice in related work. In general, we identify three
validation settings: (1) assuming the availability of all or parts of the validation
data [33,49], (2) (dynamically) sample a validation set from the labeled pool [53],
or (3) omitting the validation set entirely [19,29]. All approaches with a valida-
tion set employ early stopping (or selecting the model with the best validation
results) and consider the number of epochs as an optimizable hyperparameter.
Ji et al. [18] report that while early stopping can speed up the training process,
it introduces randomness and decreases comparability. They recommend a fixed
number of epochs suitable for the model architecture and data set. Recent stud-
ies suggest that model training is more important than the choice of a query
strategy [19,31], as fine-tuning PLMs on small data sets can suffer from train-
ing instability [13,47,48]. A real-world setting without a validation set is similar
to few-shot learning, particularly at the beginning of a DAL process with a
small labeled pool. [47] and [48] omit the validation set entirely and deploy
fixed hyperparameters in a practical few-shot learning setting. [37] find out that
the presence of a validation set led to a significant overestimation of the few-
shot ability of language models. In parallel, we consider this a major problem of
deploying DAL in practice. Jukić and Šnajder [19] address this by introducing an
early stopping technique utilizing the representation smoothness of PLMs layers
from training. Training strategies usually follow the standard training procedure
from [9], employing a fixed number of training epochs (3 to 15), the AdamW

3 The appendix can be accessed at ArXiv.

https://arxiv.org/abs/2306.10087
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[28] optimizer with a learning rate between 2e−5 and 5e−5 and a learning rate
scheduler with warmup (5–10% of the steps). Researchers apply a fixed and
well-established training strategy to a particular model to focus on the results of
query strategies. However, the lack of established benchmarks in DAL and partly
incomplete hyperparameter specifications result in diverse training approaches
(cf. Table 4), that decrease comparability across publications.
Our Study. Our benchmark study adopts a similar approach to previous
work on few-shot learning [37,47,48]. We simulate a real-world DAL process
by entirely omitting the validation set without early stopping [30]. We employ
various fixed model hyperparameters (e.g., epochs and learning rates) that are
data set-agnostic with different PLMs as baselines to highlight their impact on
resulting model performance. Therefore, our study provides reference points for
further research by presenting results for various hyperparameter configurations.

3.3 (C3) Deep Active Learning Setting

Evaluating DAL requires determining a DAL setting which includes key factors
such as the choice of query strategy, query size, and budget. These factors are
often set as fixed without having established default values from comparable
benchmark studies or meaningful baselines serving as reference points. Query
strategies can be sorted into uncertainty, diversity, and hybrid sampling. Uncer-
tainty sampling identifies the most-uncertain instances in the hypothesis space,
while diversity sampling focuses on diversity in the feature space [63]. Hybrid
approaches combine uncertainty and diversity sampling.
Current Practice. In Appendix A, Table 5 presents an overview of DAL set-
tings and query strategies used in related work. Our benchmark study analyzes
factors that influence the resulting model performance of query strategies in a
DAL process. These factors include:

– Initialization and update: All prior studies use a model cold-start approach,
where the model parameters are initialized from scratch at each cycle itera-
tion (cf. Table 5). In contrast, a model warm-start initializes the model with
parameters from the previous iteration. While a model warm-start may lead
to faster convergence, it could likewise cause performance degradation due
to potential bias towards the initial labeled pool [1,17]. In contrast, Lang et
al. [22] and Ji et al. [18] find that a model warm-start stabilizes the learning
curve in CV. Uncertainty-based query strategies rely on the model’s predic-
tive uncertainty, which may require prior model training with task-specific
information [62,63]. We refer to this as a data warm-start. Alternatively, if
no initial labeled pool is available for model training, we refer to it as data
cold-start. While related work commonly employs a data warm-start with a
fixed initial pool size, Yuan et al. [63] and Yu et al. [62] aim to leverage the
pre-trained knowledge of a transformer-based PLMs focusing on data cold-
start in a DAL process.



Active General Language Adaption Evaluation 61

– Stopping criterion: To ensure comparability, current studies usually use a
fixed budget with a maximum limit of 2000 annotations as the stopping cri-
terion. Alternatively, the budget may be data set-specific (e.g., 15% of the
available unlabeled pool) [32,65]. Tran et al. [54] and Hacohen et al. [15] deter-
mine the budget based on the complexity of the learning task (e.g., with the
number of classes). Once the budget depletes, the DAL process stops. Recent
work in CV differentiates between budget sizes to simulate a diverse set of
real-world scenarios. Hacohen et al. report that uncertainty-based strategies
perform better with higher budgets. Note that [15] use the terms budget and
warm-start interchangeably and refer to a high-data regime when a sizeable
initial set is available (i.e., data warm-start) and vice versa. At the current
state, there are no detailed investigations concerning the budget in NLP with
transformer-based PLMs.

– Query size: The query size is crucial since it affects the number of cycle
iterations given a specific annotation budget. For example, a larger query
size leads to fewer model updates and may affect model performance and
runtime. While Lüth et al. [30] and Lang et al. [22] report better results with
smaller query sizes in the CV domain, D’Arcy and Downey [8] demonstrate
no difference between a query size of 12 and 25 with transformer-based PLMs.
Current work mostly uses a fixed query size of 100 annotations or less [10,62],
with some studies also applying a relative size, such as 2% of the unlabeled
pool [31,32].

– Pool subset : Since the size of the unlabeled pool significantly impacts query
time, researchers often avoid large data sets or introduce an unlabeled sub-
set from which they query annotations [49]. For instance, [31] subsamples
DBPedia [23] via stratified sampling once at the beginning of the DAL pro-
cess to maintain the initial label distribution. However, [18] suggest avoiding
sub-sampling as it can potentially alter the ranking of DAL query strategies.

Our Study. We present baseline results for low and high-budget settings along-
side two query sizes on ActiveGLAE. We concentrate on a fixed number of
initial instances (i.e., data warm-start) and use the term budget size indepen-
dent of the initial pool. We contend that the number of classes cannot easily
determine the task complexity since other factors like class imbalance or pool
size play a crucial role. Therefore, to ensure comparability across experiments
and draw conclusions on the influence of the data set complexity, we employ a
fixed DAL setting that is independent of the data set. We also explore the influ-
ence of model warm-start and model cold-start. While iteratively subsampling
at each cycle iteration may introduce randomness [18], it significantly reduces
experiment runtime. Thus, we examine the effect of employing a pool subset on
model performance across query strategies.

4 ActiveGLAE - Data Sets and Tasks

We aim at creating a benchmark collection of real-world tasks enabling a stan-
dardized and realistic evaluation of DAL strategies. Thus, we carefully select
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data sets (cf. Table 2) exhibiting different characteristics relevant to practical
applications. Our selection covers balanced as well as imbalanced data sets and
binary as well as multi-class settings. We choose sets of low (3 to 6 classes),
medium (14 classes), and high (77 classes) class cardinality. Since class imbal-
ance is a common practical problem, we consider naturally imbalanced data
sets, rather than artificially introducing imbalance. The data sets differ in size
(10k–650k examples) and encompass various classification tasks.

Table 2. Overview of ActiveGLAE data sets and tasks. When no test set is available
(MNLI, QNLI, SST2), we use the validation set.

Corpus |Train| |Test| Task #classes Balanced

AG’s News 120k 7600 news classification 4 ✓

Banking77 10k 3000 conversational language 77 ✓

DBPedia 560k 5000 ontology classification 14 ✓

FNC-1 40k 4998 stance detection 4 ✗

MNLI 390k 9815 textual entailment 3 ✓

QNLI 104k 5463 question answering 2 ✓

SST-2 67k 872 sentiment classification 2 ✓

TREC-6 5452 500 question classification 6 ✓

Wiki Talk 159k 64k toxic comment detection 2 ✗

Yelp-5 650k 50k sentiment classification 5 ✓

AG’s News [66] is a large multi-class news data set, with four target classes
and a pool of 120k training instances. Further, it is currently the most popular
one for DAL with transformers (cf. Table 1). Banking77 [7] focuses on conver-
sational language understanding and intent detection. We include it due to its
high class cardinality and small training pool, making it challenging for DAL.
DBPedia [23] is representative of medium class cardinality (14 classes). It poses
a rather easy multi-class problem indicated by a high passive baseline perfor-
mance, leaving room for DAL strategies to prove their effectiveness. FNC-1 [38]
was derived from the Emergent data set [11] for the 2017 Fake News Challenge.
Instances consist of news headlines and articles, with a stance detection task.
It contains long texts and has a strongly imbalanced class distribution (>70%
unrelated stance), posing a challenging task for DAL. MNLI [57], QNLI [56]
and SST-2 [52] are part of the GLUE benchmark. While the former two are
sentence-pair inference tasks for textual entailment (MNLI) and question answer-
ing (QNLI), the latter is a single-sentence sentiment classification task (SST-2).
Both question answering and sentiment classification represent important prac-
tical challenges, while entailment is a linguistically meaningful task. TREC-6
[25] presents a multi-class classification task requiring question language under-
standing. It is a valuable addition to ActiveGLAE due to its short average text

https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/banking77
https://huggingface.co/datasets/dbpedia_14
https://huggingface.co/datasets/nid989/FNC-1
https://huggingface.co/datasets/multi_nli
https://huggingface.co/datasets/glue/viewer/qnli/test
https://huggingface.co/datasets/sst2
https://huggingface.co/datasets/trec
https://huggingface.co/datasets/jigsaw_toxicity_pred
https://huggingface.co/datasets/yelp_review_full
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length (∼10 words) and the small training pool of 5.5k questions. Wikipedia
Talk [59] is a large-scale data set of Wikipedia discussion comments, poten-
tially containing toxic content. The binary classification task to detect toxicity
is imbalanced (only ∼10% toxic) and has a rather large training pool (∼159k
samples). Yelp-5 [66] was introduced for multi-class sentiment detection and
constitutes a valuable counterpart to the binary sentiment classification task
(SST-2).

5 Experimental Setup

Baselines. To obtain the baseline results, we follow our insights from Sect. 3.2
and simulate a real-world DAL scenario without a validation set. We employ
BERT [9], DistilBERT [46], and RoBERTa [27] as they are among the most
popular contemporary models. We resort to a model for sequence classification
from the Huggingface Transformers code base [58] to ensure reproducibility. We
adopt the model hyperparameters from [19]: a short training (st) with 5 epochs
[9] and a long training (lt) with 15 epochs [62]. We use AdamW [28] with
a learning rate of 5e−5 and a linear scheduler with a warmup of 5% [62]. To
establish baseline performance values, we implement popular query strategies
that cover uncertainty-based (entropy), diversity-based (coreset), and hybrid
approaches (badge, cal). We employ random sampling as the baseline query
strategy. The model’s [cls] token embedding corresponds to the embedding of
an instance x. For entropy, and cal, we aggregate a batch B(t) by greedily
selecting the most-useful instances until we reach the desired query size b. For
badge and coreset, b instances are selected in a batch B(t) (cf. Appendix
C for further details). We focus on a data warm-start and begin each DAL
experiment by initializing 100 randomly selected instances (fixed per seed) from
the unlabeled pool. We assess the impact of low and high budgets by setting
them to 500 and 1600, respectively (c.f. Table 5, A). For each cycle iteration t, we
select a query size b of 100 and randomly query a subset of 10,000 instances from
the entire unlabeled pool U(t). This enables us to reduce the query times and
substantially increase the number of experiments. To ensure a fair comparison,
we maintain fixed hyperparameters and DAL settings across all tasks. For a
comprehensive overview, please refer to Table 6 in Appendix B.
Ablations. In ablation studies, we only investigate BERT with st and lt to
reduce runtime. More specifically, we examine the impact on model performance
across query strategies by (1) using a model warm-start instead of a model cold-
start in each cycle iteration, (2) querying the entire unlabeled pool without a
subset, and (3) reducing the query size to 25 with the same budget resulting in
60 cycle iterations. Additionally, we adopt the learning strategy from [34], who
recommend a lower learning rate (2e−5), an increased number of epochs (20)
warmup ratio of 10% (lt+) to increase training stability on small data sets.
Evaluation. Following related work, we visualize the performance of DAL query
strategies with learning curves for all experiments [49,62]. For balanced data sets,
we use accuracy, while for imbalanced data sets (FNC-1, WikiTalk), we report
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the balanced accuracy [5] as metrics to report test performance after each cycle
iteration. To facilitate comparability, we additionally present a single metric for
each query strategy’s model performance on the test set - the final (balanced)
accuracy (FAC) and the area under the learning curve (AUC). The AUC score is
normalized to ensure comparability [49]. In addition to reporting the results for
each data set individually, we compute an aggregate performance score by taking
the average across the entire ActiveGLAE benchmark, with equal weighting for
each data set, following the methodology of GLUE. We repeat each experiment
with five random seeds.

6 Results

In this section, we present our main results as well as the ablations based on the
three challenges - data set selection (C1), model training (C2), and DAL settings
(C3) - we identified in the design of a DAL process in Sect. 3. For each challenge,
we provide a takeaway summarizing our key findings. Table 3 reports the AUC

Table 3. Baseline BERT AUC results on ActiveGLAE with st, lt, lt
+
, budget

sizes (500, 1600) and 5 repetitions (±sd). Best and second best results are highlighted

for each data set and the highest Average result. ↑ and ↓ demonstrate improvements
over random. Ranking indicates the placement of a query strategy.
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results of our extensive benchmark study on ActiveGLAE with BERT. Figure 2
shows a selection of learning curves with st, lt, and lt+ that supply the first
two challenges (C1, C2). Additionally, we depict selected learning curves for our
ablations to address the third challenge (C3) in Figs. 5, 4, and 3. For additional
details and the complete set of results, refer to Appendix D and E.
(C1) Data Sets. Our results suggest that the effectiveness of a DAL query
strategy crucially depends on the data set and the accompanying task, as the
results vary notably (cf. Table 9 in Appendix D). We see in Table 3 that model
performance across query strategies hinges on data set characteristics, including
task difficulty, task type, class cardinality, and class balance. For instance, we
observe in Fig. 2 that the performance differences are most noticeable in the
imbalanced task (Wikitalk), and the query strategies’ effectiveness vary across
tasks. In fact, we record the highest model performance gains of DAL imbalanced
data sets (Banks77 and Wikitalk) across all models. This parallels results shown
in related work [10,30,60].

(C1) Takeaway. The results of query strategies vary notably across data
sets in our benchmark suite. We observe the greatest gains in model perfor-
mance with DAL in class-imbalance scenarios. To evaluate the robustness
of query strategies and model training, using a diverse collection of data
sets with varying tasks, difficulties, and class imbalances is crucial.

Fig. 2. Selected learning curves for BERT reporting test accuracy with st (5 epochs),
lt (15 epochs) and lt

+
(20 epochs and a lower learning rate).
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(C2) Model Training. Our benchmark study emphasizes model training in
DAL [31] and highlights the importance of the number of epochs as a hyper-
parameter when no validation set is available. Employing a short training st
with only five epochs leads to consistently worse model performance regardless
of the query strategy or task. Especially when applying DAL with a low bud-
get, we observe substantial disparities between st and lt in the overall AUC
(Table 3) and FAC (Tables 7, 8, Appendix D) benchmark scores. This is promi-
nently shown on Banks77 in Table 3, where the differences are as high as 22%.
Although the differences diminish with a higher budget, extensive training time
still leads to better model performance across all query strategies. We report
similar results for DistilBERT and RoBERTa in Tables 9 and 11 in Appendix D.
Table 3 also illustrates that the ranking of query strategies is heavily influenced
by model training, except for badge, which consistently outperforms the other
strategies. Additionally, the ablation lt

+ with a lower learning rate (2e−5) and
more epochs (20) performs better than st but generally worse than lt. How-
ever, we see in Fig. 2 that lt+ further stabilizes the learning curves with a lower
learning rate and more epochs, which follows the findings of [34].

(C2) Takeaway. Increasing the number of epochs leads to improved model
performance regardless of the budget and query strategy. While the perfor-
mance gains with a lower budget are larger, higher budget sizes also profit
from longer training times (15–20 epochs). Model hyperparameters impact
the overall performance more than the query strategy. The rankings of query
strategies depend on the model hyperparameters, except for badge, which
consistently outperforms all other strategies.

(C3) DAL Setting. The ablations provide additional baseline results as refer-
ence points for future work. We further examine the results based on key factors
of a DAL setting that may influence model performance.

Fig. 3. Selected learning curves for BERT with lt to compare test accuracy between
the baseline with model cold-start (straight lines) and the ablation with model
warm-start (dotted lines).

– Model initialization and update. Surprisingly, the results in Table 17 in
Appendix E reveal that model warm-start improves overall model perfor-
mance compared to model-cold-start regardless of the query strategy. The
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Fig. 4. Learning curves for BERT with lt to compare test accuracy between the base-
line with a pool subset (straight lines) and the ablation with no subset (dotted lines).

Fig. 5. Learning curves for BERT with lt to compare test accuracy between the base-
line with an query size of 100 (straight lines) and the ablation with 25 (dotted lines).

difference is especially pronounced when using a low budget with st and for
more complicated tasks like Banks77 or FNC-1. Although less pronounced,
we also observe improvements for lt and in a high-budget setting. Interest-
ingly, the performance disparities between st and lt are drastically reduced
across query strategies when employing a model warm-start. This is further
illustrated in Fig. 3, where we can see that using st for model warm-start can
achieve even higher model performance than with lt in Banks77.

– Stopping criterion: We consider the budget an essential parameter govern-
ing the resulting model performance of a query strategy. In the low-budget
setting, only badge and coreset can outperform random while cal per-
forms worse and entropy has only a minimal improvement (cf. Table 3).
This is in line with the findings of [15], who report random outperforming
most DAL query strategies in low-budget settings. With a higher budget,
the differences become more prevalent, and all query strategies outperform
random. Interestingly, when considering the FAC in Table 8 in Appendix D,
almost all query strategies outperform random in the lower budget. While
we report similar results for DistilBERT (cf. Table 9, D), the overall model
performance for RoBERTa diminishes with a query strategy in a high-budget
setting (cf. Table 11, D). Additionally, we see in Table 3 that the ranking of
query strategies changes with different budgets, except for badge.

– Query strategy: While no query strategy clearly outperforms all other strate-
gies by a large margin, badge a exhibits consistently better performance
across a variety of tasks. The AUC and the FAC are often higher for the



68 L. Rauch et al.

low and the high budgets. Figure 9 in Appendix D further highlights this by
showing nearly constant positive improvements upon random performance
on our ActiveGLAE benchmark. These results emphasize the variability
in the results across tasks and hyperparameter configurations since badge
not always outperforms other query strategies. Additionally, there is no clear
second place.

– Pool subset: Interestingly, we can see no meaningful drawback in the effective-
ness of a query strategy when employing a dynamic pool subset (cf. Table 15,
E). Note that the pool is redrawn in each cycle iteration rather than fixed
once, increasing the diversity of the queried pool. By reducing the pool size,
the query time per cycle iteration is heavily reduced, which allows an extensive
set of experiments and reduces the computational time accordingly. Without
a subset, our baseline results exhibit an approximately 10-fold increase in
average query time. Notably, uncertainty-based sampling (entropy) even
seems to improve by using the more diverse pool subsets, which can be seen
in Fig. 4.

– Query size: Comparing the ablation results with the baseline results, we notice
a minimal impact on model performance across query strategies (cf. Table 13,
E). These findings align with the results of [3] from CV but differ from those
of [30] in the CV domain. However, the investigated query sizes in CV are
much larger (>1000), while we investigate in a smaller setting between 25 and
100. Additionally, in Fig. 5, we observe that more re-trainings (60 instead of
25) also increase the noise in the learning curve.

(C3) Takeaway. Despite modest performance differences, badge consis-
tently excels across tasks. The budget size influences query strategy efficacy,
with badge and coreset surpassing random sampling at lower budgets,
while all strategies outperform random only with a high budget. Model
warm-start improves performance while mitigating the impact of model
hyperparameters. Dynamically sampling a pool subset improves query time
without compromising performance. Minor adjustments to the query size
do not have a notable influence on the performance.

7 Conclusion

In this paper, we introduced the ActiveGLAE benchmark comprising various
NLP classification tasks and a robust evaluation protocol to foster comparabil-
ity of DAL with PLMs. By analyzing the scientific environment, we identified
three crucial challenges in DAL evaluation protocols: data set selection, model
training, and DAL setting. Our extensive set of experiments provides baseline
results for future work and practical guidelines. Our findings highlighted the task-
dependent effectiveness of query strategies, emphasizing to ensure their robust-
ness to diverse NLP classification tasks to enable a real-world deployment. We
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confirmed the importance of model training in DAL and recommend an extended
training period to improve overall model performance across query strategies.
Additionally, we observed that model warm-start improves and stabilizes per-
formance, and employing a pool subset reduces query time with minimal impact
on model performance. We reported badge to perform consistently better than
other query strategies on ActiveGLAE.
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given number of data sets, which we considered representative, controlling for as much

exogenous influence as possible. This should be seen as a blueprint for the experimental

setup rather than a definite statement about the SOTA.

Ethical Considerations. To the best of our knowledge, no ethical considerations are

implied by our work. There are only two aspects that are affected in a broader sense.

First, the environmental impact of the computationally expensive experiments that

come with evaluating deep active learning (DAL) strategies. Given the ever-increasing

model sizes and the already controversial debate around this topic, this is a crucial

aspect to consider. The second point to be addressed is substituting human labor for

labeling data sets by DAL. Especially when it comes to labeling toxic or explicit con-

tent, suitable DAL strategies might be one way to limit human exposure to such data.
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Abstract. Node classification is one of the core tasks on attributed
graphs, but successful graph learning solutions require sufficiently labeled
data. To keep annotation costs low, active graph learning focuses on select-
ing the most qualitative subset of nodes that maximizes label efficiency.
However, deciding which heuristic is best suited for an unlabeled graph
to increase label efficiency is a persistent challenge. Existing solutions
either neglect aligning the learned model and the sampling method or focus
only on limited selection aspects. They are thus sometimes worse or only
equally good as random sampling. In this work, we introduce a novel active
graph learning approach called DiffusAL, showing significant robustness
in diverse settings. Toward better transferability between different graph
structures, we combine three independent scoring functions to identify the
most informative node samples for labeling in a parameter-free way: i)
ModelUncertainty, ii)DiversityComponent, and iii)Node Importance com-
puted via graph diffusion heuristics. Most of our calculations for acqui-
sition and training can be pre-processed, making DiffusAL more efficient
compared to approaches combining diverse selection criteria and similarly
fast as simpler heuristics. Our experiments on various benchmark datasets
show that, unlike previous methods, our approach significantly outper-
forms random selection in 100% of all datasets and labeling budgets tested.

Keywords: active learning · node classification · graph neural
networks

1 Introduction

Graph representation learning [17] and, especially, Graph Neural Networks
(GNNs) [2,5,16] have been adopted as a primary approach for solving machine
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learning tasks on graph-structured data, including node classification [18], graph
classification [21], and link prediction [41]. Applications range from quantum
chemistry [16] over traffic forecasting [44] to cyber-security [6].

However, supervised GNN models require sufficient training labels and usu-
ally assume that such labels are freely available. But, in reality, while unlabeled
data is usually abundant, it is laborious and costly to provide annotations. Graph
active learning has emerged as a promising direction to reduce labeling costs by
carefully deciding which data should be labeled to increase label efficiency. Under
a limited budget, e.g., a fixed number of data samples to be labeled or time spent
labeling by a domain expert, active learning aims to annotate an optimized set
of training data iteratively. Hence, a key aspect of graph active learning is iden-
tifying the most informative instances in the abundance of unlabeled data for
labeling. In particular, the goal is to be consistently more label-efficient than ran-
dom labeling. Since random sampling is arguably the fastest and least complex
method, active learning methods that are not significantly better than random
sampling are not worthwhile.

However, since graphs can vary widely, it is very difficult to design an
approach significantly better than random sampling across different labeling
budgets and graph structures. Existing graph-active learning approaches reach
their limits for various reasons: Some approaches focus only on limited selection
aspects [23,28] and outperform random selection only on certain graphs. Oth-
ers focus on one-shot selection without iterative re-training and active selection
and can therefore not exploit model-related uncertainty scores [37,43]. Other
methods try to include various criteria in the selection but are sensitive to user-
defined hyper-parameters or are not deliberately aligned with the used model
architecture [8,15]. Moreover, many methods use a GCN [18] for training and
acquisition. However, GCNs learn latent node features and perform neighbor-
hood aggregation in a coupled fashion, which can negatively influence the time
needed for the active learning procedure. In contrast, Graph diffusion is a promis-
ing direction tackling limitations such as restriction to k -hop neighborhoods [7]
or over-smoothing, where neighborhood aggregation and learning are decoupled.

In this work, we use diffusion-based heuristics to combine graph learning with
active learning. In particular, we propose DiffusAL, a novel graph active learning
method that leverages graph diffusion for highly accurate node classification
and efficiently re-uses the computed diffusion matrix and diffused node feature
vectors in the learning procedure.

We introduce a new scoring function for identifying a node’s utility which
consists of three factors: i) Model Uncertainty, ii) Diversity Component, and iii)
Node Importance. DiffusAL combines these scores in a parameter-free scoring
function that naturally adapts to consecutively learning iterations.

Specifically, for i) Model Uncertainty, we exploit a state-of-the-art scoring
that has shown an improving impact on the selection of nodes [32]. Next, the
ii) Diversity Component refers to the variability of node features and, there-
fore, their respective labels. For that, we apply a clustering method on the pre-
computed diffusion matrix where diversity is reached by picking samples from
underrepresented communities. Finally, for computing iii) Node Importance, we
exploit the information given by diffusion matrix based on the Personalized
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Fig. 1. DiffusAL pipeline consisting of the original input graph and corresponding
node features (grey box), pre-computed static model-independent scores, such as the
propagated feature matrix and derived node importance (green box), a dynamic, model-
independent score based on the composition of the labeled pool (Diversity/Balance), as
well as a dynamic, model-dependent informativeness score (Uncertainty). These scores
are combined into a final node rating (white box) to select the most useful instances
for annotation. (Color figure online)

PageRank (PPR), which provides information about the relative importance of
nodes in a graph w.r.t. a particular seed node. The high-level key concepts of
DiffusAL are illustrated in Fig. 1.

We evaluate DiffusAL on five real-world benchmark datasets, demonstrating
its superiority over a variety of competitors. Notably, DiffusAL is the only com-
petitor to outperform random selection with statistical significance in 100% of
the evaluated datasets and labeling budgets. In a series of ablation studies, we
show that DiffusAL works consistently well on all benchmark datasets, analyze
which components contribute to its performance, and investigate its efficiency.

In summary, our contributions are as follows:

– Enhancing the selection of influential nodes by using diffusion-based node
importance and utilizing pre-computed clustering on diffused features to pre-
vent oversampling a particular region.

– Combining three complementary node scoring components in a parameter-
free way.

– Achieving high efficiency by propagating statically pre-computed features
stored in a diffusion matrix.

2 Related Work

Early works on graph active learning [3,24] exploit the graph structure for
selecting nodes for querying without graph representation learning. More recent
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approaches [8,15,23,28,38] use GCNs to exploit the graph structure as well as
learned features. FeatProp [38] leverages node feature propagation followed by
K-Medoids clustering for the selection of instances. By defining the pairwise node
distances between the corresponding propagated node features, the model selects
nodes being closest to the cluster representatives yielding a diverse set over the
input space. However, the diversity scoring function in our model puts more
weight on underrepresented clusters yielding a more balanced view of the avail-
able data space and, therefore, is more suitable for imbalanced data. In [43],
the authors proposed GRAIN, a model inspecting social influence maximiza-
tion for data selection. Their objective is a diversified influence maximization
by exploiting novel influence and diversity functions. In contrast to their work,
we focus on an iterative active learning setting [10] since it directly enables
exploiting the uncertainty scores entangled to a model which is known to be
valuable for query selection. The most related work to our approach is presented
in [8] where the authors propose Active Graph Embedding (AGE) using as selec-
tion heuristic a weighted sum of information entropy, information density, and
graph centrality defined on direct neighborhoods. For the latter, they propose
to use PageRank centrality. The time-sensitive coefficients of the weighted sum
are chosen from a beta distribution using the number of training iterations as
input. We overcome these limitations related the restriction on direct neighbor-
hoods aggregations used in standard GNNs [2,5,16] by leveraging continuous
relationships via graph diffusion [7,20]. In [15], ANRMAB is proposed. It uses
a multi-armed bandit mechanism for adaptive decision-making by assigning dif-
ferent weights to different criteria when constructing the score to select the most
informative nodes for labeling. The model LSCALE [23] exploits clustering-
based (K-Medoids) active learning on a designed latent space leveraging two
properties: low label requirements and informative distances. For the latter, the
authors integrate Deep Graph Infomax [36] as an unsupervised model. Therefore,
in contrast to our approach, the model utilizes a purely distance-based selection
heuristic. The method GEEM [29] maximizes the expected error reduction to
select informative nodes to label.

To the best of our knowledge, we are the first to leverage the power of
diffusion-based heuristics for the computation of node importance, being an inte-
gral part of our scoring function, combining three complementary components
to compute the nodes yielding the highest utility scores. Moreover, our novel
scoring function uncouples from any parameter presets, being a critical choice
without any a priori knowledge about the input data.

3 DiffusAL

3.1 Preliminaries

Notation. We consider the problem of active learning for node classification. We
are given a graph G = (V,E) represented by an adjacency matrix A ∈ {0, 1}n×n

along with a node feature matrix X ∈ R
n×d. Each node v ∈ V belongs to

exactly one class cv ∈ {1, . . . , C}, where C is the number of classes present
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in the dataset. A budget constraint B denotes the maximum number of nodes
for which the active learning algorithm may request the correct labels from the
oracle. The main goal is to select a subset of nodes S ⊂ V such that |S| = B and
the accuracy of a classification model trained on these nodes is maximized. In
a batch setting, b denotes the number of nodes selected within each acquisition
round.

Recap: Feature Diffusion. In contrast to conventional GNN architectures
[18,35,39] that learn latent node features and perform neighborhood aggrega-
tion in a coupled fashion, graph diffusion effectively decouples the two steps
to address certain shortcomings of conventional GNN architectures, includ-
ing the restriction to k -hop neighborhoods [7] and issues related to over-
smoothing[14,22,26,40]. The general effectiveness of diffusion, when paired with
conventional GNN architectures, was shown in [20]. In general, a parametric
diffusion matrix can be defined as

P =
∞∑

k=0

θkT k, (1)

where T is a transition matrix and θ are weighting parameters. A popular choice
is Personalized PageRank (PPR) [4,7,11,12,19], where T = AD−1 is the ran-
dom walk matrix, D is the diagonal degree matrix, and θk = α(1 − α)k. Intu-
itively, Pij corresponds to the probability that a random walk starting at node
i will stop at node j and can be interpreted as the importance of node j for
node i. The restart probability α ∈ [0, 1] controls the effective size of a node’s
PPR-neighborhood. An approximation of the PPR matrix can be pre-computed
in time O(n) using push-based algorithms [7]. This approximation requires a
second hyper-parameter ε > 0 that thresholds small entries and, thus, has a
sparsification and noise reduction effect. Once computed, the PPR matrix can
replace the adjacency matrix used by conventional message-passing networks for
neighborhood aggregation [7,19].

3.2 Model Architecture

For DiffusAL, we propagate the original node features such that the propagated
node features don’t depend on any learned transformations and can be pre-
computed as well. We propose a query-by-committee (QBC) approach [33], where
the propagated node features are connected to an ensemble of MLP classifiers to
robustify uncertainty estimation during the sample selection process compared
to a commonly used single MLP. Additionally, features are diffused over multiple
scales by varying the hyper-parameter α controlling the effective neighborhood
size over which features are aggregated. In particular, the model predictions are
given as

Y = predict

⎛

⎝
∑

j∈{1,...,M}
transformj

⎛

⎝
∑

i∈{1,...,K}
P (αi)X

⎞

⎠

⎞

⎠ , (2)
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where K denotes the number of scales, and M denotes the number of MLPs in
the classification ensemble. The pre-computed diffused features are aggregated
over multiple scales using the sum function and fed to the hidden layer of each
MLP. The learned representations are then aggregated using the sum function
and passed to the shared prediction layer. All ensemble members share the same
architecture and only differ in the random initialization of their weights and
biases. The QBC can be trained very efficiently with gradient descent, and, in
particular, the expensive diffusion step needs to be performed only once as a
pre-processing step.

3.3 Node Ranking and Selection

In addition to facilitating highly effective and efficient prediction, the previously
computed diffusion matrix P =

∑
i∈{1,...,K} P (αi) and diffused features PX are

reused to calculate expressive ranking scores for active node selection.

Model Uncertainty. For measuring model uncertainty, we utilize the QBC
defined above. In particular, we compute the Shannon entropy over the softmax-
ed output distribution to determine the uncertainty score for node i:

sunc(i) = −
∑

j∈{1,...,C}
yij log yij . (3)

The scores are L1-normalized over all unlabeled nodes to [0, 1], so all scoring
functions share the same scale and can be sensibly combined.

While this score is inspired by the classical query-by-committee [33] approach,
it differs in the sense that it doesn’t average the softmax outputs of the individual
committee members but rather considers the softmax output of a single shared
prediction layer applied to aggregated latent representations. Thereby, differing
predictions become more distinct in the softmax output.

Diversity Component. For the diversity component, we perform k-Means
clustering on the diffused features with k = b and assign each node a pseudo-
label based on the clustering result. Note that we pre-compute these cluster
assignments such that no re-computations are necessary at query time, in con-
trast to other approaches (e.g., based on GCNs), where updated node features
would change the clustering.

The cluster-based pseudo labels are used to ensure decent coverage of the
feature space. At each iteration, each node i receives a diversity score

sdiv(i) = 1 − |ctrain|
|Vtrain| , (4)

where c ∈ C denotes the cluster node i was assigned to, |ctrain| denotes the
number of nodes in the currently labeled training set belonging to cluster c, and
|Vtrain| is the number of currently labeled training nodes. In short, each node in
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the unlabeled pool is weighted by the relative size of its cluster in the training set,
such that nodes from currently underrepresented clusters receive a higher score.
In contrast to only focusing on avoiding redundancy in the current batch [1],
our diversity score can also be interpreted as a balancing score ensuring that no
region is over-sampled within the labeled pool.

Some existing works on graph active learning [8,15] ignore the limitations
of a randomly initialized labeled pool and ensure class balance. However, this
simplification is rather unrealistic in a real-world active learning setting. To
overcome this limitation, we again exploit the k-Means clustering used for the
diversity score and select nodes closest to centroids for the initial pool, inspired
by clustering-based sampling approaches [23,37] and existing work on initial pool
selection [9].

Node Importance. Graph diffusion allows for a natural way to quantify node
importance. Since the weights Pij used for neighborhood aggregation can be
interpreted as importance scores, summing up the importance of a node i for all
other nodes j yields a measure of the general importance of node i, measuring
its total influence on the predictions for other nodes. Since the columns of S are
stochastic, this procedure yields consistently scaled overall importance scores.
In particular, the importance score of node i is given by the row-wise sum

simp(i) =
∑

j∈V

Pij . (5)

Since the importance scores for all nodes can be computed directly from the
PPR matrix, they can be pre-computed before the active learning cycle starts.
Our node importance score is a proxy for how much influence a node has on
other nodes, where nodes with higher scores are assumed to carry more valu-
able information about many other nodes as well. Node importance could be
interpreted as a novel representativeness measure, which has been quantified
via density- or center-based selection within previous (graph) active learning
approaches [8,15,42]. However, we do not need to recompute a clustering on
learned representations after each selected sample, nor do we require good repre-
sentations since we can extract the information directly from the graph topology.
Further, our importance score of a node directly reflects the influence of that
node on the model’s predictions, since the weights from which we compute the
scores are directly used for neighborhood aggregation. This is not the case for
alternative existing measures.

Score Combination and Node Selection. In summary, the uncertainty score
assigns higher weights to nodes about which the committee is most uncertain,
the diversity score assigns higher weights to nodes belonging to underrepresented
clusters, and the node importance score assigns higher weights to nodes with a
higher influence on the predictions for other nodes. The individual scores for a
node are combined in a multiplicative fashion to determine the node’s utility:

s(i) = sunc(i) · sdiv(i) · simp(i). (6)



82 S. Gilhuber et al.

(a) Sum aggregation: Isolines are
straight due to fixed weighting.

(b) Multiplicative aggregation: Iso-
lines are curved, favoring similar values
over diverging ones.

Fig. 2. Score aggregation: for two arbitrary scores on the x and y axes (e.g. uncertainty
and representativeness), the corresponding aggregated score is depicted as an isoline,
i.e., each point on the line corresponds to the same final value.

As illustrated in Fig. 2, the intuition behind the multiplicative combination is to
slightly favor nodes displaying a well-rounded distribution of scores over those
with a strong imbalance when the sum of the scores is identical while still allowing
extraordinarily important or uncertain nodes to be selected. Existing works use
slightly different variations of time-sensitive weighted sums, thereby gradually
shifting the focus from representativeness to uncertainty [8,42]. A disadvantage
of time-sensitive weighting is that the performance of the selection algorithm
depends on the choice of good hyper-parameters, which is difficult in a real-world
active learning setting. In contrast, our multiplicative approach is parameter-
free and naturally time-sensitive. In the early stages of training, the classifiers
essentially guess predictions more or less uniformly, leading to roughly similar
uncertainty scores for most nodes. Consequently, the uncertainty score is close
to a constant factor applied equally to all nodes, thus naturally making the
model-free scores the deciding ones in the final score. However, uncertainty scores
become increasingly important once the classifiers become more confident in their
predictions. The combined utility score is determined for each unlabeled node in
each active learning cycle. Afterward, the unlabeled nodes are ranked according
to their utility, and the nodes with the highest utility scores are labeled.

4 Experiments

To demonstrate the effectiveness and efficiency of DiffusAL, we conduct a series
of experiments. In particular, we investigate three research questions:

R1 - How does DiffusAL perform compared to state-of-the-art methods?
R2 - How does each of DiffusAL’s components contribute?
R3 - How is the training and acquisition efficiency?

4.1 Experimental Setup

Datasets. We evaluate DiffusAL on several well-established benchmark datasets
for node classification, namely the citation networks Citeseer [30], Cora [30] and
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Table 1. Dataset statistics (only considering the largest connected component).

Dataset #Nodes #Edges #Features #Classes

Citeseer 2120 3679 3703 6

Cora 2485 5069 1433 5

Pubmed 19717 44324 500 3

Co-author CS 18333 81894 6805 15

Co-author Physics 34493 247962 8415 5

Pubmed [25], as well as the co-author networks Computer Science (CS) [34] and
Physics [34], summarized in Table 1. For each dataset, only the largest connected
component is used, and features are L1-normalized.

Implementation Details. All experiments were implemented using PyTorch
[27] and PyTorch Geometric [13] and run on a single Nvidia Quadro RTX 8000
GPU. For more details, we refer to our publicly available codebase1.

Competitors. We compare DiffusAL with random sampling, entropy sam-
pling [32], and coreset [31] as graph-independent uncertainty-aware and
diversity-aware active learning strategies, respectively. Furthermore, we include
degree sampling as a graph-based representativeness-based baseline, selecting the
highest degree nodes, as well as the state-of-the-art graph-specific active learning
methods AGE [8], FeatProp [37], LSCALE [23] and GRAIN [43].

As proposed in [8,23,37,43], all baselines use GCNs as classifiers, except
LSCALE, which uses the proposed distance-based classifier. Our proposed
method DiffusAL uses the introduced QBC as a classifier, and we provide com-
prehensive experiments showing the influence of the prediction model.

Hyperparameters. We use the same hyper-parameters having a hidden layer
size of 16, a dropout rate of 0.5, a learning rate of 0.01, and L2-regularization
of 5 × 10−4 as proposed in [37]. For DiffusAL, we select α and ε as suggested in
[7]. We follow a batch selection and retrain from scratch after each acquisition
round. However, to ensure more diverse uncertainties (and because the other two
scores are static), we follow the setting of [8] and also incrementally train the
model for one epoch between instance selection within one acquisition round.
The evaluation in Sect. 4.4 shows that this does not impair our efficiency. To
provide a meaningful evaluation without the effects of an under-trained model or
randomness factors, we report test accuracy for all approaches using a validation
set of size 500 and early stopping. However, the validation set is only part of
the evaluation, not the procedure itself. We set the size of the initial pool to 2C
(cf. 3.1) and report results up to a budget of 20C with step sizes also twice the
number of classes. To simulate a fairly realistic active learning scenario, the initial
pool is sampled randomly without guaranteeing class balance for the baseline
approaches without a specific initialization method. All experiments report an
average of ten random seeds.

1 https://github.com/lmu-dbs/diffusal.

https://github.com/lmu-dbs/diffusal
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Fig. 3. Active learning curves with the number of labeled nodes on the x-axis and
average accuracy (over 10 random seeds) on the y-axis.

4.2 R1 - Performance Comparison

Figure 3 depicts the active learning curves for all budgets and datasets. DiffusAL
(blue) is among the best-performing methods on all datasets. Especially on Cora
and Coauthor-CS, we reach the highest mean accuracy for all labeling budgets
and are the only competitor to reach a final accuracy of 83.6% and 92.4%,
respectively. On Pubmed, GRAIN is similarly strong for the first two iterations.
However, afterward, DiffusAL outperforms all methods for the remaining bud-
gets and reaches a final average accuracy of 81.4%. In comparison, LSCALE, the
second-best performing method with respect to the final budget, only reaches
79.9%.

On Citeseer and Physics2, GRAIN and LSCALE are similarly strong as Dif-
fusAL. For both datasets, the learning curves converge to similar accuracies
above a certain labeling budget for some methods such that a clear winner can
no longer be pronounced. Therefore, Fig. 4 provides a comprehensive dueling
matrix indicating how often each strategy has won and lost against the other
strategy in a similar fashion as was proposed in [1]. We apply a two-sided t-test
with a p-value of 0.05 to the classification accuracies over 10 random seeds to
count whether one method outperformed another with statistical significance.

2 On Physics, Degree underperformed considerably and is therefore omitted for better
presentation.



DiffusAL: Diffusion-based Graph Active Learning 85

Fig. 4. Pairwise dueling matrix. Cell ij indicates how
often competitor i won against competitor j with
statistical significance over all datasets and label-
ing budgets (in %). The bottom-most row and right-
most column denote each method’s average losses
and wins, respectively (in %).

In total, we evaluated
50 experimental settings for
each strategy (5 different
datasets, 10 different label-
ing budgets from 2C to 20C).
The values in a column and
row of a method denote the
percentage of losses and wins
against another method, respec-
tively. The bottom row indi-
cates the average losses of
each strategy over all exper-
iments, and the right-most
column indicates the average
wins of a strategy over all
experiments. The losses and
wins in the cells cij and cji

do not necessarily add up to
100%. The margin between
the wins in cell ij and the
losses in cell ji indicates how often the strategy i has performed equally well as
competitor j. Both numbers, the average losses and the average wins, are par-
ticularly interesting when evaluating the success of an active learning method.

In summary, the dueling matrix reveals the following insights:

– DiffusAL has the fewest losses (0.2%, see first column) and the most
wins (71%, see first row).

– DiffusAL wins over random sampling most often (100%).
– Concerning wins over random sampling, GRAIN is the second-best method

(90%). However, DiffusAL statistically never loses against GRAIN.
– The only strategy that can outperform DiffusAL is LSCALE. However, we

beat LSCALE in 62% of experiments and lost only 2% of experiments.

4.3 R2 - Analysis of Contributing Factors

The selected datasets vary widely in terms of the number of nodes, edges, fea-
tures, classes, and class distribution, making it difficult to develop an approach
that can perform well across the spectrum. In the following, we analyze which
components contribute most to DiffusAL’s success and why it is so strong over
a broad range of datasets. Table 2 shows the performance of DiffusAL (bottom
row) and DiffusAL when switching off individual parts of the acquisition func-
tion, i.e., the diversity component (D), the uncertainty score (U) and the impor-
tance score (I) and exchanging the model architecture (middle rows) for 2C, 6C,
and 12C labeling budgets on all datasets where C is the number of classes. Red,
bold numbers indicate the smallest accuracy, indicating the largest influence of a
switched-off component, and blue, bold numbers indicate the highest accuracy.
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We exchange the classifier with a single network variant (MLP) and with a GCN
taking the raw features as input instead of diffused features (GCN). Furthermore,
we report results when using an additive score instead of a multiplicative score.

Table 2. Comparison of DiffusAL with ablated variants. Blue, bold num-
bers indicate the highest, i.e. best, accuracy. Red, bold numbers indicate the
lowest, i.e. worst, accuracy and hence the component with largest influence.

Cora Citeseer Pubmed CS Physics

D U I 2C 6C 12C 2C 6C 12C 2C 6C 12C 2C 6C 12C 2C 6C 12C

� 45.5 77.8 80.6 43.3 63.8 69.7 56.3 68.0 69.8 71.9 81.7 82.2 71.9 89.8 93.8

� 45.5 76.1 80.1 43.3 65.5 70.0 56.3 70.6 75.4 71.9 83.3 90.8 71.9 89.6 93.1

� � 45.5 78.5 81.7 43.3 69.8 71.3 56.3 75.3 80.0 71.9 89.3 91.4 71.9 92.4 93.9

� - 74.5 76.0 - 67.6 71.1 - 64.6 76.5 - 89.4 90.4 - 86.4 87.1

� � - 76.4 80.5 - 67.7 71.0 - 77.2 79.9 - 87.5 87.3 - 91.5 92.4

� � - 78.6 81.9 - 69.1 71.0 - 74.9 77.1 - 90.5 91.6 - 88.3 90.9

Additive - 78.8 81.3 - 70.8 71.3 - 79.1 80.2 - 91.0 92.1 - 91.7 92.7

MLP 62.0 78.8 81.8 52.7 70.6 71.8 64.1 78.8 79.9 87.8 90.4 91.2 80.4 91.4 93.6

GCN 61.8 77.5 80.7 49.8 69.3 71.3 64.5 76.5 78.5 83.3 89.6 91.2 82.7 91.6 93.1

DiffusAL 68.0 79.9 82.3 58.2 69.9 71.8 65.9 80.0 81.4 88.5 90.8 91.8 82.3 92.6 94.1

The importance, uncertainty, and additive scoring have no influence on the
initial pool selection, so we leave out numbers there. Our QBC robustifies the
accuracy, especially in the first iteration, compared to the other two variants
(MLP, GCN). The performance difference between the models gets smaller with
increasing label information. In particular, when label information is sparse,
the committee stabilizes the prediction. However, the diversity component has
the largest impact on the initial set for all datasets. When switching off diversity
(first three rows), the accuracy drops between 9.6% (Pubmed) and 22.5% (Cora).
Other approaches, such as FeatProp or LSCALE, also use clustering in the first
iteration. However, our sampling directly operates on the diffused features, which
subsequently directly influence the training and thus results in a very strong
initial performance.

In general, switching off two scores yields worse results than only switching
off one score, which indicates that the other two scores stabilize the results. But
there is not one most important score over all datasets, supporting our claim that
a robust selection benefits from diverse criteria. For instance, the accuracy drops
the most when switching off uncertainty and diversity on Citeseer (by 2.1%)
and especially on Coauthor-CS (by 9.6%). However, the performance on Cora
and Physics primarily needs uncertainty and importance. In contrast, Pubmed
benefits most from diversity and importance. Interestingly, some of our findings
might give an indication of the performance of other methods. For instance, we
found that importance, i.e., representativeness, is not beneficial on Coauthor-
CS. LSCALE, which mainly focuses on representativeness sampling, yields the
worst performance on this dataset. On Pubmed, however, uncertainty seems
not to work well. Entropy and AGE both include uncertainty sampling and
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Fig. 5. Average time in seconds (x-axis) required for one active learning round com-
pared to the average final accuracy (y-axis) for all methods (color). (Color figure online)

Table 3. Average time in seconds required for acquisition (acq), training (train), and
in total (

∑
) within one active learning iteration. Bold and underlined numbers indicate

the fastest and second fastest methods, respectively. In total, DiffusAL is the fastest
method on Physics and Pubmed, and the second fastest method on Cora and Citeseer.

CS Citeseer Cora Physics Pubmed

acq train
∑

acq train
∑

acq train
∑

acq train
∑

acq train
∑

AGE 41.271 1.849 43.120 1.177 0.665 1.842 1.409 0.544 1.953 4.506 3.366 7.873 0.952 0.679 1.631

Coreset 5.191 1.797 6.988 0.344 0.615 0.960 0.537 0.616 1.154 0.572 3.258 3.830 0.138 0.675 0.813

Entropy 0.005 1.831 1.836 0.002 0.605 0.607 0.002 0.665 0.667 0.011 3.358 3.369 0.002 0.674 0.676

LSCALE 2.649 0.317 2.966 0.019 0.249 0.269 0.042 0.250 0.292 12.722 0.258 12.980 4.121 0.247 4.368

DiffusAL 2.567 1.282 3.849 0.183 0.356 0.539 0.268 0.339 0.608 0.357 2.863 3.220 0.043 0.361 0.404

yield worse results. On Cora, where uncertainty and representativeness seem
effective, Coreset and FeatProp, which mainly focus on diversity, are among the
worst-performing methods.

Using an additive score instead of a multiplicative score yields slightly worse
results in general. From 10 comparisons, summing up the scores only yields three
times slightly better results. However, the maximum difference is 0.9% (Citeseer
6C), whereas using the multiplicative in DiffusAL, the additive score is up to
1.4% (Physics 12C) better.

4.4 R3-Acquisition and Training Efficiency

Figure 5 shows the total average time (in seconds) for one active learning step
on the x-axis (smaller is better) and the final accuracy after all 20C labels are
selected on the y-axis (larger is better) for all methods (color).

We focus on an iterative AL selection where re-training between acquisition
steps is necessary to get new uncertainty scores. In contrast, GRAIN, FeatProp,
degree sampling, and random sampling select all instances for labeling at once
and do not require re-training. Therefore, their average time is set to zero, and
their accuracy is plotted for comparison. However, these methods are generally
less label-efficient since they are not directly coupled to the current learning
model. Except for Citeseer, DiffusAL is always on the Pareto-front, yielding the
best final average accuracy while still being fairly time-efficient. In Table 3, we
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split the total time into the acquisition and the training time for the iterative
methods. All GCN-based methods (Coreset, AGE, Entropy) denote fairly similar
training times. Despite using an ensemble, DiffusAL is slightly faster than the
GCN-based methods since the features are pre-computed. AGE and Coreset both
require a longer time for acquisition. AGE can exploit pre-calculated centrality
scores. However, the uncertainty score and especially the density score must be
freshly calculated in each round. Especially for the very large graph data CS,
AGE requires over 40 s for one active learning iteration. Coreset extracts the
latent representations from the current model and requires the computation of
a pairwise distance matrix. Compared to that, DiffusAL only needs to calculate
the uncertainty scores derived from the QBC model since the other scores are
pre-computed. Only the entropy-based selection scheme has a faster acquisition
time since it only needs one forward pass through the network.

LSCALE, which also defined a dedicated network towards a unified learn-
ing and selection framework, has the fastest training times out of all methods.
However, depending on the dataset, the acquisition time is much larger than
DiffusAL’s acquisition time. As such, the overall time needed for one active
learning round varies considerably between datasets. For instance, on Citeseer
and Cora, LSCALE is the fastest method out of all iterative methods. Still, on
the much larger graphs Pubmed and Physics, it is the slowest method due to
larger acquisition times (4.4 s and 12.7 s, respectively). Overall, even though we
use an ensemble method, our training and acquisition times are fairly stable
across datasets and, in total, comparably good as plain uncertainty sampling
with a GCN.

5 Conclusion

The annotation of unlabeled nodes in graphs is a time-consuming and costly
task and, accordingly, it is of great interest to advance label-efficient methods.
Motivated by the success of diffusion-based graph learning approaches, we pro-
pose DiffusAL, a novel active learning strategy for node classification. DiffusAL
uses diffusion to predict node labels accurately and compute meaningful utility
scores consisting of model uncertainty, diffused feature diversity, and node impor-
tance for active node selection, such that training and data selection cooperate
toward label-efficient node classification. DiffusAL is significantly better gener-
alizable over a wide range of datasets and is, in terms of statistical significance,
not beaten by any other method in 99.8% of all experiments. Moreover, it is the
only method that significantly outperforms random selection in 100% of the eval-
uated settings. Due to pre-computed features stored in a diffusion matrix, our
model can efficiently compute a node’s utility for training and acquisition. Our
extensive ablation study shows that each component of DiffusAL contributes to
different datasets and active learning stages, making it robust in diverse graph
settings.



DiffusAL: Diffusion-based Graph Active Learning 89

References

1. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch
active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020)

2. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261 (2018)

3. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML 2010),
pp. 79–86 (2010)

4. Borutta, F., Busch, J., Faerman, E., Klink, A., Schubert, M.: Structural graph
representations based on multiscale local network topologies. In: WI-IAT (2019)

5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE SPM 34(4), 18–42 (2017)

6. Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: Nf-gnn: network flow graph neural
networks for malware detection and classification. In: SSDBM (2021)

7. Busch, J., Pi, J., Seidl, T.: Pushnet: efficient and adaptive neural message passing.
In: ECAI (2020)

8. Cai, H., Zheng, V.W., Chang, K.C.C.: Active learning for graph embedding. arXiv
preprint arXiv:1705.05085 (2017)

9. Chandra, A.L., Desai, S.V., Devaguptapu, C., Balasubramanian, V.N.: On initial
pools for deep active learning. In: NeurIPS 2020 Workshop on Pre-registration in
Machine Learning, pp. 14–32. PMLR (2021)

10. Contardo, G., Denoyer, L., Artières, T.: A meta-learning approach to one-step
active-learning. In: AutoML@PKDD/ECML (2017)

11. Faerman, E., Borutta, F., Busch, J., Schubert, M.: Semi-supervised learning on
graphs based on local label distributions. In: MLG (2018)

12. Faerman, E., Borutta, F., Busch, J., Schubert, M.: Ada-lld: adaptive node similar-
ity using multi-scale local label distributions. In: WI-IAT (2020)

13. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

14. Frey, C.M.M., Ma, Y., Schubert, M.: Sea: graph shell attention in graph neural net-
works. In: European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (2022)

15. Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., Hu, Y.: Active discriminative network
representation learning. In: IJCAI (2018)

16. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: ICML, pp. 1263–1272. PMLR (2017)

17. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artifi. Intell. Mach.
Learn. 14(3), 1–159 (2020)

18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)
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Abstract. Deep-learning-based NLP models are found to be vulnerable
to word substitution perturbations. Before they are widely adopted, the
fundamental issues of robustness need to be addressed. Along this line,
we propose a formal framework to evaluate word-level robustness. First,
to study safe regions for a model, we introduce robustness radius which
is the boundary where the model can resist any perturbation. As calcu-
lating the maximum robustness radius is computationally hard, we esti-
mate its upper and lower bound. We repurpose attack methods as ways of
seeking an upper bound and design a pseudo-dynamic programming algo-
rithm for a tighter upper bound. Then verification method is utilized for
a lower bound. Further, for evaluating the robustness of regions outside a
safe radius, we reexamine robustness from another view: quantification.
A robustness metric with a rigorous statistical guarantee is introduced
to measure the quantification of adversarial examples, which indicates
the model’s susceptibility to perturbations outside the safe radius. The
metric helps us figure out why state-of-the-art models like BERT can
be easily fooled by a few word substitutions, but generalize well in the
presence of real-world noises.

Keywords: Adversarial example · robustness · natural language
processing

1 Introduction

Deep learning models have achieved impressive improvements on various NLP
tasks [32]. However, they are found to be vulnerable to input perturbations, such
as paraphrasing [26], inserting character [3] and replacing words with similar ones
[25,31]. In this paper, we focus on word substitution perturbation [14,22,34] as
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shown in Fig. 1, in which the output of a model can be altered by replacing
some words in the input sentence while maintaining the semantics. Before deep
learning models are widely adopted in practice, understanding their robustness
to word substitution is critical.

Fig. 1. An example of word substitution perturbation.

In recent years, several studies focus on generating adversarial examples [10,
14,30] or certifying the absence of adversarial examples in the whole perturbation
space [11,13,33]. However, almost all current deep learning models are unable to
be regarded as absolutely robust under such a yes-or-no binary judgment. Along
this line, some deeper questions can be asked. Where is the safe boundary of a
model to resist perturbation? Why can a well-trained NLP model be fooled by
small perturbations but generalize well to real-world inputs with noises? Does
the existence of an adversarial example in the exponential input space completely
destroy the defense capability of the model?

To answer these questions more comprehensively, we propose a formal frame-
work for evaluating models’ robustness to word substitution from the view of
quantification. We quantify the magnitude of the perturbation (or the number
of substitutions) a model can resist. Figure 2 visualizes the problems we study
in this paper. Robustness radius (safe radius) r, which is defined as the mag-
nitude of the perturbation space where no adversarial examples exist, is useful
for studying the safe regions of models. In particular, the maximum robustness
radius R depicts the boundary of perturbations a model can resist. Apart from
safe regions, the vulnerability outside safe regions also needs to be evaluated as it
can influence the model’s performance in practice. A natural idea is to quantify
the number of adversarial examples for a given radius as a metric for robustness.

The main challenge of the evaluation framework is that the perturbation
space can be exponentially large, so solving these problems exactly is not feasible
in many cases. To overcome this problem, we retreat from the exact computation
of R to estimate its upper and lower bounds. An adversarial example with fewer
substitutions can provide a tighter upper bound for R. Therefore, we repurpose
attack methods for evaluating the upper bound and design an algorithm called
pseudo-dynamic programming (PDP) to craft adversarial examples with as few
substitutions as possible. Then, for the lower bound, we find that certifying
word-level robustness with a fixed radius can be solved in polynomial time.
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So we use verification methods to give a lower bound. Finally, we introduce a
robustness metric PR which denotes the number of adversarial examples for a
given radius. It can provide a quantitative indicator for the models’ robustness
outside the absolute safe radius. As it is a more difficult problem than calculating
the maximum safe radius, we estimate the value of PR with a rigorous statistical
guarantee.

Fig. 2. Diagram of our methods for evaluating robustness: (1) evaluating maximum
safe radius R via obtaining its upper and lower bound; (2) measuring the model’s
vulnerability outside the safe radius via a robustness metric PR.

We design experiments on two important NLP tasks (text classification and
textual entailment) and two models (BiLSTM and BERT) to study our meth-
ods empirically. Experiments show that PDP algorithm has a stronger search
capability to provide a tighter upper bound for the maximum robustness radius.
The robustness metric PR results present an interesting phenomenon: although
most well-trained models can be attacked by a few word substitutions with a
high success rate, the word-substitution-based adversarial examples distribute
widely in perturbation space but just occupy a small proportion. For example,
BERT can be successfully (>89.7%) attacked by manipulating 4.5 words on
average on IMDB. However, more than 90.66% regions can resist random word
perturbations with a high probability (>0.9). We conclude that some adversarial
examples may be essentially on-manifold generalization errors, which can explain
the reason why these “vulnerable” models can generalize well in practice.

-

2 Preliminary

Given a natural language classifier F : X → Y, which is a mapping from an input
space to an output label space. The input space X contains all possible texts X =
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w1, w2, ..., wn and output space Y = {y1, y2, ..., yc} contains c possible predictions
of an input. wi is usually a word embedding or one-hot vector. Fy(·) is the
prediction score for the y label. Let P = {p1, p2, ..., pm} be the set of perturbable
positions. For each perturbable position p ∈ P , there is a set S(X, p) which
contains all candidate words for substitution without changing the semantics
(the original word wp is also in S(X, p)). Figure 2 is a schematic diagram and
contains explanations of some notations.

Definition 1 (Adversarial Example). Consider a classifier F (x). Given a
sequence X with gold label y∗ and X ′ = w′

1, w
′
2, ..., w

′
n which is a text generated

by perturbing X, X ′ is said to be an adversarial example if:

F (X ′) �= y∗ (1)

Definition 2. A perturbation space Ω(X) of an input sequence X is a set con-
taining all perturbations generated by substituting the original word by candidate
words in S(X, p) for each perturbable position p ∈ P.

The cardinality of Ω(X) is
∏

p∈P |S(X, p)|.
Definition 3 (Word-level Robustness). Consider a classifier F (x). Given a
sequence X with gold label y∗, classifier F is said to be robust in the perturbation
space Ω(X) if the following formula holds:

∀X ′. X ′ ∈ Ω(X) ⇒ F (X ′) = y∗ (2)

If a classifier is not robust in Ω(X), we also want to know what maximum
perturbation it can resist. We use L0 distance r to describe the degree of pertur-
bation, which is also called robustness radius or safe radius. The maximum
robustness radius is denoted as R.

Definition 4 (Word-level L0-Robustness). Consider a classifier F (x).
Given an L0 distance r and a sequence X with gold label y∗. Let Ωr(X) :=
{X ′ : X ′ ∈ Ω(X) ∧ ‖X ′ − X‖0 ≤ r} and ‖·‖0 denote the number of substituted
words. The classifier F is said to be robust with respect to Ωr(X) if the following
formula holds true:

∀X ′. X ′ ∈ Ωr(X) ⇒ F (X ′) = y∗ (3)

If formula (3) is true, that the means neural network can resist any substi-
tutions in Ωr(X). For the point-wise robustness metric, substitution length and
ratio can be easily converted to each other.

2.1 Problems

From a high-level perspective, there are four types of relevant problems:

– Type-1 (Satisfaction problem). Find an adversarial example in the per-
turbation space. It helps to prove that a neural network is unsafe in certain
input space.
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– Type-2 (Optimization problem). Find the adversarial example with mini-
mal perturbation. This can help us figure out the boundary of safe regions.

– Type-3 (Proving problem). Certify the absence of adversarial examples in
the perturbation space. In other words, prove that the formulas like (2) or (3)
is true. This problem can prove that the network is absolutely safe in certain
input spaces.

– Type-4 (Counting problem). Give the number of adversarial examples in the
perturbation space. It further investigates the model’s susceptibility outside
the absolutely safe radius.

In recent years, most relevant works focused on developing effective attack-
ing algorithms for generating adversarial examples [11,13,33], which can be
viewed as “Type-1 problem”: finding an adversarial example in the pertur-
bation space. However, finding an adversarial example or not can not reflect the
model’s defense ability in the whole perturbation space. Type-2–4 problems are
more informative and remain to be studied, which are our focuses in this work.

These four problems present different levels of difficulty. In more details,
Type-1 problem is in NP; Type-2 problem is NP-hard; Type-3 problem is in
CoNP [15]; and Type-4 problem is #P-hard (NP ⊆ #P) [2]. Type-3 problem
is the complement of Type-1 problem. Sometimes, Type-1 and Type-3 problems
are not strictly distinguished, so certifying robustness is sometimes said to be in
NP as well. These conclusions are drawn when the tasks and neural networks
have no restrictions.

3 Methods

In this section, we propose a formal framework for evaluating robustness of word
substitution perturbation. We first study the upper and the lower bound for the
safe boundary which belongs to Type 2 and Type 3 problem respectively. Then
we use a statistical inference method to quantify the adversarial examples outside
a safe region with a rigorous guarantee, which is a Type 4 problem. For a more
clear state, we organize the following sections according to the three problems.

3.1 Type-2 Problem: Pseudo-Dynamic Programming for Crafting
Adversarial Examples

As shown in Fig. 1, if an adversarial example is found in Ωr(X), it means Ωr(X)
is not L0-Robust according to Definition 4 or the maximum robustness radius of
the model must be lower than r. An adversarial example offers an upper bound
for the maximum robustness radius. Naturally, we wonder about a tighter upper
bound for estimating safe boundaries. So, we design an efficient algorithm to
find adversarial examples with fewer substituted words in Ω(X). The algorithm
can not only find high-quality adversarial examples, but also provide a tighter
upper bound for robustness radius in Ωr(X). The basic idea of our method is
inspired by dynamic programming.
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Methodology. Finding the optimal adversarial example X ′ can be seen as a
combinatorial optimization problem with two goals:

i) Optimize the output confidence score of F (X ′) to fool the classifier.
ii) Minimize the number of substituted words (i.e. Minimize ‖X ′ − X‖0).

Algorithm 1 PDP (Pseudo-Dynamic Programming)
Require:

F : A classifier
X: An input text with n words
τ : the maximum percentage of words for modification.

Ensure: An adversarial example X ′ or Failed.
1: A(X, 0) ← {X} ;
2: P1 ← ∅, P2 ← {p1, p2, ...pm} ;
3: for all t ← 1 to m do
4: A(X, t − 1) ← TopK(A(X, t − 1));
5: p∗ ← arg maxp∈P2

{Ip(A(X, t − 1), p)};
6: A(X, t) ← A(X, t − 1) × S(X, p∗);
7: P1 ← P1 ∪ {p∗}, P2 ← P2 \ {p∗};
8: if ∃X ′ ∈ A(X, t), F (X ′) �= y∗ and ‖X ′ − X‖0 ≤ τ · n then
9: X ′ ← the best adversarial example in A(X, t)

10: return X ′

11: end if
12: end for
13: return Failed

We consider the optimizing procedure is in correlation with a time variable t.
Let A(X, t) denote the text set containing all combinations of word substitutions
for first t perturbed positions {p1, p2, ...pt}. Opt[(A(X, t))] denotes the operation
to get the optimal adversarial example from A(X, t). Operation A(X, t − 1) ×
S(X, pt) means substitute the pt-th position with candidate words in S(X, pt)
for all texts in A(X, t − 1). Then we get the optimal adversarial example from
A(X,m) in m steps:

Opt[A(X, t)] := Opt[A(X, t − 1) × S(X, pt)] (4)

where |P |=m, t ∈ {1, ...,m} and A(X, 0)={X}. This procedure can guaran-
tee finding the optimal adversarial example. However, it has exponential time
complexity as the size of A(X, t) increases exponentially with t.

We make some relaxations for this procedure to ensure it can be executed in
polynomial time. At step t, we only keep top K texts in A(X, t − 1) which are
considered to be more promising in generating adversarial examples. The others
will be forgotten at this step. In this context, we have:

A(X, t) := TopK(A(X, t − 1)) × S(X, pt) (5)
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This relaxation comes at the cost of the guarantee of finding the optimal
adversarial example. Due to that, the recurrence relation in Eq. 5 is similar to the
dynamic programming equation, we call it pseudo-dynamic programming
(PDP).

Notice that the number of substituted words of all texts in A(X, t) is less than
t. So, when an adversarial example is found at an earlier time t, it has greater
chances to achieve the goal (ii) better. So, we make use of the future information
to help the procedure encounter an adversarial example at an earlier time t. At
time t − 1, the position set P can be divided into two sets P1 = {pi}t−1

i=1 and
P2 = {pi}m

i=t. P1 is the set of positions that have been considered and P2 is the
set of positions to be considered in the future. Then we look ahead and pick the
best position p∗ in P2 to increase the chance of finding an adversarial example
in the next time t. So the recurrence relation 5 can be optimized as:

A(X, t) := TopK(A(X, t − 1)) × S(X, p∗) (6)

This pseudo dynamic programming procedure is designed for GPU comput-
ing. It can make good use of the characteristics of parallel computing. For each
step, the texts in A(X, t) can be fed into classifier F simultaneously as a batch
to find adversarial examples and calculate evaluation scores.

Score Functions. Next, we explain how to realize TopK(·) for remembering
history information and how to look ahead for the future in finding p∗, which
is the key to the PDP.

TopK( ·.) We use the score Is(X ′) to measure the importance of a text X ′ ∈
A(X, t). It can be:

– Is(X ′) := 1 − Fy∗(X ′) Untargeted attack
– Is(X ′) := Fŷ(X ′) Targeted (ŷ) attack

Operation TopK(·) will preserve K texts with highest score Is. For an untargeted
attack, it will preserve K texts with the lowest confidence score for the gold label;
For a targeted attack, it will preserve K texts with the highest confidence score
for the expected output label ŷ.

Looking Ahead. We call A(X, t) as a configuration at time t. Let Xwp←w denote
the text after replacing the word wp in position p of X by w. The importance
score of the perturbed position p under the current configuration A(X, t) is
Ip(A(X, t), p). It can be:

– Untargeted attack:
Ip(A(X, t), p) := 1 − min

X′∼A,w∈S(X,p)
{Fy∗(X ′

wp←w)}
– Targeted attack:

Ip(A(X, t), p) := max
X′∼A,w∈S(X,p)

{Fŷ(X ′
wp←w)}
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where X ′ ∼ A means drawing some texts from A(X, t) with probability propor-
tional to Is(X ′). Then we have the position p∗, which has the highest score Ip,
for the next step t to consider:

p∗ := arg max
p∈P2

{Ip(A(X, t − 1), p)} (7)

Under the white-box setting, gradient information also can be used to mea-
sure the importance of position p.

The overall PDP algorithm is shown in Algorithm 1. It is a polynomial-
time algorithm (O(n2 · poly(|F |, n)) in the worst case, and the proof is in the
supplementary material). poly(|F |, n) represents prediction time of classifier F
for an input with length n. It is a polynomial function.

3.2 Type-3 Problem: Robustness Verification

Verification is a method to prove the correctness of a system with respect to a
certain property via formal methods of mathematics. If we can prove formula 3
is true for a certain radius r (Type-3 problem), that means r is a lower bound of
maximum safe radius. Via combining the upper and lower bound, we can figure
out the boundary of the safe regions. Generally speaking, proving is much more
difficult than finding an adversarial example (Type-1 problem), which needs to
enumerate the exponential space or design a theorem proving algorithm. Several
over-approximate verification methods like Interval Bound Propagation (IBP)
[12,13] have recently been introduced from image to NLP. Limited by time cost,
scaling to large neural networks is a challenge for these methods. In this section,
we introduce a property of L0-robustness, which is helpful for certifying robust-
ness when radius r is fixed. It can also be used to improve the efficiency of other
verification methods.

Theorem 1. For any fixed r, Type-3 problem is in time complexity class P.

Proof. Suppose that a classifier F can output a prediction for an input X with
length n in poly(|F |, n) time and X has m perturbable positions. For a given r,
we have:

|Ωr(X)| ≤ mr · vr ≤ nr · vr (8)

where v = maxp∈P {|S(X, p)|}. We know that the size of Ωr(X) is bounded by
O((nv)r). So, one can test all the possible substitutions in Ωr(X) in O((nv)r) ·
poly(|F |, n) time to answer problems of Type-3.

Such conclusions are specific for NLP area owing to its discrete nature. In
many cases, the upper bound of r can be given by our PDP algorithm. In such
a situation, we can directly enumerate all the possible substitutions to prove
the absence of adversarial examples within r (or formula 3 holds) in polynomial
time. The enumeration procedure accomplished by a simple prover (SP), returns
“Certified Robustness” or “Found an adversarial example”. After the absence of
adversarial examples in Ωr(X) is proved, r is a lower bound for the maximum
L0-robustness radius.
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All the possible substitutions compose a polynomial-time verifiable formal
proof for the absence of adversarial examples. A checkable proof can make the
result more convincing. If an algorithm finds an adversarial example, we can
check the result easily. However, if an algorithm reports no adversarial examples,
it is difficult to figure out whether there are indeed no adversarial samples or
the verification algorithm has some bugs.

Under the white-box setting, the gradient information can be used to accel-
erate the verification algorithm. The basic idea is to test more sensitive positions
first. Once an adversarial example occurs, the program can be terminated. Let
‖∂Fy∗(X)/∂wp‖1 denote sensitivity score of perturbable position p, we can pre-
sort the perturbable positions in P based on the sensitivity score.

3.3 Type-4 Problem: Robustness Metric

Why are neural networks often fooled by small crafted perturbations, but have
good generalization to noisy inputs in the real environment? How about the
ability of a model to resist perturbation outside the robust radius? These ques-
tions promote us to analyze robustness from another perspective: the quantity of
adversarial examples. Sometimes, it is difficult to enumerate all the adversarial
examples in the perturbation space.

We relax the universal quantifier “∀” in formula 2 to a quantitative version
as word-level robustness metric PR:

PR :=
|{X ′ : X ′ ∈ Ωr(X) ∧ F (X ′) = y∗}|

|Ωr(X)| , (9)

where we can see that 1-PR is the proportion of adversarial examples. Therefore,
the higher the PR value is, the less vulnerable the classifier F is to be fooled
by random perturbations around the point X. When PR = 1, it is equivalent to
formula 2.

Apparently, the exact computation of PR is essentially a Type-4 problem.
For a long input sequence, calculating the value of PR is infeasible at the moment
due to the limitation of computational power. As an alternative, we estimate PR
via a statistical method. Suppose that X1,X2, ...,XN are taken from Ωr(X) with
uniform sampling, then an estimator P̂R for PR is:

P̂R :=
1
N

N∑

i=1

I(F (Xi) = y∗) (10)

The satisfaction of (F (Xi) = y∗) can be seen as Bernoulli random variable
Yi, i.e., Yi ∼ Bernoulli(PR). So, if we want estimator P̂R to satisfy a prior
guarantee such as the probability of producing an estimation which deviates
from its real value PR by a certain amount ε is less than δ, the following must
hold:

Pr(|P̂R − PR| < ε) > 1 − δ (11)
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Based on Hoeffding’s inequality:

Pr(| 1
N

N∑

i=1

Yi − PR| ≥ ε) ≤ 2e−2Nε2 (12)

For given parameters ε and δ, the estimator P̂R satisfies formula (11) if:

N >
1

2ε2
ln

2
δ

(13)

P̂R is a metric for a model’s susceptibility to random perturbations with
rigorous statistical guarantees. As the error bound is Probably Approximate
Correct, we also call it PAC-style robustness metric. Reexamining robustness
in a quantitative perspective can be helpful for constructing weak robustness
notion and designing robustness enhancement methods [9].

4 Experiments

In this section, we design three sets of experiments to study the three prob-
lems and methods we proposed. Code is available at https://github.com/YANG-
Yuting/pdp.

4.1 General Experiment Setup

Tasks. We conduct experiments on two important NLP tasks: text classifica-
tion and textual entailment. MR [23] and IMDB [19] are sentence-level and
document-level sentiment classifications respectively on positive and negative
movie reviews. SNLI [4] is used to learn to judge the relationship between two
sentences: whether the second sentence can be derived from entailment, contra-
diction, or neutral relationship with the first sentence.

Target Models. For each task, we choose two widely used models, bidirectional
LSTM (BiLSTM) [5] and BERT [6] as the attacking target models. For BiLSTM,
we used a 1-layer bidirectional LSTM with 150 hidden units, and 300-dimensional
pre-trained GloVe [24] word embeddings. We used the 12-layer-based version of
BERT model with 768 hidden units and 12 heads, with 110M parameters.

4.2 Type-2 Problem: Attack Evaluation

Baselines. We use three state-of-the-art adversarial crafting methods
(TextFooler [14], SemPSO [34] and BertAttack [16]) as references to compare
the search capability of PDP. TextFooler is a greedy algorithm and SemPSO
is a particle-swarm-based algorithm. BertAttack [16] uses the masked language
model (BERT) as a perturbation generator and finds perturbations that max-
imize the risk of making wrong predictions. They all focus on Type 1 problem
while PDP focuses on Type 2 problem.

https://github.com/YANG-Yuting/pdp
https://github.com/YANG-Yuting/pdp
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Metrics. We evaluate the performance of these attack methods including the
rate of successful attacks and the percentage of word substitution. A smaller
percentage (or number) of word substitution means a tighter upper bound for
the maximum L0-robustness radius.

Table 1. The attack results of different methods. #Attacks is the number of texts to be
attacked. #Succ is the number of successful attacks. #Win is the number of successful
attacks crafted with the least substitutions for the same texts among various attack
methods. %S is the average percentage of substituted words.

Dataset Model #Attacks SemPSO TextFooler BertAttack PDP

#Succ #Win %S #Succ #Win %S #Succ #Win %S #Succ #Win %S

MR BiLSTM 880 636(72.27%) 0 10.64 484(55.00%) 0 12.09 502(57.05%) 0 12.73 655(74.43%) 33 10.44

BERT 956 580(60.67%) 0 12.10 323(33.79%) 0 13.96 390(40.79%) 0 13.84 621(64.96%) 30 11.80

IMDB BiLSTM 1000 947(94.7%) 0 4.58 854(85.4%) 0 6.78 936(93.6%) 0 7.2 989(98.9%) 599 3.11

BERT 1000 871(87.1%) 0 4.31 714(71.4%) 0 8.47 813(81.3%) 0 8.63 899(89.9%) 498 2.87

SNLI BiLSTM 1000 505(50.5%) 0 15.99 592(59.2%) 0 15.76 713(71.3%) 0 16.32 764(76.4%) 31 14.91

BERT 1000 587(58.7%) 0 16.10 636(63.6%) 0 15.83 755(75.5%) 0 16.27 845(84.5%) 30 15.09

Settings. For a fair comparison, we set the same candidate set and constraints
for different attack methods. The candidate is generated by HowNet [7] and
similarities of word embeddings. HowNet is arranged by the sememe and can
find the potential semantic-preserving words. Word embeddings can further help
to select the most similar candidate words. So, we generate S(X, p) via cleaning
the synonyms obtained by HowNet with cosine similarity of word embeddings.
We reserve top η (η = 5) synonyms as candidates for each position.

For MR, we experiment on all the test texts classified correctly. For IMDB
and SNLI, we randomly sample 1000 texts classified correctly from the test set.
Following [1,34], only the hypotheses are perturbed for SNLI. The adversarial
examples with modification rates less than 25% are considered valid.

Attack Results. We present the average percentage of substitutions (%S) in
Table 1 and the number of times each method “wins” the others in terms of
substitution length (#Win). The experimental results show that PDP always
gives adversarial examples with fewer substitutions. Especially for the long-text
dataset, IMDB, 599 (59.9%) adversarial examples found by PDP contains the
least word substitutions for BiLSTM (the remaining 40.1% holds the same num-
ber of substitutions as others). The examples crafted by PDP contain very few
substitutions, such as average 4.52 word substitution for BERT on IMDB whose
average number of words is 215. The comparison of the substitution length on
IMDB is shown in Fig. 3. Besides, PDP achieves the highest attack success rates
on all three datasets and two target models. These experimental results indicate
PDP has stronger search capabilities. Then, we repurpose PDP attack to evalu-
ate the robustness, and Fig. 4 shows that PDP can provide a tighter bound for
the maximum robustness radii compared with other attacking methods. More
experimental results are shown in the supplementary.
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4.3 Type-3 Problem: Robustness Verification

For a given L0 distance r (r = 1 to 4), the certified results on 200 randomly
sampled test instances are shown in Table 2. We find that: (1) The percentage
of certified robustness is decreasing with the increase of radius r. (2) For many
short-text tasks (MR and SNLI), considering r ≤ 4 is sufficient because most
regions cannot resist 4-word substitutions. For example, only 6.42% regions of
BERT can resist any 4-word substitutions adversarial attack on SNLI. (3) For
the long-text task IMDB, BERT has more regions (61.52%) that can resist any 3-
word substitutions attack compared with BiLSTM. It takes a long time to certify
robustness when r = 4, so we don’t show the results. Experimental results also
show that this simple verification method is effective for many NLP tasks.

Fig. 3. Comparison of the number of substituted words of different methods on IMDB.
Each point represents a text (x-axis is the number of substituted (#S) words of PDP
and y-axis is that of other attack methods). Points over the diagonal are where PDP
finds an adversarial example with fewer substitutions.

Table 2. Certified robustness. “Found” and “Certified” are the abbreviations for “an
adversarial example found” and “certified to be robust” respectively. %F and %C are
the percentage of “Found” and “Certified”. “T” is the average time.

Dataset Model r = 1 r = 2 r = 3 r = 4

Found Certified Found Certified Found Certified Found Certified

%F T(s) %C T(s) %F T(s) %C T(s) %F T(s) %C T(s) %F T(s) %C T(s)

MR BiLSTM 36.00 0.01 64.00 0.02 58.00 0.04 42.00 0.05 72.00 0.30 28.00 0.27 78.00 3.62 22.00 2.26

BERT 20.00 0.12 80.00 0.24 40.00 1.95 60.00 2.49 56.50 28.86 43.50 20.95 67.50 256.78 32.50 46.23

IMDB BiLSTM 15.59 0.04 84.41 0.13 31.99 1.93 68.01 2.89 45.50 2.47 54.50 953.19 - - - -

BERT 12.66 2.89 87.34 3.11 25.91 3.40 74.09 246.54 38.48 7.97 61.52 6448.39 - - - -

SNLI BiLSTM 56.90 0.04 43.10 0.01 76.87 0.03 23.13 0.07 82.52 0.14 17.48 0.11 84.63 0.66 15.37 0.23

BERT 71.43 0.03 28.57 0.01 88.01 0.07 11.99 0.06 92.37 0.47 7.63 0.07 93.58 3.17 6.42 0.04

4.4 Type-4 Problem: Robustness Metric

We evaluate the robustness score (Eq. 9) of different models on different tasks.
The evaluation is performed on the randomly sampled 1000 test data and the
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sample size N is 5000 (ε = 0.025, δ = 0.005). The violin plots of P̂R are shown
in Fig. 5. As most attacking algorithms limit the maximum perturbation ratio
to smaller than 25%, we set r to 25% of the length of the sentence.

Most of the shadows in all sub-figures are close to the top horizontal line
(maximum P̂R), which means that most regions have high robustness scores P̂R.
Take BERT model on IMDB task as an example, 89.9% regions are found with
adversarial examples as shown in Table 1, which indicates the “vulnerability” of
the model. However, via robustness metric, we find that 90.66% regions achieve
P̂R larger than 0.9. It means, most regions (90.66%) can resist random word
perturbations with high probability (>0.9). A conclusion can be drawn: these
well-trained models are usually robust to word substitutions in a non-adversarial
environment.

Fig. 4. The percentage of regions (Ωr(X)) that do not yield to different attacking
methods in each perturbation radius. x-axis can be seen as the upper bounds given by
different attacking methods.

Fig. 5. Violin plots of robustness score on the test set when r is 25% of the length of
sentence. The width of x-axis represents the frequency of corresponding P̂R in y-axis.
Top and bottom horizontal lines are the maximum and minimum value of P̂R.

For a well-trained model, the adversarial examples crafted by word substi-
tution are almost everywhere and close to the normal point in the perturbation
space, but their proportion is very low. In 2019, Stutz et al. pointed out that
on-manifold robustness is essentially generalization and on-manifold adversarial
examples are generalization errors [29]. Suppose users’ selection from a synonym
candidate is similar to the process of rolling a die, which means the usage of a
word for position p in S(X, p) is conditional on a latent variable zp, i.e. Pr(wp|zp)
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corresponding to the underlying, low dimensional manifold. All possible substi-
tutions in Ω(X) can be seen as on the manifold corresponding to a latent variable
Z = (zp1 , zp2 , ..., zpk

). Thus, the adversarial examples found by attacking algo-
rithms are essentially on-manifold generalization errors. From this perspective,
we can explain why a well-trained model like BERT has a good generalization
but can be easily attacked by word substitutions.

For all three tasks, BERT always presents better robustness performance.
For instance, on MR task, the proportion of regions with P̂R larger than 0.9
is 79.22% and 90.97% for BiLSTM and BERT respectively. It means BERT is
always more robust outside the safe regions.

5 Related Work

Various attack algorithms are developed for generating adversarial examples via
substitutions including gradient descent methods [18,27,30], genetic algorithm
[1], particle-swarm-based method [34], greedy-based methods [14,25] and BERT-
based methods [8,17]. They focus on how to generate adversarial examples and
simply regard robustness as the opposite of attack success rate.

Existing work [11,13,28] migrates the over-approximate method IBP from
the image field to certify the robustness in the continuous space based on word
embedding. Although they can give a provably robust to all possible perturba-
tions within the constraints, the limitation is that a model which is not robust
in continuous space can be robust in discrete space, as the vectors that can fool
the model may not correspond to any real words. Randomized smoothing-based
method is introduced to certify the robustness of a smoothed classifier [33]. An
MCTS-based method is designed to assess the maximum safe radius of CNNs
and LSTM [21]. Existing robustness evaluation works focus on robustness ver-
ification which aims to verify the absolute safe for a given model in the whole
perturbation space. They ignore the safe sub-regions and unsafe regions.

Naturally, the final goal is to defend against attacking and improve the
robustness. Adversarial data augmentation (ADA) is one of the most effective
empirical methods [8,14,17,25,30]. ADA adopts the adversarial examples gener-
ated by their attack methods for adversarial training and achieve some robust-
ness improvement. Adversarial training is another similar method, which incor-
porates a min-max optimization between adversarial perturbations and the mod-
els by adding norm-bounded perturbations to word embeddings [20,35]. They
depend on search algorithms for adversarial examples, so our PDP with better
search ability can provide support for these robustness enhancement methods.

6 Conclusion

Overall, we build a formal framework to study the word-level robustness of the
deep-learning-based NLP systems. We repurpose the attack method for robust-
ness evaluation and design a pseudo-dynamic programming framework to provide
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a tighter upper bound. Besides, we notice that the absence of adversarial exam-
ples within any fixed radius can be verified in polynomial time, and give a simple
prover to certify the lower bound. Experimental results show that our methods
can provide tighter bounds for robustness evaluation, and most state-of-the-art
models like BERT cannot resist a few word substitutions. Further, we discuss
the robustness from the view of quantification and introduce a PAC-style metric
to show they are robust to random perturbations, as well as explain why they
generalize well but are poor in resisting adversarial attacks. It can be helpful in
studying defense and interpretability of NLP models.
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Abstract. Despite the fact that adversarial training has become the de
facto method for improving the robustness of deep neural networks, it is
well-known that vanilla adversarial training suffers from daunting robust
overfitting, resulting in unsatisfactory robust generalization. A number of
approaches have been proposed to address these drawbacks such as extra
regularization, adversarial weights perturbation, and training with more
data over the last few years. However, the robust generalization improve-
ment is yet far from satisfactory. In this paper, we approach this challenge
with a brand new perspective – refining historical optimization trajecto-
ries. Wepropose a new method namedWeightedOptimizationTrajec-
tories (WOT) that leverages the optimization trajectories of adversar-
ial training in time. We have conducted extensive experiments to demon-
strate the effectiveness of WOT under various state-of-the-art adversarial
attacks.Our results show thatWOTintegrates seamlesslywith the existing
adversarial training methods and consistently overcomes the robust over-
fitting issue, resulting in better adversarial robustness. For example, WOT
boosts the robust accuracy of AT-PGD under AA-L∞ attack by 1.53%–
6.11% and meanwhile increases the clean accuracy by 0.55%–5.47% across
SVHN, CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.

Keywords: Adversarial training · Optimization trajectories

1 Introduction

Deep neural networks (DNNs) have achieved enormous breakthroughs in var-
ious fields, e.g., image classification [22,23], speech recognition [23], object
detection [19] and etc. However, it has been shown that they are vulnerable
to adversarial examples, i.e., carefully crafted imperceptible perturbations on
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inputs can easily change the prediction of the model [20,44]. The vulnerability
of DNNs hinders their applications in risk-sensitive tasks such as face recogni-
tion, autonomous driving, and medical diagnostics. While various methods have
been proposed to obtain robustness against adversarial perturbations, adversar-
ial training [29] is the leading approach to achieve adversarial robustness.

However, the vanilla adversarial training usually suffers from daunting robust
overfitting, resulting in poor robust generalization1 [37]. To tackle this issue, a
number of methods from different perspectives have been proposed including
but not limited to training with more data [1,6,36,39,40], adversarial weights
perturbation [48,50], and knowledge distillation and stochastic weights averag-
ing (SWA) [7]. Recently, [43] empirically show that the improved adversarial
robustness can be attributed to the flatter loss landscape at the minima.

Fig. 1. Visualization of loss contours and optimization trajectories for AT-PGD, AT-
PGD+WOT-W, and AT-PGD+WOT-B, respectively. The experiments are conducted
on CIFAR-10 with PreRN-18.

Although the generalization properties of SGD-based optimizer under stan-
dard training setting have been well studied [16,21,52,56], the corresponding
robust generalization property under adversarial setting has not been fully
explored. Among previous studies, [7] heuristically adopts stochastic weight aver-
aging (SWA) and average model weights along the optimization trajectory, which
potentially mitigates robust overfitting. However, it has been shown that naive
weight averaging is not general enough to fundamentally address this problem,
still prone to robust overfitting [36]. Instead of simply averaging weights, we pro-
pose a new approach - Weighted Optimization Trajectories (briefly WOT)
for the first time showing that we can largely improve the flatness of solutions
of existing adversarial training variants by periodically refining a set of his-
torical optimization trajectories. Compared with the existing approaches, our
method has three unique design contributions: ❶ our refinement is obtained by
maximizing the robust accuracy on the unseen hold-out set, which is naturally
advantageous to address the overfitting issue; ❷ our refinement is performed
on a set of previous optimization trajectories rather than solely on previous
weights; ❸ we further propose a block-wise trajectory refinement, which signif-
icantly enlarges the optimization space of refinement, leading to better robust
performance. We conduct rigorous experiments to demonstrate the effectiveness

1 Robust generalization refers to the gap between the adversarial accuracy of the
training set and test set, following previous work [7,43,48].
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of these design novelties in Sect. 4.1 as well as the ablation study in Sect. 4.3.
Simple as it looks in Fig. 1, the optimization trajectories after refining converge
to a flatter loss valley compared to the vanilla AT-PGD, indicating the improved
robust generalization [43,47,48].

Extensive experiments on different architectures and datasets show that
WOT seamlessly mingles with the existing adversarial training methods with
consistent robust accuracy improvement. For example, WOT-B directly boosts
the robust accuracy over AT-PGD (early stops) under AA-L∞ attack by 6.11%,
1.53%, 1.57%, and 4.38% on SVHN, CIFAR-10, CIFAR-100, and Tiny ImageNet,
respectively; meanwhile improves the corresponding clean accuracy by 0.55% ∼
5.47%. Moreover, we show that WOT can completely prevent robust overfit-
ting across different attack approaches, including the strongest one off-the-shelf
- AA-L∞ attack.

2 Related Work

Adversarial Attacks. Adversarial examples were first illustrated in [44]. Fol-
lowing [44], many adversarial attacks have been proposed and can be categorized
into white-box and black-box attacks. White-box attacks have full access to the
model when crafting adversarial examples. Popular white-box attacks are FGSM
attack [20], PGD attack [30], Deepfool [31] and C&W [5]. Black-box attacks gen-
erate adversarial examples without any knowledge of the model. They are query-
based attacks, e.g., SPSA attack [45], Square attack [2], and transferability-
based attacks, e.g., DIM [49], TIM [13] and DA attack [26]. Recently, [11]
proposed Autoattack (AA) for reliable adversarial robustness evaluation which
is an ensembled adversarial attack containing white-box and black-box attacks.
AA attack has been recognized as the most reliable method for evaluating the
model’s adversarial robustness [11] and will be used as the main evaluation
method in this paper.

Adversarial Robustness. Many methods have been proposed to improve the
model’s robustness such as gradient regularization [38], curvature regulariza-
tion [24,32], randomized smoothing [9], local linearization [35], adversarial train-
ing methods [4,20,25,30,34,46,48,53–55], and etc. Among all these methods,
adversarial training has been the de facto method for achieving adversarial
robustness. We briefly introduce four commonly used adversarial training meth-
ods that we use as baselines in this study.

Given a C-class dataset S = {(xi, yi)|xi ∈ R
d, yi ∈ R}n

i=1, the cross-entropy
loss L(·) and the DNN function fw : Rd −→ R

C .

AT-PGD [30] is formalized as min-max optimization problem.

min
w

ρAT (w), ρAT (w) = E(x,y)∼S{ max
‖Δx‖≤ε

L(fw(xi + Δx), yi)},

where the inner maximization finds the adversarial examples and ε is the allowed
perturbation magnitude. We use by default AT to denote AT-PGD in the fol-
lowing sections.
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Trades [53] separates training loss into a cross-entropy loss (CE) and Kullback-
Leibler (KL) divergence loss to control clean accuracy and adversarial robustness
respectively.

ρTRADES(w) = E(x,y)∼S{CE(fw(xi, yi) + β · max
‖Δx‖≤ε

KL(fw(xi)||fw(xi + Δx)}

MART [46] designs the training loss as the binary cross-entropy loss (BCE)
and an explicit regularization for misclassified examples.

ρMART (w) = E(x,y)∼S{BCE(fw(xi + Δx, yi)

+λ · KL(fw(xi)||fw(xi + Δx)) · (1 − [fw(xi)]yi)} (1)

Adversarial Weights Perturbation (AWP) [48] explicitly flattens the loss
landscape by injecting the worst weight perturbations.

ρAWP (w) = max
v∈V

E(x,y)∼S max
‖Δx‖≤ε

CE(fw+v(xi + Δx), yi)

Robust Overfitting and its Mitigation. [37] first identified the robust over-
fitting issue in AT that robust accuracy in test set degrades severely after the
first learning rate decay and found that early stop is an effective strategy for mit-
igating the robust overfitting issue. Following [37], several studies have been pro-
posed to explain and mitigate the robust overfitting issue [7,8,14,42,43,48]. [7]
showed that stochastic weight averaging (SWA) and knowledge distillation can
mitigate the robust overfitting issue decently and [42] found that low curvature
activation function helps to mitigate the robust overfitting problem. [14] took
a step further to explain that the robust overfitting issue may be caused by the
memorization of hard samples in the final phase of training. [43,48,50] demon-
strated that a flat loss landscape improves robust generalization and reduces
the robust overfitting problem, which is in line with the sharpness studies in
standard training setting [15,18,27].

3 Methodology

In this section, we will introduce weighted optimization trajectories
(WOT), a carefully designed method that refines the optimization trajectory
of adversarial training towards a flatter region in the training loss landscape, to
avoid robust overfitting. Specifically, WOT collects a set of historical optimiza-
tion trajectories and further learns a weighted combination of them explicitly on
the unseen set. The sketch map of WOT is shown in Fig. 2. Concretely, WOT
contains two steps: (1) collect optimization trajectories of adversarial training.
(2) re-weight collected optimization trajectories and optimize weights according
to the robust loss on an unseen set. Two unanswered problems of this process
are how to collect optimization trajectories and how to construct the objective
function of optimizing weights. We give detailed solutions as follows.
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3.1 WOT: Optimization Trajectories

Fig. 2. Sketch map of WOT.

We denote optimization trajectories
as the consecutively series status
of weights in weight space after n
steps optimization. Formally, given
a deep neural network f with the
parameter w ∈ W. n steps of opti-
mization trajectories of adversarial
training are denoted as {w1, w2...wi,
..., wn} where wi is the weight after
the i-th optimization step. This pro-
cess can also be simplified as fol-
lows: {w1,Δw1...Δwi , ..., Δwn−1}
where Δwi = wi+1 − wi. In prac-
tice, it is time-consuming and space-
consuming to collect the weights of
each batch optimization step and it is also not necessary to collect the weights
at a high frequency (see details in Fig. 5). Therefore, we propose to collect weights
for every m batch optimization step and the collected trajectories with n opti-
mization steps are re-denoted as follows:

ΔW = {w1, Δw1, ..., Δwi, ..., Δwk}, (2)

where k = n
m . For brevity, we call m the Gaps that control the length between

two consecutive collections and k the number of Gaps that controls the number
of weights that are collected.

3.2 WOT: Objective Function

We design the objective function based on historical optimization trajectories
of model training. From the description of optimization trajectories introduced
above, the weights w′ with n batch optimization steps from w can be written
as w′ = w + Δw1 + ... + Δwi + .. + Δwk. Since WOT refines the optimiza-
tion trajectories by re-weighting them, the new model weights ˜w′ after refining
optimization trajectories can be expressed as follows:

˜w′ = w + ˜Δw, ˜Δw = α1Δw1 + ... + αiΔwi + ... + αkΔwk, (3)

where α1, ..., αi, ..., αk are optimizable variables. Considering that we expect to
find the model with better robust generalization via optimizing α, a straightfor-
ward idea is to optimize αi with respect to improving its robust performance on
a small unseen set. The philosophy for this idea is that if a model can generalize
robustness better to an unseen set, it would probably generalize robustness well
to the target unseen set.

Formally, the objective function of optimizing αi is defined as follows:

min
0≤αi≤1

max
‖Δxuns‖≤ε

L(f
w+˜Δw

(xuns + Δxuns), yuns), (4)
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where (xuns, yuns) is from an unseen set and Δxuns is the corresponding adver-
sarial perturbations. We constrain αi to [0,1] (see Appendix F2 for the results of
other constraints for αi). Update αi. αi can be optimized by any SGD-based
optimizers according to the objective function (Eq. 4) described above. In this
study, we update αi by SGD optimizer with momentum buffer.

mt = mt−1 · γ + ∇αiL(f
wi−1+˜Δw

(xuns + Δxuns), yuns) (5)

αi = αi − lr · mt, (6)

where mt is the momentum buffer of αi at the t-th step and lr is the learning
rate.

Table 1. Robust accuracy of WOT under multiple adversarial attacks with various
adversarial training variants. The experiments are conducted on CIFAR-10 with the
PreRN-18 architecture. The best results are marked in bold.

Models FGSM PGD-20 PGD-100 CW∞ AA-L∞

AT+early stop 57.30 52.90 51.90 50.90 47.43
AT+SWA 58.89 53.02 51.86 52.32 48.61
AT+WOT-W (Ours) 58.50 53.19 51.90 51.74 48.36
AT+WOT-B (Ours) 59.67 54.85 53.77 52.56 48.96
Trades 58.16 53.14 52.17 51.24 48.90
Trades+SWA 58.07 53.17 52.22 50.91 49.07
Trades+WOT-W (Ours) 58.95 54.07 53.29 51.74 49.95
Trades+WOT-B (Ours) 58.50 53.73 52.95 52.12 50.19
MART 59.93 54.07 52.30 50.16 47.01
MART+SWA 58.19 54.21 53.56 49.39 46.86
MART+WOT-W (Ours) 58.13 53.79 52.66 50.24 47.43
MART+WOT-B (Ours) 59.95 55.13 54.09 50.56 47.49
AT+AWP 59.11 55.45 54.88 52.50 49.65
AT+AWP+SWA 58.23 55.54 54.91 51.88 49.39
AT+AWP+WOT-W (Ours) 59.05 55.95 54.96 52.70 49.84
AT+AWP+WOT-B (Ours) 59.26 55.69 55.09 52.82 50.00

3.3 WOT: In-Time Refining Optimization Trajectories

WOT reconstructs a set of historical optimization trajectories in time during
the course of training on an unseen set to avoid overfitting. A naive strategy is
treating each optimization trajectory wi as a whole and learning an individual

2 Appendix can be found in https://arxiv.org/pdf/2306.14275v2.pdf.

https://arxiv.org/pdf/2306.14275v2.pdf
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weight for each trajectory shown as Eq. 3. This simple method naturally has
limited learning space for refinement especially when we only have a few his-
torical trajectories. To improve the learning space of WOT, we further propose
blockwise WOT which breaks down each trajectory into multiple blocks based
on the original block design of the model itself. For convenience, we dot these
two methods WOT-W and WOT-B, respectively.

WOT-W takes one trajectory as whole and assigns a single α for each tra-
jectory. Hence the number of α that need to be learned exactly equals to the
number of Gaps:k.

WOT-B in contrast learns a vector of α whose length is determined by the
number of the model’s block. Therefore, Eq. 3 can be reformulated as:

˜Δw =

⎡

⎢

⎢

⎢

⎢

⎣

˜Δw1

...
˜Δwj

...
˜Δwt

⎤

⎥

⎥

⎥

⎥

⎦

, ˜Δwj = α1
jΔw1

j + α2
jΔw2

j + ... + αk
j Δwk

j (7)

where j denotes the j-th block. Optimizing α for blockwise WOT is exactly the
same as the description in Eq. 5 and Eq. 6.

The main difference between WOT-W and WOT-B is that WOT-W learns
one α for each cached Δw (the difference of parameters in two checkpoints)
whereas WOT-B further breakdowns each cached Δw into several blocks (each
block contains several layers depending on the specific architectures as explained
in detail in Appendix B) and learns an individual α value for each block. There-
fore, the learning space of WOT-B is larger than WOT-W, leading to better
performance in general. The pseudocode of WOT can be found in Appendix C.

4 Experiments

We perform extensive experiments to show the effectiveness of our method in
improving adversarial robustness as well as addressing the robust overfitting issue.

Datasets. Four datasets are considered in our experiments: CIFAR-10, CIFAR-
100 [28], Tiny-ImageNet [12] and SVHN [33]. For experiments of WOT, we ran-
domly split 1000 samples from the original CIFAR-10 training set, 10000 samples
from Tiny-ImageNet, and 2000 samples from the original CIFAR-100 and SVHN
training set as the unseen hold-out sets.

Baselines. Five baselines are included: AT [37], Trades [53], AWP+AT [48],
MART [46] and SWA [7]. Three architectures including VGG-16 [41],
PreActResNet-18 (PreRN-18) [22], WideResNet-34-10 (WRN-34-10) [51].

Experimental Setting. For WOT, we adopt an SGD optimizer with a momen-
tum of 0.9, weight decay of 5e-4, and a total epoch of 200 with a batch size of
128 following [37]. By default, we start to refine optimization trajectories after
100 epochs. For WOT-B, we set each block in PreRN-18 and WRN-34-10 archi-
tectures as the independent weight space. We set the layers with the same width
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Table 2. Test robustness under multiple adversarial attacks based on VGG-16/WRN-
34-10 architectures. The experiments are conducted on CIFAR-10 with AT and Trades.
The bold denotes the best performance.

Architecture Method CW∞ PGD-20 PGD-100 AA-L∞

VGG16 AT+early stop 46.87 49.95 46.87 43.63
VGG16 AT+SWA 47.01 49.58 49.13 43.89
VGG16 AT+WOT-W(Ours) 47.42 49.96 49.36 44.01
VGG16 AT+WOT-B(Ours) 47.52 50.28 49.58 44.10
VGG16 TRADES 45.47 48.24 47.54 43.64
VGG16 TRADES+SWA 45.92 48.64 47.86 44.12
VGG16 TRADES+WOT-W(Ours) 46.75 49.19 48.28 44.82
VGG16 TRADES+WOT-B(Ours) 46.21 48.81 47.85 44.17
WRN-34-10 AT+early stop 53.82 55.06 53.96 51.77
WRN-34-10 AT+SWA 56.04 55.34 53.61 52.25
WRN-34-10 AT+WOT-W(Ours) 56.05 58.21 57.11 52.88
WRN-34-10 AT+WOT-B(Ours) 57.13 60.15 59.38 53.89
WRN-34-10 TRADES 54.20 56.33 56.07 53.08
WRN-34-10 TRADES+SWA 54.55 54.95 53.08 51.43
WRN-34-10 TRADES+WOT-W(Ours) 56.10 57.56 56.20 53.68
WRN-34-10 TRADES+WOT-B(Ours) 56.62 57.92 56.80 54.33

as a group and set each group as an independent block for VGG-16 (see details
in Appendix B). We by default set the gaps m to 400, the number of gaps k
to 4 and initialize α as zero. For all baselines, we use the training setups and
hyperparameters exactly the same as their papers (see details in Appendix A).

Evaluation Setting. We use AA attack [11] as our main adversarial robustness
evaluation method. AA attack is a parameter-free ensembled adversarial attack
that contains three white-box attacks: APGD-CE [11], APGD-T [11], FAB-T [10]
and one black-box attack: Square attack [2]. To the best of our knowledge, AA
attack is currently the most reliable adversarial attack for evaluating adversar-
ial robustness. We also adopt three other commonly used white-box adversarial
attacks: FGSM [20], PGD-20/100 [29] and C&W∞ attack [5]. Besides, we also
report the performance of query-based SPSA black-box attack [45] (100 itera-
tions with a learning rate of 0.01 and 256 samples for each gradient estimation).
By default, we report the mean of three random runs for all experiments of our
method and omit the standard deviation since it is very small (≤ 0.3%). We by
default set ε = 8/255 for L∞ version adversarial attack and ε = 64/255 for L2

version adversarial attack.

4.1 Superior Performance in Improving Adversarial Robustness

We evaluate the effectiveness of WOT in improving adversarial robustness across
AT and three of its variants, four popular used datasets, i.e., SVHN, CIFAR-10,



Enhancing Adversarial Training via Reweighting Optimization Trajectory 121

Table 3. Test robustness under AA-L2 and AA-L∞ attacks across various datasets.
The experiments are based on PreRN-18 and AT. The bold denotes the best perfor-
mance.

Attack Method SVHN CIFAR-10 CIFAR-100 Tiny-ImageNet

L∞ AT+early stop 45.72 47.43 23.69 14.39
L∞ AT+SWA 40.24 48.61 23.90 17.94
L∞ AT+WOT-W(Ours) 50.42 48.36 24.41 17.10
L∞ AT+WOT-B(Ours) 51.83 48.96 25.26 18.77
L2 AT+early stop 72.13 71.30 42.75 36.61
L2 AT+SWA 67.76 73.28 43.10 42.40
L2 AT+WOT-W(Ours) 72.75 73.20 43.88 42.43
L2 AT+WOT-B(Ours) 72.80 73.39 43.32 42.54

Fig. 3. Robust accuracy under black-box attack over epochs. (Left) Robust accuracy
on the unseen robust model transfer attacked from checkpoints of AT, AT+WOT-W/B.
(Middle) Robust accuracy on checkpoints of AT, AT+WOT-W/B transfer attacked
from the unseen model. (Right) Robust accuracy on checkpoints of AT, AT+WOT-
W/B under SPSA black-box attack. The experiments are conducted on PreRN-18 and
CIFAR-10. The unseen robust model is WRN-34-10 trained by AT.

CIFAR-100 and Tiny-ImageNet, and three architectures, i.e., VGG16, PreRN-
18, and WRN-34-10.

WOT Consistently Improves the Adversarial Robustness of All Adver-
sarial Training Variants. In Table 1, we applied WOT-B and WOT-W to
AT+early stop, Trades, MART, and AWP variants and compare them with
their counterpart baselines. Besides, we add the combination of SWA and these
adversarial training variants as one of the baselines. The results show 1 WOT
consistently improves adversarial robustness among the four adversarial train-
ing variants under both weak attacks, e.g. FGSM, PGD-20, and strong attacks,
e.g., C&W∞, AA-L∞ attacks. 2 WOT-B as the WOT variant confirms our
hypothesis and consistently performs better than WOT-W. WOT-B improves
the robust accuracy over their counterpart baselines by 0.35% ∼ 1.53% under
AA-L∞ attack. 3 WOT boosts robust accuracy with a larger margin on AT
and Trades than MART and AWP under AA-L∞ attack. One reason might be
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that MART and AWP themselves enjoy good ability in mitigating robust over-
fitting [43,48], leading to less space for WOT to further boost the performance.

WOT Can Generalize to Different Architectures and Datasets. Table 2
and Table 3 show that WOT consistently outperforms the counterpart base-
line under AA-L∞ attack, which indicates that the effectiveness of WOT gen-
eralizes well to different architectures and datasets. In Table 2, WOT boosts
robust accuracy by 0.47% ∼ 2.12% on VGG16 and WRN-34-10 architectures.
In Table 3, WOT improves robust accuracy with 1.53% ∼ 6.11% among SVHN,
CIFAR-10, CIFAR-100 and Tiny-ImageNet under AA-L∞ attack. Besides, the
success of WOT can also be extended to AA-L2 attack with the improvement
by 0.67% ∼ 5.93%.

Fig. 4. Mean value of α and results of test robust/clean accuracy over epochs. The
experiments are conducted on CIFAR-10 with PreRN-18 based on AT.

Excluding Obfuscated Gradients. [3] claims that obfuscated gradients can
also lead to the “counterfeit” of improved robust accuracy under gradients-based
white-box attacks. To exclude this possibility, we report the performance of
different checkpoints under transfer attack and SPSA black-box attack over
epochs. In Fig. 3, the left figure shows robust accuracy of the unseen robust
model on the adversarial examples generated by the PreRN-18 model trained by
AT, AT+WOT-B, AT+WOT-W respectively with PGD-10 attack on CIFAR-
10. A higher robust accuracy on the unseen robust model corresponds to a
weaker attack. It can be seen that both AT+WOT-B and AT+WOT-W gener-
ate more transferable adversarial examples than AT. Similarly, the middle figure
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Table 4. Test robustness under AA-L∞ attack to show the robust overfitting issue in
AT and the effectiveness of WOT in overcoming it. The difference between the best
and final checkpoints indicates performance degradation during training and the best
checkpoint is chosen by PGD-10 attack on the validation set. The experiments are
conducted on CIFAR-10 with PreRN-18/WRN-34-10 architectures.

Architectures Method Robust Accuracy(RA) Standard Accuracy(SA)

Best Final Diff Best Final Diff

PreRN-18 AT 48.02 42.48 −5.54 81.33 84.40 +3.07
PreRN-18 AT+SWA 48.93 48.61 -0.32 84.19 85.23 +1.04
PreRN-18 AT+WOT-W(Ours) 48.04 48.36 +0.32 84.05 84.47 −0.42
PreRN-18 AT+WOT-B(Ours) 48.90 48.96 +0.06 83.84 83.83 -0.01

WRN-34-10 AT 51.77 46.78 −4.99 85.74 86.34 +0.6
WRN-34-10 AT+SWA 53.38 52.25 −1.13 87.14 88.45 +1.31
WRN-34-10 AT+WOT-W(Ours) 52.84 52.88 +0.04 84.83 84.88 +0.05
WRN-34-10 AT+WOT-B(Ours) 52.23 53.89 +1.66 83.46 85.50 +2.04

shows the robust accuracy of the PreRN-18 model trained by AT, AT+WOT-
B, AT+WOT-W on the adversarial examples generated by the unseen robust
model. It can be seen that AT+WOT-B and AT+WOT-W can better defend
the adversarial examples from the unseen model. What’s more, in the right
figure, we observe again that both AT+WOT-B and AT+WOT-W outperform
AT under SPSA black-box attack over different checkpoints during training. All
these empirical results sufficiently suggest that the improved robust accuracy of
WOT is not caused by obfuscated gradients.

4.2 Ability to Prevent Robust Overfitting

We report the robust accuracy under AA-L∞ attack for the best checkpoint
and the last checkpoint based on PreRN-18 and WRN-34-10 architectures on
CIFAR-10 (Table 4). Besides, we show the robust accuracy curve under PGD-10
attack on different checkpoints over epochs (Fig. 4).

In Fig. 4, the third and fourth figures show that after the first learning rate
decay (at 100 epoch), there is a large robust accuracy drop for AT between
the best checkpoint and the last checkpoint on both PreRN-18 and WRN-34-10
architectures. In comparison, there is completely no robust accuracy drop for
AT+WOT-W/B between the best checkpoint and the last checkpoint on both
PreRN-18 and WRN-34-10 architectures. In Table 4, we further show the evi-
dence that there is no robust accuracy drop for AT+WOT-B/W under stronger
attack, i.e., AA-L∞ attack. From the first and second figures of Fig. 4, we observe
that the mean of α decreases to a very small value after 150,100 epochs for
PreRN-18 and WRN-34-10 respectively. The small mean of α indicates that
WOT stops the model’s weights from updating with unexpected magnitudes,
which prevents the occurrence of robust overfitting.
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Fig. 5. The impact of gaps m and the number of gaps k on robust accuracy under
AA-L∞ attack. The experiments are conducted on CIFAR-10 with PreRN-18 based on
AT. k is fixed to 4 for the left figure and m is fixed to 400 for the right figure.

Table 5. Robust Accuracy of ablation experiments on CIFAR-10 with PreRN-18.

Methods PGD-20 PGD-100 CW∞ AA-L∞

AT+B1 49.68 47.44 49.04 45.26
AT+B2 52.74 51.28 51.31 48.22
AT+WOT-B+B3 (m=400,k=4) 47.14 44.23 43.87 41.02
AT+WOT-W (m=400,k=4) 53.19 51.90 51.74 48.36
AT+WOT-B (m=400,k=4) 54.85 53.77 52.56 48.96

4.3 Ablations and Visualizations

In this section, we first conduct ablation studies to show the effectiveness of the
designed optimization trajectories and the unseen hold-out set in WOT. Then
we investigate the impact of gaps:m and the number of gaps:k, the effect of
WOT on the loss landscapes w.r.t weight space, and the visualization of α for
blocks. The results are shown in Table 5, Fig. 5, and Fig. 6. All experiments in
the two figures are conducted on CIFAR-10 with PreRN-18 based on AT except
for Fig. 6 where Trades is also included. The robust accuracy is evaluated under
AA-L∞ attack for all three figures.

Ablation Studies. To demonstrate the effectiveness of the designed optimiza-
tion trajectories and the unseen hold-out set in boosting adversarial robustness,
we designed the following baselines: 1) Keep the same unseen hold-out set and
training strategy with WOT but optimize model weights instead of α on the
unseen hold-out set (Abbreviated as “B1” ); 2) Keep the same unseen hold-out
set and optimize the hyperparameter of SWA by the hold-out set (Abbreviated as
“B2” ); 3) Replace the unseen hold-out set with a seen set, i.e. keep the same num-
ber of samples from the training set (Abbreviated as “B3” ). Results in Table 5
show that 1 AT+WOT-W/B outperforms AT+B1 and AT+B2, indicating the
designed optimization trajectories play key roles in WOT. 2 AT+WOT-W/B
outperforms AT+B3 with a large margin, indicating the unseen hold-out set is
crucial for WOT.
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Fig. 6. Loss landscape w.r.t weight space (Fig. 6a and Fig. 6b). z-axis denotes the
loss value. We plot the loss landscape following the setting in [48]. The averaged α
by averaging along training process (Fig. 6c). The k-averaged α during the training
process. (Figure 6d). The experiments are conducted on CIFAR-10 with PreRN-18.

Impact of m and k. Figure 5 shows the impact of gaps m and number of gaps
k on robust accuracy under AA-L∞ attack. In the left figure, we observe that
robust accuracy increases with an increase of m. Besides, we find that WOT-W
is more sensitive to m than WOT-B. The right figure shows that both WOT-W
and WOT-B are not sensitive to the number of gaps k.

Averaged α for Blocks. To shed insights on why WOT-B outperforms WOT-
W, we plot the learned α for each block. Experiments are conducted on CIFAR-
10 with PreRN-18 based on WOT-B (K=4, m=400). Results in Fig. 6c and
Fig. 6d show that the magnitude of learned α are different among blocks. Specif-
ically, WOT-B assigns a large value of α for middle blocks, i.e., Block-2,3,4,5,
and a small value of α for the bottom and top blocks, i.e., Block-1,6. This indi-
cates that assigning different weights for different blocks may play a crucial role
in boosting adversarial robustness.

Visualizing Loss Landscape. We expect WOT to search flatter minima for
adversarial training to boost its robust generalization. We demonstrate that
it indeed happens via visualizing the loss landscape with respect to weight
space (Fig. 6a and Fig. 6b) and input space (Fig. 7). Figure 6a and Fig. 6b show
that WOT+baseline obtains flatter minima than baseline, which indicates an
improved robust generalization [43,48]. Figure 7 demonstrates that, compared
to AT, WOT achieves a lower loss value as the x-axis and y-axis values increase,
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Fig. 7. Comparison of loss landscapes of PreRN-18 models trained by AT (the first
row) and our methods (the second and third row). Loss plots in each column are
generated from the same original image randomly chosen from the CIFAR-10 test set.
z-axis denotes the loss value. Following the setting in [17], we plot the loss landscape
function: z = loss(x · r1 + y · r2) where r1 = sign(∇xf(x)) and r2 ∼ Rademacher(0.5).

indicating a lower curvature. This finding is consistent with the robust general-
ization claim presented in [32].

5 Conclusion

In this paper, we propose a new method named weighted optimization trajecto-
ries (WOT) for improving adversarial robustness and avoiding robust overfitting.
We re-weight the optimization trajectories in time by maximizing the robust per-
formance on an unseen hold-out set during the training process. The compre-
hensive experiments demonstrate: (1) WOT can effectively improve adversarial
robustness across various adversarial training variants, model architectures, and
benchmark datasets. (2) WOT enjoys superior performance in mitigating robust
overfitting. Moreover, visualizing analysis validates that WOT flattens the loss
landscape with respect to input and weight space, showing an improved robust
generalization.
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Ethical statement. Our proposed method, Weighted Optimization Trajectories
(WOT), enhances the robustness of deep neural networks against adversarial attacks.
While the primary goal is to improve AI system security, it is crucial to consider the
ethical implications of our work:

− Personal Data Protection: Researchers and practitioners must ensure proper data
handling, privacy, and compliance with data protection laws when working with per-
sonal data

− Privacy Preservation: Improved robustness could inadvertently increase the
capacity to infer personal information from data. Privacy-preserving techniques, like
differential privacy, should be employed to mitigate these risks.
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Abstract. Supervised fine-tuning of large language models (LMs) does
not always provide good text-generation performance in terms of quality
and diversity. This is because such models maximize the likelihood of
correct subsequent words based on previous contexts encountered in the
training phase, instead of evaluating the entire structure of the gener-
ated texts. In this context, fine-tuning methods for LMs using adversar-
ial imitation learning (AIL) have been proposed to improve the trade-off
relationship between quality and diversity. This method leverages the
evaluations of the discriminators without requiring manually designed
metrics. Previously proposed AIL methods cannot control the shapes of
the reward functions and constrain updates of LMs using fixed ranges,
independent of the quality, e.g., proximal policy optimization. This study
proposes a combination of an AIL method and an approximation of mix-
ture distributions (AMDAIL), synergizing with LMs for text generation.
AMDAIL exhibits two features: (1) controlling the distribution of the
bounded reward values by varying the shape of the bounded reward
function, and (2) a variable constraint to promote updates using the
confidence of the discriminator as the quality of the texts. The proposed
method exhibits stable behavior in the training phases and improves the
trade-off relationship between the quality and diversity in the inference
phases.

Keywords: Text generation · Adversarial imitation learning ·
Reinforcement learning

1 Introduction

Large language models (LMs) yield better text generation performance as their
total numbers of weight parameters are increased exponentially [1]. The gen-
erative pretrained transformer (GPT) series of pre-trained autoregressive LMs
[2,3] is widely utilized in the field of natural language processing because it can
considerably fine-tune new tasks even when the datasets are small. However,
supervised fine-tuning (SFT) of LMs may deteriorate the trade-off relationship
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between the quality and diversity of the generated text, e.g., repeated and fre-
quently occurring words [4]. This is because SFT maximizes the likelihood of cor-
rect subsequent words based on previous contexts in the training phases instead
of evaluating the entire structure of the text generated by LMs.

Therefore, several methods [5] have been proposed to bridge the gap between
the training phase involving correct text and the inference phase involving text
generation. In direct assimilation methods used for training and text generation
with LMs, leveraging the advantages of reinforcement learning (RL) is generally
successful; e.g., InstructGPT [6], which is an LM of RL based on human feed-
back (RLHF) [7]. However, RLHF approaches require considerable annotation
for reward models because they require human feedback and numerous pairs
of generated texts to ensure adequate accuracy of reward models. To improve
the quality and diversity of LMs without human feedback, adversarial imita-
tion learning (AIL) has been utilized in numerous applications [8]. AIL meth-
ods for LMs with text generation, such as self-adversarial learning (SAL) [9],
TextGAIL [10], and Generative Cooperative Networks (GCN) [11], outperform
previous generative adversarial network (GAN) methods [12–14]. An advantage
of AIL methods is that they consider total structures using discriminators with-
out requiring human feedback or manually designed metrics.

However, AIL methods for text generation suffer from certain shortcomings.
The distributions of the reward values are not always stable, and their linear
normalization in each dataset does not always stabilize the LMs’ updates practi-
cally. Hence, controlling the reward functions nonlinearly is effective in practical
applications; however, AIL methods may not enable such control. In this paper,
we contribute to overcoming this problem in two ways. (1) We propose a con-
trollable reward function for the stable distribution of reward values. Besides
enabling the capacity to reshape the distribution of reward values, this also
enables the quantitative generation of the optimal LMs.

Proximal policy optimization (PPO) [15], which is utilized as an update
method in InstructGPT and TextGAIL, suffers from another problem related
to the constraints of fixed ranges—the fixed clipping of the probability ratios
handles high- and low-quality text similarly. The constraints of updates should
also be dependent on the quality of the text to encourage updates among high-
quality texts and suppress that among low-quality texts. Further, the fixed clip-
ping constraints of the PPO reduce the probability ratios rapidly and make
their distributions non-smooth. The second contribution of this paper is related
to this problem: (2) We provide a variable constraint based on the quality of the
texts, which avoids the rapidly fixed clipping of the PPO ratios and makes their
distributions smooth.

The proposed method is named after AIL combined with the approximation
of the mixture distribution (AMDAIL). AMDAIL exhibits two beneficial prop-
erties: (1) bounded reward and (2) clipped surrogate objective of the mixture
distribution. For simple implementation of these properties, AMDAIL uses an
approximation of the mixture distribution of the generator and an expert policy
based on the confidence of the discriminator. In this study, AMDAIL exhibits
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stable behavior during the training phase and improves the trade-off relationship
between quality and diversity during the inference phase.

2 Adversarial Imitation Learning for Text Generation

Text generation using a simple GAN framework is challenging because LMs
sample discrete words from the distributions of their vocabularies, and may
not backpropagate gradients along the paths of the discriminators. To utilize
adversarial learning approaches for text generation, several methods (e.g., SAL,
TextGAIL, and DCN) have been proposed to overcome the unstable behavior
of LMs in AIL methods and considerably improve the trade-off relationship
between quality and diversity relative to those of LMs with SFT. An AIL method
involves a type of reinforcement learning that imitates the behavior of experts via
adversarial learning approaches without requiring the manual design of metrics.
In this section, we discuss TextGAIL, which is a simple implementation of AIL
methods upon which the proposed method is based, and provide general insights
into SFT and AIL methods.

2.1 TextGAIL

TextGAIL is based on generative AIL (GAIL) [16], which involves contrastive
discriminators and utilizes PPO for text generation. Contrastive discriminators
prevent saturated confidence in adversarial learning caused by standard discrim-
inators, which identify the differences between the correct and generated texts
rapidly. This is because they learn the relative realities, instead of the differences
between the correct and generated texts. The confidences of the contrastive dis-
criminators D(x, yπ) and D(x, ye), for the generated text yπ and correct text ye

based on the context x are described using the logits z of the standard discrim-
inators, as follows:

[D(x, yπ),D(x, ye)] = softmax ([z(x, yπ), z(x, ye)]) . (1)

The discriminators and generators are optimized to determine the sad-
dle points of the following equation sampling from the probabilistic densities,
ρπ(x, y) and ρe(x, y), of the generator and expert policies, respectively:

min
π

max
D

E(x,y)∼ρe
[log D(x, y)] + E(x,y)∼ρπ

[log(1 − D(x, y))]. (2)

TextGAIL recognizes this min-max problem as an AIL problem—the gener-
ator policy π(y|x) and confidence D(x, y) of the discriminator are recognized as
the agent policy and reward function, respectively. The generator policy attempts
to maximize the expected reward using PPO as a policy update method, ensur-
ing that the current policy is not drastically updated based on the old policy.
The generator policy of TextGAIL encodes the t-th word based on the context
x and the t-1 subsequent words y1:t−1 as the states, and the subsequent word yt

is sampled from the policy distribution as the action. In our implementations,
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Table 1. Reward functions and optimized objectives of the AIL methods.

Method Reward Function Optimized Objective

GAIL − log(1 − D(x, y)) JS(ρπ(x, y)||ρe(x, y))

AIRL log D(x,y)
1−D(x,y)

KL(ρπ(x, y)||ρe(x, y))

the generator policy π(y|x) is the geometric mean of the joint probabilities of
all words in the text y and the context x, based on the temporal distributions
of the generator policy π(yt|x, y1:t−1) and text length T , as given below:

π(y|x) =

(
T∏

t=1

π(yt|x, y1:t−1)

)1/T

. (3)

Hence, the policy maximizes the expected rewards by optimizing the following
clipped surrogate objective of PPO, using importance sampling [17] of the geo-
metric mean of the joint probabilities with the new and old generator policies,
πnew(y|x) and πold(y|x), respectively:

L(x, y) = −min

⎧⎪⎨
⎪⎩

πnew(y|x)
πold(y|x) R(x, y)

clip
(

πnew(y|x)
πold(y|x) , 1 − ε, 1 + ε

)
R(x, y).

(4)

2.2 Divergence Minimization of Adversarial Imitation Learning

Understanding AIL methods, such as GAIL and adversarial inverse reinforce-
ment learning (AIRL) [18], is essential for quantitative recognition. We may
regard reward maximizations in several AIL methods as divergence minimiza-
tions between the generator and expert policies [19]. The primary differences
between GAIL and AIRL are the reward functions and optimized objectives, as
listed in Table 1. The reward functions of GAIL and AIRL are similar; however,
the optimal generator policies of these methods are not equal owing to the differ-
ences in their optimized objectives led by their reward functions. We demonstrate
the transformation from reward maximization to divergence minimization.

Generative Adversarial Imitation Learning. The confidence of the optimal
discriminator D∗(x, y) in (2) can be described as ρe(x,y)

ρπ(x,y)+ρe(x,y) with the proba-
bility densities, ρπ(x, y) and ρe(x, y), of the context x and the subsequent text y
pairs, respectively, obtained via the generator and expert policies, respectively.
Hence, the generator policy π(y|x) is optimized to minimize the Jensen-Shannon
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(JS) divergence between the probability densities ρπ(x, y) and ρe(x, y) as follows:

max
π

E(x,y)∼ρe
[− log D∗(x, y)] + E(x,y)∼ρπ

[− log(1 − D∗(x, y))] (5)

= −min
π

E(x,y)∼ρe

[
log

ρe(x, y)
ρπ(s, a) + ρe(x, y)

]
+ E(x,y)∼ρπ

[
log

ρπ(x, y)
ρπ(s, a) + ρe(x, y)

]
= −min

π
JS (ρπ(x, y)||ρe(x, y)) + 2 log 2

Adversarial Inverse Reinforcement Learning. The reward function of
AIRL is described as log D(x,y)

1−D(x,y) , and the optimized objective with the opti-
mized discriminator D∗ is the Kullback-Leibler (KL) divergence between the
probability densities, ρπ(x, y) and ρe(x, y), which is obtained in the same man-
ner as GAIL, as follows:

max
π

E(x,y)∼ρπ

[
log

D∗(x, y)
1 − D∗(x, y)

]
= −min

π
E(x,y)∼ρπ

[
log

ρπ(x, y)
ρe(x, y)

]
= −min

π
KL(ρπ(x, y)||ρe(x, y)). (6)

2.3 Relationship Between Maximum Likelihood Estimation
and Adversarial Imitation Learning

The different optimized objectives of AIL methods are crucial for fine-tuning
them based on LMs with SFT. In terms of the maximum likelihood esti-
mation, SFT may be considered to minimize the forward KL divergence
KL(ρe(x, y)||ρπ(x, y)) as follows:

arg min
π

E(x,y)∼ρe
[− log ρπ(x, y)] = arg min

π
E(x,y)∼ρe

[− log ρπ(x, y) + log ρe(x, y)]

= arg min
π

KL (ρe(x, y)||ρπ(x, y)) . (7)

This is the inverse of the reverse KL divergence KL(ρπ(x, y)||ρe(x, y)) in AIRL.
They exhibit different properties of mass expression based on the probabilistic
density of the generator policy ρπ(x, y) compared to that based on the prob-
abilistic density of the expert policy ρe(x, y). The generator policy with the
forward KL divergence attempts to cover all expert modes, and that with the
reverse KL divergence seeks partial expert modes to avoid non-existing modes
in the expert policy. The generator policy with SFT in mode covering exhibits
a synergistic effect with fine-tuning by AIL in mode seeking. This is because
the generator policy can be refined to fit the complex distribution of the expert
policy, based on the distribution of the generator policy acquired by SFT [20].
Owing to their synergistic combination, adapting AIL methods for reverse KL
divergence results in good performance. However, mode seeking via AIL methods
may deteriorate the mode covering of SFT and the performance of LMs, owing
to over-encouraging them to expand the zero-probabilistic densities of the gen-
erator policies relative to those of the expert policies [21]. Hence, the mitigation
of this zero-forcing mode seeking behavior is key to stabilizing fine-tuning using
AIL methods.
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(a) Shape of bounded reward function with
respect to varying β.

(b) Shape of bounded reward function with
respect to varying α.

Fig. 1. Behavior of bounded reward function respect to varying hyperparameters, α
and β.

3 Adversarial Imitation Learning with Approximation
of Mixture Distribution

Utilizing the performance of LMs with AIL methods for forward KL divergence is
challenging owing to the zero-forcing behavior of mode seeking; for example, the
reward value of AIRL can approach negative infinity when the confidence of the
discriminator approaches zero. To overcome this problem, we propose AMDAIL,
which is an AIL method combined with approximation of mixture distribution
using two properties—a lower bounded reward and a clipped surrogate objective
depending on the confidence of the discriminator.

3.1 Lower Bounded Reward Function

The lower bounded reward function of AMDAIL is derived from that of AIRL
and can be described by the hyperparameters α ∈ [0.0, 1.0] and β ∈ [0.0, 1.0]
depending on the reward shape, as follows:

R(x, y) =
α(1− D(x, y)) + (1− α)D(x, y)

1− D(x, y)
log

β(1− D(x, y)) + (1− β)D(x, y)

α(1− D(x, y)) + (1− α)D(x, y)
. (8)

The lower bound of this reward function is given by α log (β/α) ≤ R(x, y). Hence,
infinite reward values are avoided when the confidence of the discriminator is
almost zero. Based on Fig. 1, it may be intuitively concluded that α and β
are related to the lower bound and slope of the reward function, respectively.
Similar to GAIL and AIRL, the maximization of the expected reward value may
be considered as divergence minimization between the mixture distributions,
ρα(x, y) := αρπ(x, y)+(1−α)ρe(x, y) and ρβ(x, y) := βρπ(x, y)+(1−β)ρe(x, y),
as follows:
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(a) Shape of variable clipping with respect
to varying α.

(b) Shape of variable clipping with respect
to varying ε.

Fig. 2. Variable clipping with respect to varying hyperparameters, α, β, and ε.

max
π

E(x,y)∼ρπ

[
α(1− D∗(x, y)) + (1− α)D∗(x, y)

1− D∗(x, y)
log

β(1− D∗(x, y)) + (1− β)D∗(x, y)

α(1− D∗(x, y)) + (1− α)D∗(x, y)

]

= max
π

E(x,y)∼ρπ

[
ρα(x, y)

ρπ(x, y)
log

ρβ(x, y)

ρα(x, y)

]
= max

π
E(x,y)∼ρα

[
log

ρβ(x, y)

ρα(x, y)

]

= −min
π

KL(ρα(x, y)||ρβ(x, y)). (9)

When α is larger than β, KL(ρα(x, y)||ρβ(x, y)) is the reverse KL divergence
seeking partial expert modes. On the other hand, when α is smaller than β,
KL(ρα(x, y)||ρβ(x, y)) is the forward KL divergence covering all expert modes.
Hence, AMDAIL can modify the direction of the optimized objective between
the mixture probabilistic densities of the generator and expert policies, ρα(x, y)
and ρβ(x, y). In the experiment, we assume α to be larger than β for the reverse
KL divergence to refine the generator modes from those of SFT. To ensure
robustness in RL, the clipping of the reward functions can be considered with a
constant CR, as follows:

Rclip(x, y) = clip (R(x, y),−CR, CR) . (10)

However, the reward gradients are diminished when the reward values lie in the
range (−∞,−CR] or [CR,∞), and reward maximization becomes challenging.
Conversely, the reward values of all samples with AMDAIL can be ordered owing
to the slopes of the reward functions in all the ranges.

3.2 Clipped Surrogate Objective with Approximation of Mixture
Distribution

The surrogate objective subjected to the constraint is proposed as a robust
policy update for RL. The trust region method (TRPO) [22] proposes a penalty
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Algorithm 1. AMDAIL
1: Initialize:

Collect expert texts ye.
Supervised fine-tuning LM π(y|x) based on expert texts ye and context x.
Buffer Bπ and Be.

2: for i = 1, 2, 3, . . . do
3: Buffer pairs of generated texts yπ and contexts x into Bπ.
4: Buffer pairs of expert texts ye and contexts x into Be.
5: Sample pairs of (x, yπ) and (x, ye) based on Bπ and Be.
6: Buffer confidences D(x, yπ) and robust scaling rewards for (x, yπ).
7: Buffer constant rewards for (x, ye).
8: Update discriminator D(x, y) with (2).
9: Update LMs based on (x, yπ) with (14) and (x, ye) with (4).

10: Clear Buffer Bπ and Be

11: end for

term for KL divergence between the old and new policies. TRPO estimates the
expected reward obtained via importance sampling [17] based on the old and
new policies, as follows:

E(x,y)∼ρ
πold

[
πnew(y|x)
πold(y|x)

R(x, y) − βKL(πnew(y|x)||πold(y|x))
]

. (11)

However, the calculation of KL divergence with LMs between the old and new
generator policies is computationally complicated, involving numerous outputs
as the vocabulary. To implement a simpler approach, PPO proposes a clipped
surrogate objective, clipping the ratio of the old and new policies, as described
in 4. Ratio clipping suppresses radical updates of the policy without penalizing
a surplus. PPO has been successfully implemented in broad applications in RL
models because of the simplicity of its implementation and its effectiveness.
However, fine-tuning LMs via AIL suffers from difficulties owing to degrading
the policies for text generation. This is caused by penalizing the generated texts,
which can lead to initialized LMs instead of improving the generator policy.
Consequently, enhancing updates among high-quality generated texts is essential
for AIL methods to improve LMs. To implement this concept, the proposed lower
bounded reward emphasizes the updates among high-quality generated texts and
suppresses updates among low-quality generated texts. However, products with
a large ratio and low reward and those with a small ratio and high reward may
exhibit values similar to those of the objective. Hence, we propose the clipping
of mixture distributions using a variable range depending on the quality of the
generated text—constraint strict for low-quality text and liberal for high-quality
text. The proposed clipping range is expressed as follows:
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Table 2. Hyperparameters of model implementation

Hyper Parameters CommonGEN ROCStory

SFT Epoch 2 2

AIL Epoch 1 1

Batch Size 64 32

Buffer Size 512 256

Learning Rate of GPT2 4e-5 4e-5

Learning Rate of OPT 1e-5 1e-5

Learning Rate of DeBERTa 5e-7 1e-6

LB :=
(α(1 − D(x, y)) + (1 − α)D(x, y)) (1 − ε) − (1 − α)D(x, y)

α(1 − D(x, y))
≤ πnew(x, y)

πold

≤ UB :=
(α(1 − D(x, y)) + (1 − α)D(x, y)) (1 + ε) − (1 − α)D(x, y)

α(1 − D(x, y))
. (12)

This clipping range extends through the confidence of the discriminator,
interpreting the quality of the generated text to prioritize tricking them, as
depicted in Fig. (2). It is derived from the constraint on the ratio of the mixture
probabilistic densities πnew

α /πold
α , instead of the PPO constraint on the ratio

πold/πnew, as described below:

1 − ε ≤ πnew
α (y|x)

πold
α (y|x)

≤ 1 + ε.

We approximate the expert policy using the old policy and the confidence of
the discriminator, as follows: πe(y|x) ≈ ρe(x,y)

ρπ(x,y)π
old(y|x) = D∗(x,y)

1−D∗(x,y)π
old(y|x).

This is because the policy is proportional to the probability density, i.e.,
π(y|x) ∝ ρπ(x,y)

ρ(x) , when the probabilistic density of the context ρ(x) is fixed
as the dataset. We may then use the following inequality as the constraint on
the mixture distributions and Eq. (12):

1 − ε ≤
πnew(y|x)
πold(y|x) α(1 − D(x, y)) + (1 − α)D(x, y)

α(1 − D(x, y)) + (1 − α)D(x, y)
≤ 1 + ε (13)

Accordingly, the surrogate objective of AMDAIL can be described as follows:

L(x, y) = −min

⎧⎪⎨
⎪⎩

πnew(y|x)
πold(y|x) R(x, y)

clip
(

πnew(y|x)
πold(y|x) ,LB,UB

)
R(x, y).

(14)

Then, the algorithm of AMDAIL is summarized in Algorithm 1.
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(a) Ratios and confidence in TextGAIL (b) Ratios and confidence in AMDAIL

Fig. 3. Relationships between the policy ratios and confidences of the text and AIL
methods. The x- and y-axes describe the policy ratios and the confidences of the dis-
criminator, respectively. The histograms depict the discrete sample distributions of the
axes, and the black lines represent their linear regressions.

(a) TextGAIL (b) AMDAIL

Fig. 4. Histograms of the reward values of the AIL methods.

4 Study and Result

We conducted experiments on the trade-off relationship between quality and
diversity, and analyzed the behavior of each AIL method. This section describes
the details of the experimental implementation, including the dataset, models,
and evaluation metrics, and presents the experimental results.

4.1 Dataset and Models

We tested the text generation performance of each AIL method using the fol-
lowing datasets:

1. The CommonGEN data set [23]: Evaluate the reasoning performances of rela-
tionships based on common-sense knowledge and the generalization perfor-
mance of text generation based on unseen combinations of concepts.
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(a) GPT2 Model in CommonGen (b) OPT Model in CommonGen

(c) GPT2 Model in ROC Story (d) OPT Model in ROC Story

Fig. 5. Relationships between the qualities and diversities of the generated texts. The
x- and y-axes represent the Google BLEU scores as the qualities and distinct-N scores
as the diversities, respectively. We utilized top-p sampling to decode the texts from the
contexts.

2. The ROC Story data set [24]: Evaluate the capturing performances of the
causal and temporal common-sense knowledge of daily events and the gener-
alization performance of text generation in daily life.

We utilized the GPT-2, OPT[27], and DeBERTa[28] models as the two gen-
erators and discriminator, respectively—the hyperparameters used for model
implementation are listed in Table 2. The generator policy decodes the text via
nucleus (a.k.a. top-p) sampling from the top-p distribution of the vocabulary.
This decoding method exhibits good performance in text generation with various
patterns based on similar contexts and reduces the repetition of words.

4.2 Evaluation Metrics

We evaluated the qualities and diversity of the generated sentences. We used the
google bilingual evaluation understudy (Google BLEU) score [25] as the n-gram
metric of the matching ratio of sub-sequences of 1, 2, 3, or 4 tokens to evaluate
the quality of the generated text. GoogleBLEU can evaluate the qualities of
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Table 3. Comparison Experiments for methods on GPT2. We utilized top-p sampling
to decode the texts at temperature = 1.0 in the comparison experiments with 3 seeds.

CommonGen

Methods Google Bleu Distinct-2

SFT 0.1413 ± 0.0007 0.4330 ± 0.0021

TextGAIL 0.1359 ± 0.0005 0.4645 ± 0.0015

AMDAIL (Ours) 0.1470 ± 0.0010 0.4409 ± 0.0014

ROC Story

Methods Google Bleu Distinct-2

SFT 0.0634 ± 0.0002 0.3796 ± 0.0005

TextGAIL 0.0625 ± 6.6e-5 0.3858 ± 0.0007

AMDAIL (Ours) 0.0642 ± 2.4e-5 0.3845 ± 0.0009

single sentences effectively, such as the entries in the ROC Story dataset. To
evaluate the diversity of the generated text, we utilized the Distinct-n score [26]
as the n-gram uniqueness metric in the dataset.

4.3 PPO Ratio and Confidence

Figure 3 depicts the relationships between the ratio L(x,y)
|R(x,y)| of the clipped sur-

rogate objective and abstract reward values, and the confidences of the discrim-
inator D(x, y). As is evident from Fig. 3a, PPO clipping handles all samples
larger than the thresholds equally, and the histogram of the ratio is not smooth
because of multiple clipped PPO ratios. Conversely, Fig. 3b depicts the smooth
histogram of the ratios in AMDAIL via clipping with the various ranges depend-
ing on the confidence. Additionally, samples with low confidences are clipped
strictly, and those with high confidences are clipped lightly in AMDAIL. There-
fore, AMDAIL promotes considerable updates to high-quality texts and sup-
presses updates among low-quality texts to suppress the effect of zero-forcing
induced by reverse KL divergences, which may deteriorate the performance of
LMs with SFT.

4.4 Comparison Distributions of the Reward Values

We evaluated the dependence of distributions of the reward values based on
the confidences of the discriminator on the proposed lower bounded reward, as
depicted in Fig. 4. TextGAIL exhibits symmetric distributions of reward values,
as depicted in Fig. 4a. Therefore, it corresponds to nearly identical degrees of
penalization of low-quality texts and promotion of high-quality texts. On the
other hand, Fig. 4b depicts the asymmetric distribution of the reward values in
AMDAIL. Hence AMDAIL is confirmed to suppress over-penalizing by lower
bounds and promote high-quality texts more than AIL methods (Table 5).
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Table 4. Examples of ground truth and texts generated using different methods via
top-p sampling at temperature = 1.0 by each AIL method with GPT2 in CommonGEN.

Method Example 1

Context table beat music sit tap

Ground Truth The girl sits at the table and the girl taps her feet to the beat of the
music

SFT this table has four taps on it that sit on the table.

TextGAIL dancing men sit at tables and tap music

AMDAIL Two women sit on chairs in the dining room. One has a glass of
beer and a smile. The other has a teabag

Table 5. Examples of ground truth and texts generated using different methods via
top-p sampling at temperature = 1.0 by each AIL method with GPT2 in ROC Story.

Method Example 1

Context Kate started playing the Xbox with her nephew. But a year later
she was hooked and played alone. One day she found a new version
of the game she always played. They released a new game every year

Ground Truth Kate was shocked to realized she had been playing the Xbox a year

SFT Now she can play any game with her nephew.

TextGAIL Kate bought a new console every year for her nephew.

AMDAIL Kate liked playing with her nephew but was worried about her
privacy

4.5 Quality and Diversity

We evaluated the trade-off relationship between quality and diversity based on
the plots of the Google BLEU and Distinct-n scores, as depicted in Fig. 5. We
can observe greater improvement in AMDAIL compared to TextGAIL and SFT
models. On the other hand, some scores of TextGAIL exhibit lesser deterioration
than those of SFT, demonstrating that TextGAIL sometimes fails to fine-tune
and its learning behaviors are not stable. AMDAIL improved text generation
corresponding to all combinations of datasets and models, demonstrating the
robustness of learning behaviors in AMDAIL. This is attributed to the effective
suppression of zero-forcing induced by reverse KL divergences in AMDAIL and
the consequent quality preservation and improvement of the performances of
LMs with SFT. Table 4 lists samples of generated texts corresponding to each
method.
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5 Conclusions

Text generation using AIL methods is difficult as they also promote updating
policy among low-quality texts. To address this problem, we propose AMDAIL
that promotes the updating policy among high-quality texts with high reward
values and suppresses updating policy among low-quality texts. We demonstrate
that AMDAIL minimizes the divergence between the generator policy and expert
policy. Experimental results indicate that AMDAIL improves the trade-off rela-
tionship between quality and diversity, and its properties solve the problems of
AIL related to smoothing and controlling the distributions of the reward values
to a greater degree than those of other AIL methods with PPO. It also mitigates
the deterioration in performance caused by zero-forcing induced by reverse KL
divergence.

Ethical Statement. In this study, we utilized pretrained LMs for text generation.

Pretrained LMs, e.g., GPTs, may contain personal data in the weight parameters.

Thus, LMs should be tested in advance and the personal information should be removed

from both datasets and models. In this study, we utilized public datasets and models to

avoid the misuse of personal information. We confirm that the models did not generate

any texts, including any personal information. However, this study can be utilized in

deception involving fake documents, news, etc., even though we only intend to improve

the quality and diversity of LMs for text generation. Hence, we intend to manage and

survey the utilization of this study, to ensure that its negative influences are monitored

and constrained.
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Abstract. Deep neural networks can be potentially vulnerable to adver-
sarial samples. For example, by introducing tiny perturbations in the
data sample, the model behaviour may be significantly altered. While
the adversarial samples can be leveraged to enhance the model robust-
ness and performance with adversarial training, one critical attribute of
the adversarial samples is the perturbation rate. A lower perturbation
rate means a smaller difference between the adversarial and the origi-
nal sample. It results in closer features learnt from the model for the
adversarial and original samples, resulting in higher-quality adversarial
samples. How to design a successful attacking algorithm with a minimum
perturbation rate remains challenging. In this work, we consider pruning
algorithms to dynamically minimise the perturbation rate for adversar-
ial attacks. In particularly, we propose, for the first time, an attribu-
tion based perturbation reduction method named Min-PR for white-box
adversarial attacks. The comprehensive experiment results demonstrate
Min-PR can achieve minimal perturbation rates of adversarial samples
while providing guarantee to train robust models. The code in this paper
is available at: https://github.com/LMBTough/Min-PR.

Keywords: Adversarial learning · adversarial sample · model
pruning · white-box attacks

1 Introduction

Recent years have witnessed significant progress with deep learning (DL) in var-
ious fields, such as image classification [21], voice recognition [23], and sentiment
analysis [1]. Though DL technique can be a powerful tool [5,9], it raises new
security-related requirements [32] and a successful attack can impact on the
performance of the system and lead to fatalities, say in autonomous driving [26].
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Fig. 1. ImageNet example with and without sample perturbation

DL systems are vulnerable to attacks from well crafted adversarial exam-
ples [8,25], which means that adversarial attacks may be an inherent weakness
of deep neural networks (DNNs) [15]. One popular way is by designing adversar-
ial samples for the targeting model, which adds imperceptible perturbations to
the original sample to manipulate the model behaviour [7]. For example, Fig. 1 is
one of the hard-to-attack images for ImageNet dataset, in which the perturbation
is added by FGSM method [16]. The trained model will thus output different
labels. Different outputs indicate manipulated behaviour via adversarial samples,
posing a significant threat to the model security. It also lead to many researches
leveraging adversarial samples for training, which can largely enhance the model
robustness to adversarial interference [27], such as adversarial training [2,14].

Adversarial attacks can be classified as white-box attacks [18] and black-
box attacks [20] based on the knowledge level of the target model. In white-
box attacks, the attackers have access to various information about the tar-
get model, such as model parameters, network structure, training dataset, and
defense mechanisms. For black-box attacks, they are more challenging since no
relevant information about the model will be available. It is widely agreed that,
for white-box attacks, the adversarial samples are easier to be constructed for
highest success rates with minimal perturbations [19]. How to obtain adversar-
ial samples with a small perturbation rate to avoid detection is the main goal.
Some recent methods for generating adversarial samples include FGSM [6,7],
FTGSM [31], PGD [16], AdvGan [29] and so on.

In general, there are two measurements for the adversarial samples: (1) the
adversarial sample and the original sample should have as little difference as
possible (within a certain range); (2) the adversarial sample should have a high
probability to cause misclassification in the model. Lower perturbation rates
of the sample result in smaller differences between the adversarial and original
sample, making it less detectable to the model’s defense mechanisms. The feature
learnt by the model from the adversarial sample will be closer to original sample,
indicating a higher likelihood of successful attacks. Therefore, there is a research
trend of minimising the perturbation rate of adversarial sample.

In the meantime, the parameter number for the state-of-the-art DNN models
ranges from millions to billions. However, not all of them are of same importance
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for the model [3]. Pruning algorithms are one popular way to discard some
parameters, and improve the model efficiency while maintaining the perfor-
mance [22]. Thus, we propose a novel optimization algorithm to minimise the
perturbation rate for adversarial samples, which is the first time to the best of
our knowledge. Particularly, the algorithm to Minimising the Perturbation Rate
(Min-PR) is designed with the attribution method to evaluate importance of the
perturbation and remove perturbations that are not important for the attack.

The key idea of this paper is to minimize the perturbation rate in constructing
adversarial samples to the white-box attacks, while maintaining a certain degree
of generalization and improving the model’s robustness and accuracy. We identify
Min-PR supported by the following contributions:

– We propose Min-PR to innovatively utilise the pruning algorithms to min-
imise perturbation rate for gradient-based adversarial attack algorithms.

– In line with two different goals, which aim to attack as few parameters as
possible and allow manipulation to all sample points, we develop Min-PR in
two different implementations, namely Min-PRv1 and Min-PRv2 algorithms.

– Both theoretical and empirical investigation details for the attribution algo-
rithm, which is a core part of Min-PR, are included in Sect. 3.

– A comprehensive statistical analysis is performed based on our benchmarking
experiments on various datasets and various adversarial attacks. The results
in Sect. 4 demonstrates the state-of-the-art performance of Min-PR.

2 Related Works

2.1 Adversarial Attack Algorithms

Adversarial attack algorithms have been extensively studied, which are mostly
based on either gradient [10,28] or GAN [29]. As an important category, gradient-
based adversarial attacks was firstly identified in the work of fast gradient sign
method (FGSM) by Goodfellow et al [7]. FGSM is a gradient-based method gen-
erating adversarial examples for non-targeted attacks (i.e., the generated adver-
sarial examples do not need to be predicted as a specific target class, as long
as they are different from the original prediction). Unlike traditional gradient
descent, FGSM uses one-step gradient ascent to train the adversarial examples.

I-FGSM is proposed to apply a single transformation to all the pixels of the
original image [6], while the projected gradient descent method (PGD) [16] is
presented aiming to eliminate the sign function and instead uses the F-norm
as the scale for not only linear models but also nonlinear models. C&W algo-
rithm (Carlini&Wagner) is proposed to reduce the perturbations by several con-
straints considering gradient descent [4]. Another group of studies is to use the
generative adversarial network (GAN) for adversarial sample generation, such
as AdvGAN [29], since GAN is effective for data generation.
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2.2 Pruning Algorithm

When referring to the parameters of DNN, it generally means the learnable
parameters of the network including the weight matrix and bias. The purpose
of pruning is to remove the unimportant weight matrices while not impacting
the model performance. Traditional pruning methods include optimization-based
pruning, magnitude-based pruning, importance-based structured pruning, and
reconstruction error-based structured pruning. However, pruning algorithm has
some limitations: 1) Most of the pruning algorithms require data validation, and
they need to be adapted to scenarios where only one sample is attacked for
adversarial attacks; 2)Most of the pruning algorithms will modify the original
parameters, and the pure application to adversarial attacks cannot guarantee an
optimised perturbation rate. To address these issues, Min-PR is proposed in this
paper to minimise the ideal perturbation rate we need. Additionally, a compre-
hensive experimental evaluation is presented to demonstrate the performance of
the algorithm following the works from [12,17].

3 Method

A lower perturbation rate can help the attack method find more similar samples
compared to original examples. Many adversarial attack algorithms opt for lim-
iting the perturbation’s norm to minimise the final perturbation rate, such as
projected gradient descent on negative loss function [11], or designing a specific
optimization formula [4]. However, we observe that the perturbation rate can
be further optimised. In particular, we propose the Min-PRv1 and Min-PRv2
algorithm in following sections. As shown in Fig. 2, Fig. 2a is the figure after
attacking as few parameter positions as possible using Min-PRv1, and Fig. 2b is
the figure after modifying the attack position using Min-PRv2.

Fig. 2. Comparison images using Min-PRv1 and Min-PRv2 (ImageNet)
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3.1 Problem Definition

Formally, suppose we have a deep neural network N : Rn → R
c and original

sample x ∈ Rn. The adversarial attack methods aim to find Δx to construct a
manipulated input sample x′ = x + Δx, where the optimization goal is

min
x′

D(x, x′) subject to N(x) �= N(x′) (1)

D can be considered as the distance function, i.e., L2norm. For classification task,
N(x) �= N(x′) while for regression tasks, the constraint can be defined as N(x)−
N(x′) ≥ ε depending on the application. Considering the different definitions of
minimum distance, we extend the optimization goal to two conditions of D1 and
D2 in Eq. (2), resulting in Sect. 3.2 and 3.3. � means element-wise product.

x′ = M � Δx + x, with M = [m1,m2, . . . ,mn] (2)

D1. Minimise the required number of input features to be manipulated by the
adversarial attack method, which is equivalent to finding M as sparse as
possible in Eq. (2) while satisfying N(x) �= N(x′). In this case, mi ∈ {0, 1}.

D2. Minimise the overall distance between the original input x and adversarial
example x′, considering all input features, which is equivalent to finding M
as small as possible to minimum (x′)2 in Eq. (2). In this case, mi ∈ [0, 1].

3.2 Min-PRv1 for D1

To address D1 goal, the perturbation rate is optimised by removing insignificant
changes while retaining salient attack features. In this way, the optimisation
objective of D1 becomes to remove as many unimportant Δx as possible while
retaining the attacking success rate. Thus, we implement Min-PRv1 by applying
attribution based neural network pruning method to selectively remove unim-
portant deviations between original and adversarial samples. The attribution
method applied in Min-PRv1 can trace the individual relationship between the
input and output, corresponding to Δx and the attacking result of the sample.

We firstly discuss two axioms, as the fundamental definition in [24], for one-
to-one relationship between output changes and inputs in attribution method:

Sensitivity: An attribution method satisfies Sensitivity if it assigns a non-zero
attribution to any feature that differs between an input and its baseline and
results in different predictions. This implies that any changes in outputs can be
traced back to corresponding inputs.
Implementation Invariance: The attributions are always identical for two
functionally equivalent networks. This axiom is easy to understand.
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Fundamental of Min-PRv1. Equation (3) provides the fundamental attribu-
tion formula to trace the contribution of changes in Δx:

L(N(x + Δx), c) − L
(
N

(
x + ΔxF

)
, c

)

=
T∑

i=1

Δxi ·
∂L

(
N

(
x + Δx +

∑i
j=1 Δxj

)
, c

)

∂(Δx +
∑i

j=1 Δxj)

=
n∑

k=1

T∑

i=1

Δx
(k)
i ·

∂L
(
N

(
x + Δx +

∑i
j=1 Δxj

)
, c

)

∂(Δx +
∑i

j=1 Δxj)(k)

(3)

where L(N(x + Δx), c) denotes the obtained loss function value, the input is
x + Δx and target label is c. The perturbation Δx ∈ Rn consists of Δx(k) with
k = 1, 2, . . . , n. The path between x + Δx and x + ΔxF is illustrated in Fig. 3.
We will use Δxt = Δx+

∑t
j=1 Δxj in the following statement for simplification.

A
(
Δx(k)

)
=

T∑

i=1

Δx
(k)
i · ∂L (N (x + Δxt) , c)

∂Δxt(k)
(4)

L(N(x + Δx), c) − L
(
N

(
x + ΔxF

)
, c

)
=

n∑

k=1

A
(
Δx(k)

)
(5)

Here, A
(
Δx(k)

)
in (4) can be considered as the attribution result of Δx(k). As

Δx(k) is a component of Δx, the sum of the attribution results equals the loss
function changes. Given Eq. (5), any changes in loss function can be attributed
by the attribution result, which satisfies the Sensitivity axioms. Thus, A

(
Δx(k)

)

can be considered as a reliable method for calculating the attribution result.

Poof of equation (3):

f (xt) = f (xt−1) +
∂f (xt−1)

∂xt−1
(xt − xt−1) + ε

T∑

t=1

f (xt) =
T−1∑

t=0

f (xt) +
T−1∑

t=0

∂f (xt)
∂xt

(xt+1 − xt)

f (xT ) −f (x0) =
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∂xt
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=
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T−1∑

t=0

∂f (xt)
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t

(
xk
t+1 − xT

t

)

(6)

where f (xt) = L (N (x + Δxt) , c). We use the first-order Taylor approximation
to expand the loss function and combine the information for the path from Δx
to ΔxF . Here ε is omitted due to the principle of higher-order Taylor expansions.
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Fig. 3. Illustrating of the path between x + Δx and x + ΔxF

Further Steps of Min-PRv1. We consider two scenarios for loss function
in attribution: one is when the loss function increases and the other is when it
decreases. Before obtaining the optimization result of the attribution formula, we
firstly need to understand that the loss function value represents the network’s
attacking ability given a correct specific target output. For example, if we choose
the adversarial label as the target, a lower loss function value implies a stronger
attack ability of the sample. Thus, when the loss function value increases, changes
in Δx with higher attribution values will be critical. These changes will be firstly
preserved. In another way, when the loss function value decreases, Δx changes
with lower attribution values become critical, which will be kept.

Moreover, the role of attribution is to trace the changes. Therefore, it is
crucial to determine which changes for tracing. When we refer to D1 in 3.1,
removing changes means pushing Δx(k) towards zero. We, hereby, apply adver-
sarial attacking progress from FGSM to search the changes for Δx.

Δx′
i = α ∗ sign

(
∂L

(
N

(
x + Δxi

)
, c

)

∂ (x + Δxi)

)

(7)

d = sign(Δxi) ⊕ sign(x + Δxi)
Δxi = d � Δx′

i

(8)

Equations (7) and (8) describe the update rule for the j-th step of Δx using
gradient ascent. Using the sign function in these equations ensures that all input
features are updated equally. The symbol � denotes the element-wise product,
while ⊕ represents the XOR operation and α represents learning rate. The use
of d in Eq. (8) enables control over the direction of updates for Δx. Additionally,
the attribution value is only calculated when the value of Δx is close to zero, as
per the condition in the same equation. This is particularly useful when removing
irrelevant changes, as it restricts the search space to areas closer to zero. The
only difference between the gradient descent version and the gradient ascent
version is the sign of Δx′

i. This indicates that the directions of the updates are
opposite. Using both ascent and descent versions can help explore most features,
as the total number of updated features in the first step is equal to n.

A
(
Δx(k)

)
=

(
Aa

ΔLa
− Ad

ΔLb

)(k)

(9)

Score
(
Δx(k)

)
= abs

(
Δx(k)

)
· A

(
Δx(k)

)
(10)
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In the final step, Aa and Ad represent the attribution results under the ascent
and decent versions respectively, while ΔLa and ΔLb represent the loss function
bias under the ascent and decent versions. Since we cannot directly control the
level of change in the loss function, we normalize by dividing ΔL such that the
attribution values for both the ascent and descent during the evaluation point
sum up to 1. To determine the score of Δx(k), we use Eq. (10). After computing,
we get Min-PRv1(score) by sorting the changes in descending order and removing
those with lower scores, retaining only the ones with higher scores. Following,
we provide the pseudocode for Min-PRv1.

Algorithm 1. Min-PRv1
Input: Original image x, attack perturbation � x, label o, adversarial label c, learning

rate lr, interactive step T
Output: Mask m
1: Aa = [0, 0, ..., 0] ∈ Rk, k=dim(x)
2: Ad = [0, 0, ..., 0] ∈ Rk

3: for i = 0, 1..., T do
4: �xi = d � �xi

5: Aa+ = �xi · ∂L(N(x+�xt,c))
∂�xt

6: Aa = Aa
�La

, �La = L(N(x + �x)) − L(N(x + �xF ))
7: end for
8: for i = 0, 1..., T do
9: �xi

′ = − � xi
′

10: Ad is the same calculate progress as Aa

11: end for
12: Ad calculated by the same step of Aa

13: Score = abs(�x) · (Aa − Ad)
14: m removes the charges in �x according to the sort of score until x + m � �x is

just the category not equal to c (dichotomous lookup optimization)

3.3 Min-PRv2 for D2

This section presents the Min-PRv2 algorithm for the optimization problem D2
in Sect. 3.1. The main architecture of Min-PRv2 is shown in Fig. 4.

Details of Min-PRv2. From Fig. 4, a Feed-Forward Network (FFN) is applied
for the purpose of acquiring a mask m ∈ [0, 1], which can be utilised to project
Δx to a lower level via m � Δx.

m = sigmoid(FFN([x,Δx]))

L = CrossEntropy (N(x + m � Δx), c) + λ · ‖ m‖2 (11)

In Eq. (11), L is the optimising objective for Min-PRv2, while λ is a scalar used
to balance the attack capability and the total value of m. Our objective is to
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Fig. 4. Architecture of Min-PRv2

minimize changes while still preserving the ability to attack. The FFN shown in
Eq. (11) can take on various forms such as MLP, Convolutional Neural Network,
or any other structure that allows for back-propagation to optimize. It should
be noted that the Min-PRv2 method only uses 
x to reduce the perturbation
rate, while the Min-PRv2 (concat) method uses x and 
x for splicing to reduce
the perturbation rate. Following, we provide the pseudocode for Min-PRv2.

Algorithm 2. Min-PRv2
Input: Original image x, attack perturbation � x, label o, adversarial label c, learning

rate lr, interative step T, regularization rate λ, optimizer
Output: Mask m
1: Initialize FFN, optimizer
2: for i = 0, 1..., T do
3: m = FFN(concat(x + �x)
4: L = CE(N(x + m � �x), c) + λ ‖m‖2

5: Use optimizer to update parameters in FFN
6: end for

4 Experiments

For the experiment, we aim to provide a thorough evaluation, covering three pop-
ular datasets (CIFAR10, CIFAR100 and ImageNet) and different types of attack-
ing algorithms (FGSM [7], LinfPGD, l2PGD [16], and AdvGan [29]). Following,
we evaluate the proposed methods of Min-PRv1, Min-PRv1(score), Min-PRv2
and Min-PRv2(concat), together with the Taylor [17] and OBD [13] methods as
the baseline, to reduce the perturbation rate of adversarial samples. The learn-
ing rate is 0.01 for original labels and a learning rate of 0.2 for the adversarial
labels. The difference between these labels is whether they are under attack or
not.

Upon the agreements of achieving same level of adversarial attacking success
rate, two statistical measurements are applied in the evaluation, which are the
reduced perturbation rate (RPR) and minimum required feature rate (MRFR).
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For RPR, it is calculated by dividing the perturbation rate after our algorithm
to the original perturbation rate. A higher value indicates a better performance
of perturbation reduction. For MRFR, it is calculated by dividing the minimum
required number of manipulated input features to the number of input features
in the original operation. A lower value indicates a larger portion of manipulating
input feature is not needed with our algorithm, which is better.

Table 1. Experiment results for FGSM attack

Dataset Perturbation reduction method RPR MRFR

CIFAR10 Taylor(adversarial label) 0.0198 0.9025

OBD(adversarial label) 0.6402 0.1428

Min-PRv1 (original label) 0.6438 0.1473

Min-PRv1 (adversarial label) 0.6348 0.1533

Min-PRv1(score) (original label) 0.6441 0.1386

Min-PRv1(score) (adversarial label) 0.6236 0.1552

Min-PRv2 (adversarial label) 0.3311 –

Min-PRv2(concat) (adversarial label) 0.3219 –

CIFAR100 Taylor(adversarial label) 0.5267 0.2685

OBD(adversarial label) 0.8197 0.0436

Min-PRv1 (original label) 0.8235 0.0439

Min-PRv1 (adversarial label) 0.8181 0.0485

Min-PRv1(score) (original label) 0.8227 0.0406

Min-PRv1(score) (adversarial label) 0.8163 0.0450

Min-PRv2 (adversarial label) 0.0673 –

Min-PRv2(concat) (adversarial label) 0.0806 –

ImageNet Taylor(adversarial label) 0.5206 0.2530

OBD(adversarial label) 0.7659 0.0942

Min-PRv1 (original label) 0.7798 0.0866

Min-PRv1 (adversarial label) 0.7647 0.0977

Min-PRv1(score) (original label) 0.7776 0.0868

Min-PRv1(score) (adversarial label) 0.7654 0.0958

Min-PRv2 (adversarial label) 0.5521 –

Min-PRv2(concat) (adversarial label) 0.4107 –

4.1 Experiments for FGSM

Adversarial samples are generated using the same parameters (steps = 1, relative
stepsize = 1.0, ε = 0.3) on the datasets by FGSM method for the successfully
attacked samples. A sample of 1000 images is taken for each dataset to test [30].
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Firstly, we use the Min-PRv2 and Min-PRv2(concat) methods with the adversar-
ial labels to reduce the perturbation rate of the adversarial samples. The results
in Table 1 show that, the Min-PRv2 and Min-PRv2(concat) methods success-
fully reduce the perturbation rate by 0.3311 and 0.3219 on the CIFAR10. The
results are 0.0673 and 0.0806 for CIFAR100 dataset, respectively. For ImageNet
dataset, Min-PRv2 and Min-PRv2(concat) methods reduced the perturbation
rate by 0.5521 and 0.4107. For Taylor method, it can reduce the perturbation
rates of 0.0198, 0.5267, and 0.5206 on each dataset, while the MRFR of the
post-perturbation samples are 0.9025, 0.2685, and 0.2530. OBD method reduces
the perturbation rates of 0.6402, 0.8197, and 0.7659 on the three datasets, while
the results for MRFRs are 0.1428, 0.0436, and 0.0941.

We can see that, Min-PRv1 has successfully reduced the perturbation rates
by 0.6438, 0.8235, and 0.7798 on each dataset by using the original label, while
the MRFR for the reduced perturbed samples are 0.1472, 0.0438, and 0.0866.
However, with the adversarial labels, the perturbation rates drop at 0.6348,
0.8181, and 0.7647 for each dataset, while MRFR with the adversarial labels are
0.1533, 0.0485, and 0.0977. The Min-PRv1 (score) method reduces the pertur-
bation rates of 0.6441, 0.8227, and 0.7776 on each dataset before the attack, and
MRFR results of the post-perturbation samples are 0.1386, 0.0406, and 0.0867.
After the attack, the perturbation rates become 0.6236, 0.8163, and 0.7654, and
the MRFR on post-perturbation samples are 0.1552, 0.0450, and 0.0958. Overall,
Min-PRv1 method using the original labels achieves the best performance.

4.2 Experiments for LinfPGD

As shown in Table 2, the results on the three datasets are collected with a same
experimental setting for the linfPGD attack approach, which is steps = 40,
relative stepsize = 0.033, ε = 0.3. Similar to Sect. 4.1, Min-PRv2 and Min-
PRv2(concat) methods successfully reduced the perturbation rate by 0.5453 and
0.4239 on the CIFAR10 dataset, and by 0.5367 and 0.5211 on the CIFAR100
dataset. On ImageNet dataset, Min-PRv2 and Min-PRv2(concat) methods
reduced the perturbation rate by 0.7992 and 0.4755. The Taylor method reduced
the perturbation rates of 0.4494, 0.6068, and 0.5846 on each dataset, while
MRFR of the post-perturbation samples are 0.1046, 0.0522, and 0.0642. The
OBD method reduced the perturbation rates of 0.4968, 0.6987, and 0.6325 on
three datasets, and the corresponding MRFRs are 0.1553, 0.0579, and 0.0959.

Min-PRv1 method reduced the perturbation rates of 0.4957, 0.7073, and
0.6425 on each dataset before the attack, while the MRFR of the reduced per-
turbed samples were 0.2892, 0.1141, and 0.1432. After the attack, the perturba-
tion rates of 0.5631, 0.7061, and 0.6159 were reduced on each dataset, while the
MRFR of the post-perturbation samples were 0.1581, 0.0653, and 0.0684.

The Min-PRv1(score) method reduces the perturbation rates of 0.502, 0.7013,
and 0.6651 on each dataset before the attack, and the MRFR of the post-
perturbation samples were 0.1474, 0.0552, and 0.0655. After the attack, the
perturbation rates of 0.5618, 0.7118, and 0.7304 were reduced on each dataset,
and the MRFR of the post-perturbation samples were 0.1148, 0.0494, and 0.0474.
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Table 2. Experiment results for LinfPGD attack

Dataset Perturbation reduction method RPR MRFR

CIFAR10 Taylor (adversarial label) 0.4494 0.1046

OBD (adversarial label) 0.4968 0.1553

Min-PRv1 (original label) 0.4957 0.2893

Min-PRv1 (adversarial label) 0.5631 0.1581

Min-PRv1(Score) (original label) 0.502 0.1475

Min-PRv1(Score) (adversarial label) 0.5618 0.1148

Min-PRv2 (adversarial label) 0.5453 –

Min-PRv2(Concat) (adversarial label) 0.4239 –

CIFAR100 Taylor (adversarial label) 0.6068 0.0522

OBD (adversarial label) 0.6987 0.0580

Min-PRv1 (original label) 0.7073 0.1141

Min-PRv1 (adversarial label) 0.7061 0.0653

Min-PRv1(Score) (original label) 0.7013 0.0552

Min-PRv1(Score) (adversarial label) 0.7118 0.0494

Min-PRv2 (adversarial label) 0.5367 –

Min-PRv2(Concat) (adversarial label) 0.5211 –

ImageNet Taylor (adversarial label) 0.5846 0.0642

OBD (adversarial label) 0.6325 0.0959

Min-PRv1 (original label) 0.6425 0.1433

Min-PRv1 (adversarial label) 0.6159 0.0684

Min-PRv1(Score) (original label) 0.6651 0.0655

Min-PRv1(Score) (adversarial label) 0.7304 0.0474

Min-PRv2 (adversarial label) 0.7992 –

Min-PRv2(Concat) (adversarial label) 0.4755 –

4.3 Experiments for L2PGD

In Table 3, we use the same parameters (steps = 50, relative stepsize= 0.025, ε
= 0.3) for the l2PGD attack approach on three datasets. Min-PRv2 and Min-
PRv2(concat) methods successfully reduce the perturbation rate by 0.1873 and
0.1980 on the CIFAR10, and by 0.3111 and 0.3334 on the CIFAR100. For Ima-
geNet, the Min-PRv2 and Min-PRv2(concat) methods reduced the perturba-
tion rate by 0.9760 and 0.5899. Taylor method reduces the perturbation rates
of 0.3489, 0.4932, and 0.5206 on each dataset, while the MRFR of the post-
perturbation samples are 0.1058, 0.0493, and 0.1052. The OBD method reduces
the perturbation rates of 0.3727, 0.4912, and 0.3809 on the three datasets, and
the MRFR of the reduced perturbation samples are 0.0998, 0.0693, and 0.1128.

The Min-PRv1 method reduced the perturbation rates of 0.3859, 0.5291,
and 0.3921 on each dataset before the attack, while the MRFR of the reduced
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Table 3. Experiment results for l2PGD attack

Dataset Perturbation reduction method RFR MRFR

CIFAR10 Taylor (adversarial label) 0.3489 0.1058

OBD (adversarial label) 0.3727 0.0999

Min-PRv1 (original label) 0.3859 0.1317

Min-PRv1 (adversarial label) 0.3437 0.3092

Min-PRv1(Score) (original label) 0.3775 0.0919

Min-PRv1(Score) (adversarial label) 0.3589 0.1215

Min-PRv2 (adversarial label) 0.1873 –

Min-PRv2(Concat) (adversarial label) 0.1980 –

CIFAR100 Taylor (adversarial label) 0.4932 0.0493

OBD (adversarial label) 0.4912 0.0694

Min-PRv1 (original label) 0.5291 0.0948

Min-PRv1 (adversarial label) 0.4732 0.2303

Min-PRv1(Score) (original label) 0.5215 0.0487

Min-PRv1(Score) (adversarial label) 0.4942 0.0726

Min-PRv2 (adversarial label) 0.3111 –

Min-PRv2(Concat) (adversarial label) 0.3334 –

ImageNet Taylor (adversarial label) 0.3608 0.1052

OBD (adversarial label) 0.3809 0.1128

Min-PRv1 (original label) 0.3921 0.1300

Min-PRv1 (adversarial label) 0.3883 0.1951

Min-PRv1(Score) (original label) 0.3820 0.0932

Min-PRv1(Score) (adversarial label) 0.3807 0.1069

Min-PRv2 (adversarial label) 0.9760 –

Min-PRv2(Concat) (adversarial label) 0.5899 –

perturbed samples were 0.1317, 0.0948, and 0.1299. After the attack, the pertur-
bation rates of 0.3437, 0.4732, and 0.3883 were reduced on each dataset, while
MRFR of the post-perturbation samples were 0.3092, 0.2303, and 0.1951.

The Min-PRv1(score) method reduces the perturbation rates of 0.3775,
0.5215, and 0.382 on each dataset before the attack, and the MRFR of the
post-perturbation samples were 0.0918, 0.0486, and 0.0931. After the attack, the
perturbation rates of 0.3589, 0.4942, and 0.3807 were reduced on each dataset,
and MRFR of the post-perturbation samples were 0.1215, 0.0726, and 0.1069.

4.4 Experiments for AdvGAN

In Table 4, we use the same parameters (steps = 50, optimizer G learning rate =
0.001, optimizer D learning rate = 0.001) for AdvGAN attack on three datasets.
Min-PRv2 and Min-PRv2(concat) methods reduce the perturbation rate by
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Table 4. Experiment results for AdvGAN attacks

Dataset Perturbation reduction method and loss target RPR MRFR

CIFAR10 Taylor (adversarial label) 0.4975 0.0682

OBD (adversarial label) 0.5798 0.0821

Min-PRv1 (original label) 0.5931 0.2139

Min-PRv1 (adversarial label) 0.5769 0.1998

Min-PRv1(Score) (original label) 0.5866 0.0788

Min-PRv1(Score) (adversarial label) 0.5441 0.0934

Min-PRv2 (adversarial label) 0.3336 –

Min-PRv2(Concat) (adversarial label) 0.3065 –

CIFAR100 Taylor (adversarial label) 0.8152 0.0120

OBD (adversarial label) 0.8351 0.0133

Min-PRv1 (original label) 0.8401 0.0453

Min-PRv1 (adversarial label) 0.8424 0.0396

Min-PRv1(Score) (original label) 0.8358 0.0131

Min-PRv1(Score) (adversarial label) 0.8328 0.0132

Min-PRv2 (adversarial label) 0.4215 –

Min-PRv2(Concat) (adversarial label) 0.2850 –

ImageNet Taylor (adversarial label) 0.4047 0.1636

OBD (adversarial label) 0.5423 0.1619

Min-PRv1 (original label) 0.5904 0.2312

Min-PRv1 (adversarial label) 0.5528 0.2717

Min-PRv1(Score) (original label) 0.5721 0.1313

Min-PRv1(Score) (adversarial label) 0.5328 0.1516

Min-PRv2 (adversarial label) 0.5367 –

Min-PRv2(Concat) (adversarial label) 0.3812 –

0.3336 and 0.3065 on CIFAR10, and by 0.4215 and 0.2850 on CIFAR100. For
ImageNet, the Min-PRv2 and Min-PRv2(concat) methods reduce the pertur-
bation rate by 0.5367 and 0.3812. The perturbation rates of Taylor method
are 0.4975, 0.8152, and 0.4047 on each dataset, while MRFR for the adversar-
ial labels are 0.0682, 0.0120, and 0.1636. OBD method reduces the perturba-
tion rates of 0.5798, 0.8351, and 0.5423 on the three datasets, and the MRFR
results of adversarial labels are 0.0821, 0.0133, and 0.1619. Min-PRv1 method
reduced the perturbation rates of 0.5931, 0.8401, and 0.5904 on each dataset
before the attack, while the MRFR of the reduced perturbed samples are 0.2139,
0.0452, and 0.2312. With the post-perturbation samples, the perturbation rates
are 0.5769, 0.8424, and 0.5528, and the MRFR results are 0.1998, 0.0396, and
0.2717.
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For Min-PRv1 (score) method, it initially reduces the perturbation rates
of 0.5866, 0.8358, and 0.5721 on each dataset, and the MRFR of the post-
perturbation samples are 0.0788, 0.0130, and 0.1313. With the perturbed sam-
ples, the perturbation rates become 0.5441, 0.8328, and 0.5328, and the MRFR
of the post-perturbation samples are 0.0934, 0.0131, and 0.1516.

Since the learning rate is the only hyperparameter for Min-PR, the ablation
study result is included in Fig. 5. While Min-PRv2 algorithm performs more
stable than others, we can see it is stable for all Min-PR algorithms. In general,
as the learning rate increases, the Min-PRv1 algorithm may becomes slightly
worse, while the Min-PRv2 algorithm performs smoothly, indicating that a high
utility and performance of Min-PR algorithm.

Fig. 5. Line chart of algorithm performance

5 Conclusion

In this paper, we propose the Min-PR algorithm to minimise the adversarial
attack perturbation rate. We are the first to introduce the attribution based
pruning technique for the topic, and consequently we have implemented two
different forms of Min-PR to address different types of requirements and con-
straints. Min-PRv1 is capable of reducing as many adversarial features as pos-
sible, while Min-PRv2 is to reduce as much holistic perturbation as possible.
Finally, we have benchmarked our algorithms to different adversarial attack
methods on different datasets. The comprehensive experimental results high-
light the possibility of further minimising the perturbation rate for adversarial
samples, and demonstrate the effectiveness of our algorithms.
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Abstract. We propose a detector of adversarial samples that is based
on the view of neural networks as discrete dynamic systems. The detector
tells clean inputs from abnormal ones by comparing the discrete vector
fields they follow through the layers. We also show that regularizing this
vector field during training makes the network more regular on the data
distribution’s support, thus making the activations of clean inputs more
distinguishable from those of abnormal ones. Experimentally, we com-
pare our detector favorably to other detectors on seen and unseen attacks,
and show that the regularization of the network’s dynamics improves the
performance of adversarial detectors that use the internal embeddings as
inputs, while also improving test accuracy.

Keywords: Deep learning · Adversarial detection · Optimal transport

1 Introduction

Neural networks have improved performances on many tasks, including image
classification. They are however vulnerable to adversarial attacks which modify
an image in a way that is imperceptible to a human but that fools the network
into wrongly classifying the image [41]. These adversarial images transfer between
networks [33], can be carried out physically (e.g. causing autonomous cars to mis-
classify road signs [12]), and can be generated without access to the network [28].
Developing networks that are robust to adversarial samples or accompanied by
detectors that can detect them is indispensable to deploying them safely [3].

We focus on detecting adversarial samples. Networks trained with a softmax
classifier produce overconfident predictions even for out-of-distribution inputs
[35]. This makes it difficult to detect such inputs via the softmax outputs. A detec-
tor is a system capable of predicting if an input at test time has been adversar-
ially modified. Detectors are trained on a dataset made up of clean and adver-
sarial inputs, after the network training. While simply training the detector on
the inputs has been tried, using their intermediate embeddings works better [7].
Detectors vary by which activations to use and how to process them to extract the
features that the classifier uses to tell clean samples from adversarial ones.

We make two contributions. First, we propose an adversarial detector that
is based on the view of neural networks as dynamical systems that move inputs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 164–181, 2023.
https://doi.org/10.1007/978-3-031-43412-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43412-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-43412-9_10


Adversarial Sample Detection Through Neural Network Transport Dynamics 165

in space, time represented by depth, to separate them before applying a linear
classifier [45]. Our detector follows the trajectory of samples in space, through
time, to differentiate clean and adversarial images. The statistics that we extract
are the positions of the internal embeddings in space approximated by their
norms and cosines to a fixed vector. Given their resemblance to the Euler scheme
for differential equations, residual networks [17,18,45] are particularly amenable
to this analysis. Skip connections and residuals are basic building blocks in many
architectures such as EfficientNet [42] and MobileNetV2 [39], and ResNets and
their variants such as WideResNet [50] and ResNeXt [49] remain competitive
[47]. Visions Transformers [11,29] are also mainly made up of residual stages.
Besides, [48] show an increased vulnerability of residual-type architectures to
transferable attacks, precisely because of the skip connections. This motivates
the need for a detector that is well adapted to residual-type architectures. But
the analysis and implementation can extend immediately to any network where
most layers have the same input and output dimensions.

Our second contribution is to use the transport regularization during training
proposed in [21] to make the activations of adversarial samples more distinguish-
able from those of clean samples, thus making adversarial detectors perform
better, while also improving generalization. We prove that the regularization
achieves this by making the network more regular on the support of the data
distribution. This does not necessarily make it more robust, but it will make
the activations of the clean samples closer to each other and further from those
of out-of-distribution samples, thus making adversarial detection easier. This is
illustrated on a 2-dimension example in Fig. 1.

2 Related Work

Given a classifier f in a classification task and ε>0, an adversarial sample y
constructed from a clean sample x is y = x + δ, such that f(y) �= f(x) and
‖δ‖p ≤ ε for a certain Lp norm. The maximal perturbation size ε has to be
so small as to be almost imperceptible to a human. Adversarial attacks are
algorithms that find such adversarial samples, and they have been particularly
successful against neural networks [6,41]. We present the adversarial attacks
we use in our experiments in Appendix D.1. The main defense mechanisms are
robustness, i.e. training a network that is not easily fooled by adversarial samples,
and having a detector of these samples.

An early idea for detection was to use a second network [32]. However, this
network can also be adversarially attacked. More recent statistical approaches
include LID [30], which trains the detector on the local intrinsic dimensionality of
activations approximated over a batch, and the Mahalanobis detector [27], which
trains the detector on the Mahalanobis distances between the activations and a
Gaussian fitted to them during training, assuming they are normally distributed.
Our detector is not a statistical approach and does not need batch-level statistics,
nor statistics from the training data. Detectors trained in the Fourier domain of
activations have also been proposed in [16]. See [1] for a review.
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Our second contribution is to regularize the network in a way that makes it
Hölder-continuous, but only on the data distribution’s support. Estimations of
the Lipschitz constant of a network have been used as estimates of its robustness
to adversarial samples in [19,41,44,46], and making the network more Lipschitz
(e.g. by penalizing an upper bound on its Lipschitz constant) has been used to
make it more robust (i.e. less likely to be fooled) in [9,19]. These regularizations
often work directly on the weights of the network, therefore making it more
regular on all the input space. The difference with our method is that we only
endue the network with regularity on the support of the clean data. This won’t
make it more robust to adversarial samples, but it makes its behavior on them
more distinguishable, since they tend to lie outside the data manifold.

Fig. 1. Transformed circles test set from scikit-learn (red and blue) and out-of-
distribution points (green) after blocks 6 and 9 of a small ResNet with 9 blocks. In
the second row, we add our proposed regularization during training, which makes the
movements of the clean points (red and blue) more similar to each other and more
different from the movements of the green out-of-distribution points than when using
the vanilla network in the first row. In particular, without the regularization, the green
points are closer to the clean red points after blocks 6 and 9 which is undesirable.
(Color figure online)

That adversarial samples lie outside the data manifold, particularly in its
co-dimensions, is a common observation and explanation for why adversarial
samples are easy to find in high dimensions [2,13,14,24,30,38,40,43]. To the
best of our knowledge, [37] is the only other method that attempts to improve
detection by encouraging the network during training to learn representations
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that are more different between clean and adversarial samples. They do this
by replacing cross-entropy by a reverse cross-entropy that encourages uniform
softmax outputs among the non-predicted classes. We find that our regulariza-
tion leads to better classification accuracy and adversarial detection than this
method.

3 Background

Our detector is based on the dynamic viewpoint of neural networks that fol-
lowed from the analogy between ResNets and the Euler scheme made in [45].
We present this analogy in Sect. 3.2. The regularization we use was proposed in
[21] to improve generalization and we also present it in Sect. 3.2. The regularity
results that follow from this regularization require the use of optimal transport
theory, which we present in Sect. 3.1.

3.1 Optimal Transport

Let α and β be absolutely continuous densities on a compact set Ω⊂R
d. The

Monge problem is to look for T :Rd→R
d moving α to β, i.e. T�α=β, with minimal

transport cost:

min
T s.t. T�α=β

∫
Ω

‖T (x) − x‖2
2 dα(x) (1)

and this problem has a unique solution T �. An equivalent formulation of the
Monge problem in this setting is the dynamical formulation. Here, instead of
directly pushing points from α to β through T , we continuously displace mass
from time 0 to 1 according to velocity field vt : Rd → R

d. We denote φx
t the

position at time t of the particle that was at x ∼ α at time 0. This position
evolves according to ∂tφ

x
t = vt(φx

t ). Rewriting the constraint, Problem (1) is
equivalent to the dynamical formulation:

min
v

∫ 1

0

‖vt‖2
L2((φ·

t)�α) dt (2)

s.t. ∂tφ
x
t = vt(φx

t ) for x ∈ support(α) and t ∈ [0, 1[
φ·

0 = id, (φ·
1)�α = β

3.2 Least Action Principle Residual Networks

A residual stage made up of M residual blocks applies xm+1 = xm + hrm(xm)
for 0 ≤ m < M , with x0 being the input and h=1 in practice. The final point
xM is then classified by a linear layer F . The dynamic view considers a residual
network as an Euler discretization of a differential equation:

xm+1 = xm + hrm(xm) ←→ ∂txt = vt(xt) (3)
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where rm approximates the vector field vt at time t = m/M . The dynamic
view allows to consider that ResNets are transporting their inputs in space by
following a vector field to separate them, the depth representing time, before
classification by a linear layer. [21] look for a network F ◦ T that solves the task
while having minimal transport cost:

inf
T,F

∫
Ω

‖T (x) − x‖2
2 dα(x)

s.t. L(F, T�α) = 0
(4)

where T is made up of the M residual blocks, α is the data distribution, F is
the classification head and L(F, T�α) is the (cross-entropy) loss obtained from
classifying the transformed data distribution T�α through F . Given Sect. 3.1, the
corresponding dynamical version of (4) is

inf
v,F

∫ 1

0

‖vt‖2
L2((φ·

t)�α) dt (5)

s.t. ∂tφ
x
t = vt(φx

t ) for x ∈ support(α) and t ∈ [0, 1[
φ·

0 = id, L(F, (φ·
1)�α) = 0

[21] show that (4) and (5) are equivalent and have a solution such that T is
an optimal transport map. In practice, (5) is discretized using a sample D from
α and an Euler scheme, which gives a residual architecture with residual blocks
rm (parametrized along with the classifier by θ) that approximate v. This gives
the following problem

min
θ

C(θ) =
∑
x∈D

M−1∑
m=0

‖rm(ϕx
m)‖2

2 (6)

s.t ϕx
m+1 = ϕx

m + hrm(ϕx
m), ϕx

0 = x ∀ x ∈ D
L(θ) = 0

In practice, we solve Problem (6) using a method of multipliers (see Sect. 4.2).
Our contribution is to show, theoretically and experimentally, that this makes
adversarial examples easier to detect.

4 Method

We take the view that a ResNet moves its inputs through a discrete vector field to
separate them, points in the same class having similar trajectories. Heuristically,
for a successful adversarial sample that is close to clean samples, the vector field
it follows has to be different at some step from that of the clean samples, so
that it joins the trajectory of the points in another class. In Sect. 4.1, we present
how we detect adversarial samples by considering these trajectories. In Sect. 4.2,
we apply the transport regularization by solving (6) to improve detectability of
adversarial samples.
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4.1 Detection

Given a network that applies xm+1 = xm + hrm(xm) to an input x0 for 0 ≤
m<M , we consider the embeddings xm for 0<m ≤ M , or the residues rm(xm)
for 0 ≤ m<M . To describe their positions in space, we take their norms and
their cosine similarities with a fixed vector as features to train our adversarial
detector on. Using only the norms already gave good detection accuracy. Cosines
to other orthogonal vectors can be added to better locate the points at the price
of increasing the number of features. We found that using only one vector already
gives state-of-the-art detection, so we only use the norms and cosines to a fixed
vector of ones. We train the detector (a random forest in practice, see Sect. 5.2)
on these features. The embeddings xm and the residues rm(xm) can equivalently
describe the trajectory of x0 in space through the blocks. In practice, we use the
residues rm(xm), with their norms squared and averaged. So the feature vector
given to the random forest for each input x0 that goes through a network that
applies xm+1 = xm + h rm(xm) is

(
1

dm
‖rm(xm)‖2

2, cos
(
rm(xm),1m

))
0≤m<M

(7)

and the label is 0 if x0 is clean and 1 if it is adversarial. Here cos is the cosine
similarity between two vectors and 1m is a vector of ones of size dm where dm is
the size of rm(xm). For any non-residual architecture xm+1 = gm(xm), the vector
xm+1−xm can be used instead of rm(xm) on layers that have the same input
and output dimension, allowing to apply the method to any network with many
such layers. And we do test the detector on a ResNeXt, which does not fully
satisfy the dynamic view, as the activation is applied after the skip-connection,
i.e. xm+1 = ReLU(xm + h rm(xm)).

The number of features is twice that of residual blocks (a norm and a cosine
per block). This is of the same order as for other popular detectors such as
Mahalanobis [27] and LID [30] that extract one feature per residual stage (a
residual stage is a group of blocks that keep the same dimension). Even for
common large architectures, twice the number of residual blocks is still a small
number of features for training a binary classifier (ResNet152 has 50 blocks).
More importantly, the features we extract (norms and cosines) are quick to cal-
culate, whereas those of other methods require involved statistical computations
on the activations. We include in Appendix D.10 a favorable time comparison of
our detector to the Mahalanobis detector. Another advantage is that our detec-
tor does not have a hyper-parameter to tune unlike the Mahalanobis and LID
detectors.

4.2 Regularization

Regularity of neural networks (typically Lipschitz continuity) has been used as
a measure of their robustness to adversarial samples [9,19,41,44,46]. Indeed,
the smaller the Lipschitz constant L of a function f satisfying ‖f(x) − f(y)‖ ≤
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L‖x − y‖, the less f changes its output f(y) for a perturbation (adversarial
or not) y of x. Regularizing a network to make it more Lipschitz and more
robust has therefore been tried in [9,19]. For this to work, the regularization
has to apply to adversarial points, i.e. outside the support of the clean data
distribution. Indeed, the Lipschitz continuity obtained though most of these
methods and analyses apply on the entire input space R

d as they penalize the
network’s weights directly. Likewise, a small step size h as in [51] will have the
same effect on all inputs, clean or not.

We propose here an alternative approach where we regularize the network
only on the support of the input distribution, making it η-Hölder on this support
(a function f is η-Hölder on X if ∀ a, b ∈ X, we have ‖f(a) − f(b)‖ ≤ C‖a − b‖η

for some constants C>0 and 0<η≤1, and we denote this f ∈ C0,η(X)). Since
this result does not apply outside the input distribution’s support, particularly
in the adversarial spaces, then this regularity that only applies to clean samples
can serve to make adversarial samples more distinguishable from clean ones,
and therefore easier to detect. We show experimentally that the behavior of
the network will be more distinguishable between clean and adversarial samples
in practice in Sect. 5.1. We discuss the implementation of the regularization in
Sect. 4.2 and prove the regularity it endues the network with in Sect. 4.2.

Implementation. We regularize the trajectory of the samples by solving Prob-
lem (6). This means finding, among the networks that solve the task (condition
L(θ) = 0 in (6)), the network that moves the points the least, that is the one
with minimal kinetic energy C. The residual functions rm we find are then our
approximation of the vector field v that solves the continuous version (5) of
Problem (6).

We solve Problem (6) via a method of multipliers: since L ≥ 0, Problem (6)
is equivalent to the min-max problem minθ maxλ>0 C(θ) + λ L(θ), which we
solve, given growth factor τ > 0, and starting from initial weight given to the
loss λ0 and initial parameters θ0, through

{
θi+1 = arg min

θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)
(8)

We use SGD for s>0 steps (i.e. batches) for the minimization in the first line
of (8), starting from the previous θi. When using a ResNeXt, where a residual
block applies xm+1 = ReLU(xm + rm(xm)), we regularize the norms of the true
residues xm+1−xm instead of rm(xm).

Theoretical Analysis. We take Ω⊂R
d convex and compact and the data distri-

bution α∈P(Ω) absolutely continuous such that δΩ is α-negligible. We suppose
that there exists an open bounded convex set X⊂Ω such that α is bounded
away from zero and infinity on X and is zero on X�. From [21], Problems (4)
and (5) are equivalent and have solutions (T, F ) and (v, F ) such that T is an
optimal transport map between α and β:=T�α. We suppose that β is absolutely
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continuous and that there exists an open bounded convex set Y ⊂Ω such that β
is bounded away from zero and infinity on Y and is zero on Y �. In the rest of this
section, v solves (5) and we suppose that we find a solution to the discretized
problem (6) that is an ε/2-approximation of v, i.e. ‖rm − vtm

‖∞≤ε/2 for all
0≤m<M , with tm=m/M .

Definition 1. A function f is η-Hölder on X if ∀ a, b ∈ X, we have ‖f(a) −
f(b)‖ ≤ C‖a − b‖η for some constants C>0 and 0<η≤1. We denote this f ∈
C0,η(X).

In Theorem 1, we show that the regularization makes the residual blocks of
the network η-Hölder (with an error of ε) on the support of the input distribution
as it moves according to the theoretical vector field solution v. The results hold
for all norms on R

d.

Theorem 1. For a, b ∈ support(αtm
), αt:=(φ·

t)�α where φ solves (5) along with
v, we have

‖rm(a) − rm(b)‖ ≤ ε + K‖a − b‖ζ1 if ‖a − b‖ ≤ 1

‖rm(a) − rm(b)‖ ≤ ε + K‖a − b‖ζ2 if ‖a − b‖ > 1

for constants K > 0 and 0 < ζ1 ≤ ζ2 ≤ 1.

Proof. The detailed proof is in Appendix C.1. First, we have that vt = (T −id)◦
T−1

t where Tt := (1 − t)id + tT and T solves (4). Being an optimal transport
map, T is η-Hölder. So for all a, b ∈ support(αt) and t ∈ [0, 1[, where αt =
(φ·

t)�α = (Tt)�α with φ solving (5) with v, we have

‖vt(a) − vt(b)‖ ≤ ‖T−1
t (a) − T−1

t (b)‖ + C‖T−1
t (a) − T−1

t (b)‖η (9)

We then show that T−1
t is an optimal transport map and so is ηt-Hölder with

0<ηt≤1. Using the hypothesis on r and the triangle inequality, we get, for all
a, b ∈ support(αtm

)

‖rm(a) − rm(b)‖ ≤ ε + Ctm
‖a − b‖ηtm + CCη

tm
‖a − b‖ηηtm (10)

Then set the constants K, ζ1 and ζ2 as necessary.

We use Theorem 1 to now bound the distance between the residues at depth
m as a function of the distance between the network’s inputs. For inputs a0 and
b0 to the network, the intermediate embeddings are am+1 = am + hrm(am) and
bm+1 = bm+hrm(bm), and the residues used to compute features for adversarial
detection are rm(am) and rm(bm). So we want to bound ‖rm(am)−rm(bm)‖ as a
function of ‖a0−b0‖. This is usually done by multiplying the Lipschitz constants
of each block up to depth m, which leads to an overestimation [20], or through
more complex estimation algorithms [4,26,44]. Bound (9) allows through T−1

t

to avoid multiplying the Hölder constants of the blocks. If a0 and b0 are on the
clean data support X, we get Theorem 2 below with proof in Appendix C.2.
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Theorem 2. For a0, b0 ∈ X and constants C,L>0,

‖rm(am) − rm(bm)‖ ≤ ε + ‖a0 − b0‖ + C‖a0 − b0‖η+

+ L(‖am − φa0
tm

‖ + ‖bm − φb0
tm

‖)

Term μ(a0):=‖am−φa0
tm

‖ (and μ(b0):=‖bm−φb0
tm

‖) is the distance between
the point am after m residual blocks and the point φa0

tm
we get by following

the theoretical solution vector field v up to time tm starting from a0. If a0 and
b0 are not on the data support X, an extra term has to be introduced to use
bound (9). Bounding the terms μ(a0) and μ(b0) is possible under more regularity
assumptions on v. We assume then that v is C1 and Lipschitz in x, which is not
stronger than the regularity we get on v through our regularization, as it does
not give a similar result to bound (9). We have for all inputs a0 and b0, whether
they are clean or not, Theorem 3 below with proof in Appendix C.2.

Theorem 3. For a0, b0 ∈ R
d and constants R,S > 0,

‖rm(am) − rm(bm)‖ ≤ ε + LSε + LSRh + ‖a0 − b0‖ + C‖a0 − b0‖η+
+ LS(dist(a0,X) + dist(b0,X))

Terms dist(a0,X) and dist(b0,X) show that the regularity guarantee is
increased for inputs in X. The trajectories of clean points are then closer to
each other and more different from those of abnormal samples outside X.

5 Experiments

We evaluate our method on adversarial samples found by 8 attacks. The threat
model is as follows. We use 6 white-box attacks that can access the network and
its weights and architecture but not its training data: FGM [15], BIM [25], DF
[34], CW [6], AutoAttack (AA) [10] and the Auto-PGD-CE (APGD) variant of
PGD [31], and 2 black-box attacks that only query the network: HSJ [8] and BA
[5]. We assume the attacker has no knowledge of the detector and use the untar-
geted (i.e. not trying to direct the mistake towards a particular class) versions
of the attacks. We use a maximal perturbation of ε=0.03 for FGM, APGD, BIM
and AA. We use the L2 norm for CW and HSJ and L∞ for the other attacks. We
compare our detector (which we call the Transport detector or TR) to the Maha-
lanobis detector (MH in the tables below) of [27] and to the detector of [22,23]
that uses natural scene statistics (NS in the tables below), and our regularization
to reverse cross entropy training of [37], which is also meant to improve detec-
tion of adversarial samples. We use ART [36] and its default hyper-parameter
values (except those specified) to generate the adversarial samples, except for
AA for which we use the authors’ original code. The code and Appendix are at
github.com/skander-karkar/adv. See Appendix D.1 for more details.

We use 3 networks and datasets: ResNeXt50 on CIFAR100, ResNet110 on
CIFAR10 and WideResNet on TinyImageNet. Each network is trained normally

http://github.com/skander-karkar/adv
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with cross entropy, with the transport regularization added to cross entropy
(called a LAP-network for Least Action Principle), and with reverse cross
entropy instead of cross entropy (called an RCE-network). For LAP training,
we use (8) with τ=1, s=1 and λ0=1 for all networks. These hyper-parameters
are chosen to improve validation accuracy during training not adversarial detec-
tion. Training details are in Appendix D.2.

In Sect. 5.1, we conduct preliminary experiments to show that LAP training
improves generalization and stability, and increases the difference between the
transport costs of clean and adversarial samples. In Sect. 5.2, we test our detec-
tor when it is trained and tested on samples generated by the same attack. In
Sect. 5.3, we test our detector when it is trained on samples generated by FGM
and tested on samples from the other attacks. We then consider OOD detection
and adaptive attacks on the detector.

5.1 Preliminary Experiments

Our results confirm those in [21] that show that LAP training improves test
accuracy. Vanilla ResNeXt50 has an accuracy of 74.38% on CIFAR100, while
LAP-ResNeXt50 has an accuracy of 77.2%. Vanilla ResNet110 has an accuracy
of 92.52% on CIFAR10, while LAP-ResNet110 has an accuracy of 93.52% and
the RCE-ResNet110 of 93.1%. Vanilla WideResNet has an accuracy of 65.14%
on TinyImageNet, while LAP-WideResNet has an accuracy of 65.34%. LAP
training is also more stable by allowing to train deep networks without batch-
normalization in Fig. 4 in Appendix D.4.

We see in Fig. 2 that LAP training makes the transport cost C more different
between clean and adversarial points. Using its empirical quantiles on clean
points allows then to detect samples from some attacks with high recall and a
fixed false positive rate, without seeing adversarial samples.

Fig. 2. Histogram of transport cost C for clean and FGM-attacked test samples with
different values of ε on CIFAR100. The vertical lines represent the 0.02 and 0.98 empir-
ical quantiles of the transport cost of the clean samples. Left: ResNeXt50. Right: LAP-
ResNeXt50.
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5.2 Detection of Seen Attacks

For detection training, the test set is split in 0.9/0.1 proportions into two
datasets, B1 and B2. For each image in B1 (respectively B2), an adversarial
sample is generated and a balanced detection training set (respectively a detec-
tion test set) is created. Since adversarial samples are created for a specific
network, this is done for the vanilla version of the network and its LAP and
RCE versions. We tried augmenting the detection training dataset with a ran-
domly perturbed version of each image, to be considered clean during detection
training, as in [27], but we found that this does not improve detection accuracy.
This dataset creation protocol is standard and is depicted in Fig. 3 in Appendix
D.3. We did not limit the datasets to successfully attacked images only as in
[27], as we consider the setting of detecting all adversarial samples, whether or
not they fool the network, more challenging (which is seen in the results). It also
allows to detect any attempted interference with the network, even if it fails at
fooling it.

Samples in the detection training set are fed through the network and the
features for each detector are extracted. We tried three classifiers (logistic regres-
sion, random forest and SVM) trained on these features for all detectors, and
kept the random forest as it always performs best. We tried two methods to
improve the accuracy of all detectors: class-conditioning and ensembling. In class-
conditioning, the features are grouped by the class predicted by the network, and
a detector is trained for every class. At test time, the detector trained on the
features of the predicted class is used. A detector is also trained on all sam-
ples regardless of the predicted class and is used in case a certain class is never
targeted by the attack. We also tried ensembling the class-conditional detector
with the general all-class detector: an input is considered an attack if at least one
detector says so. This ensemble of the class-conditional detector and the general
detector performs best for all detectors, and is the one we use.

We report the accuracy of each detector on the detection test set for both the
vanilla and the LAP network in Table 1. In each cell, the first number corresponds
to the vanilla network and the second to the regularized LAP-network. Since the
NS detector takes the image and not its embeddings as input, the impact of LAP
and RCE training on its performance is minimal and we report its performance
on the vanilla network only. These results are averaged over 5 runs and the
standard deviations (which are tight) are in Tables 3 to 7 in Appendix D.5,
along with results on RCE-networks. Since some attacks are slow, we don’t test
them on all network-dataset pairs in this experiment. Results in Table 1 show
two things. First, our detector performs better than both other detectors, with
or without the regularization. Second, both the TR and MH detectors work
better on the LAP-networks most times. The MH detector benefits more from
the regularization, but on all attacks, the best detector is always the Transport
detector. In the tables in Appendix D.5, RCE often improves detection accuracy
in this experiment, but clearly less than LAP training. On CIFAR10, our detector
outperforms the MH detector by 9 to 16% points on the vanilla ResNet110, and
the NS detector by up to 5 points. LAP training improves the accuracy of our
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detector by an average 1.5 points and that of the MH detector by a substantial
8.3 points on average. On CIFAR100, our detector outperforms the MH detector
by 1 to 5 points on the vanilla ResNeXt50, and the NS detector by up to 3
points. LAP training improves the accuracy of both detectors by an average 1
point. On TinyImageNet, our detector greatly outperforms the MH detector by
3 to 15 points on the vanilla WideResNet, and the NS detector slightly. LAP
training does not change the accuracy of our detector and improves that of the
MH detector by 0.85 points on average. Detection rates of successful adversarial
samples (i.e. those that fool the network) are in Table 14 in Appendix D.7 and
are higher than 95% on our detector. False positive rates (positive meaning
adversarial) are in Table 16 in Appendix D.8 and are always less than 5% on
our detector. The AUROC is in Table 18 in Appendix D.9. On all these metrics,
our detector outperforms the other detectors largely, and LAP-training greatly
improves the performance of the Mahalanobis detector.

Table 1. Average accuracy of detectors on adversarial samples from seen attacks on
Network/LAP-Network over 5 runs.

Attack Detector ResNet110 CIFAR10 ResNeXt50 CIFAR100 WideResNet TinyImageNet

FGM TR 97.14/98.70 97.26/98.32 95.36/95.14

MH 87.78/95.64 95.82/96.82 81.06/85.26

NS 94.56 94.70 94.90

APGD TR 94.10/97.50 96.04/97.84 95.22/95.20

MH 82.08/90.70 93.94/94.60 79.66/85.10

NS 94.28 94.18 94.86

BIM TR 97.54/99.28 98.02/98.92 95.26/95.12

MH 86.78/95.38 96.06/97.76 81.20/82.46

NS 95.04 94.72 95.00

AA TR 88.88/94.08 84.90/87.56 81.38/81.24

MH 80.46/89.96 83.90/86.58 78.40/78.40

NS 88.78 84.82 81.32

DF TR 99.98/99.84 99.80/99.58

MH 91.50/96.70 97.30/97.12

NS 99.78 99.6

CW TR 98.04/97.96 97.04/97.80

MH 85.58/93.36 95.38/96.42

NS 93.86 90.7

HSJ TR 99.94/99.92

MH 85.50/94.56

NS 99.68

BA TR 96.56/97.02

MH 80.20/89.62

NS 92.10
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5.3 Detection of Unseen Attacks

An important setting is when we don’t know which attack might be used or
only have time to train detectors on samples from one attack. We still want
our detector to generalize well to unseen attacks. To test this, we use the same
vanilla networks as above but the detectors are now trained on the detection
training set created by the simplest and quickest attack (FGM) and tested on
the detection test sets created by the other attacks. Results are in Table 2. We see
that our detector has very good generalization to unseen attacks, even those very
different from FGM, comfortably better than the MH detector, by up to 19%
points, while the NS detector only generalizes to variants of FGM (APGD and
BIM), and fails on the other attacks. These results are averaged over 5 runs and
the standard deviations are in Tables 8 to 13 in Appendix D.6. On our detector,
the detection rate of successful adversarial samples remains higher than 90% in
most cases (Table 15 in Appendix D.7) and the FPR is always lower than 10%
(Table 17 in Appendix D.8). The AUROC is in Table 19 in Appendix D.9. Our
detector almost always outperforms the other detectors on all these metrics.

Table 2. Average accuracy of detectors on samples from unseen attacks after training
on FGM over 5 runs.

Attack Detector ResNet110 CIFAR10 ResNeXt50 CIFAR100 WideResNet TinyImageNet

APGD TR 89.32 91.94 93.26

MH 77.34 90.86 76.96

NS 92.08 92.16 94.06

BIM TR 96.02 95.02 94.66

MH 77.24 93.16 77.02

NS 93.88 93.88 94.62

AA TR 85.10 73.32 77.04

MH 72.12 73.08 60.36

NS 51.82 51.32 65.60

DF TR 91.02 85.16 90.62

MH 80.12 82.72 73.18

NS 51.40 51.62 72.82

CW TR 93.18 78.18 91.42

MH 79.92 76.44 75.52

NS 50.84 51.02 71.96

HSJ TR 93.00 85.04

MH 79.70 82.82

NS 52.12 52.04

BA TR 90.92 92.14

MH 79.32 84.46

NS 59.88 57.90
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However, this experiment shows that our regularization has some limitations.
We see in Tables 8 to 13 in Appendix D.6 that LAP training does not improve
detection accuracy as much, and sometimes reduces it. It still improves it for the
MH detector on all attacks on ResNet110 and WideResNet by up to 10 points,
and LAP training still always does better than RCE training. We claim this
is because these methods reduce the variance of features extracted on the seen
attack, harming generalization to unseen attacks. This explains why detection
of APGD and BIM, variants of FGM, improves.

5.4 Detection of Out-of-Distribution Samples

Since our analysis applies to all out-of-distribution (OOD) samples, we test
detection of OOD samples in a similar setting to [27]. We train a model on
a first dataset (ResNet110 on CIFAR10 and ResNeXt50 on CIFAR100), then
train detectors to tell this first dataset from a second dataset (which can be
an adversarially attacked version of the first dataset), then test their ability to
tell the first dataset from a third unseen dataset (SVHN). Our detector does
very well and better than the MH detector on both experiments, and detection
accuracy of samples from the unseen distribution is higher than 90% when using
the CW attack to create the second dataset. Details are in Appendix D.11.

5.5 Attacking the Detector

We consider the case where the detector is also attacked (adaptive attacks). We
try 2 attacks on the TR and MH detectors. Both are white-box with respect
to the network. The first is black-box with respect to the detector and only
knows if a sample has been detected or not. The second has some knowledge
about the detector. It knows what features it uses and can attack it directly to
find adversarial features. We test these attacks by looking at the percentage of
detected successful adversarial samples that they turn into undetected successful
adversarial samples. For the first attack, this is 6.8% for our detector and 12.9%
for the MH detector on the LAP-ResNet110, and is lowered by LAP training.
For the second attack it is 14% on our detector. Given that detection rates of
successful adversarial samples are almost 100% (see Appendix D.7), this shows
that an adaptive attack does not circumvent the detector, as detection rates
drop to 85% at worst. Details are in Appendix D.12.

6 Conclusion

We proposed a method for detecting adversarial samples, based on the dynamical
view of neural networks. The method examines the discrete vector field moving
the inputs to distinguish clean and abnormal samples. The detector requires
minimal computation to extract the features it uses for detection and achieves
state-of-the-art detection accuracy on seen and unseen attacks. We also use a
transport regularization that both improves test classification accuracy and the
accuracy of adversarial detectors.
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Ethical Statement. Adversarial detection and robustness are essential to safely

deploy neural networks that attackers might target for nefarious purposes. But adver-

sarial attacks can be used to evade neural networks that are deployed for nefarious

purposes.
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Abstract. Unsupervised graph-level anomaly detection (UGAD) has
received remarkable performance in various critical disciplines, such as
chemistry analysis and bioinformatics. Existing UGAD paradigms often
adopt data augmentation techniques to construct multiple views, and
then employ different strategies to obtain representations from different
views for jointly conducting UGAD. However, most previous works only
considered the relationship between nodes/graphs from a limited recep-
tive field, resulting in some key structure patterns and feature informa-
tion being neglected. In addition, most existing methods consider differ-
ent views separately in a parallel manner, which is not able to explore the
inter-relationship across different views directly. Thus, a method with a
larger receptive field that can explore the inter-relationship across differ-
ent views directly is in need. In this paper, we propose a novel Simplified
Transformer with Cross-View Attention for Unsupervised Graph-level
Anomaly Detection, namely, CVTGAD. To increase the receptive field,
we construct a simplified transformer-based module, exploiting the rela-
tionship between nodes/graphs from both intra-graph and inter-graph
perspectives. Furthermore, we design a cross-view attention mechanism
to directly exploit the view co-occurrence between different views, bridg-
ing the inter-view gap at node level and graph level. To the best of our
knowledge, this is the first work to apply transformer and cross attention
to UGAD, which realizes graph neural network and transformer work-
ing collaboratively. Extensive experiments on 15 real-world datasets of 3
fields demonstrate the superiority of CVTGAD on the UGAD task. The
code is available at https://github.com/jindongli-Ai/CVTGAD.

Keywords: Transformer · Cross-View Attention · Graph-level
Anomaly Detection · Unsupervised Learning · Graph Neural Network

1 Introduction

Graph data has drawn extensive attention in a variety of domains due to its
ubiquity in the real world, such as small molecules, bioinformatics, and social
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networks [23]. Graph-level anomaly detection, which is one of the vital research
problems in dealing with graph data, aims to identify graphs with anomalous
information. Usually, anomalous graphs deviate significantly from the normal
graphs in the sample [20]. It has received increasing attention due to its power
in various practical applications, such as identifying toxic molecules in chemical
compounds analysis, and spotting the molecules with anti-cancer activity in can-
cer drug discovery [14,18–20,34]. Despite the remarkable performance achieved
by advanced methods and learning paradigms [14,18,19,34], there are still some
issues that need to be further discussed and addressed in graph-level anomaly
detection task.

Fig. 1. Toy examples to show two major issues: (a) if obtaining the embedding of the
current node or graph with a limited receptive field, some nodes or patterns that carry
key information would be ignored (e.g., grey in figure); (b) if ignoring the view co-
occurrence across different views, some anomalous graphs would not be distinguished
accurately. (Color figure online)

Firstly, existing methods mainly rely on the GNN encoder to obtain the
representation of the node/graph [14,19]. However, due to its limited recep-
tive field, GNNs only consider the local neighbors or sub-graphs (own nodes)
of the current node (graph), missing the key anomalous information from the
global perspective. For instance, as shown in Fig. 1 (a), the subgraph composed
of grey nodes is difficult to be considered in the existing GNN-based meth-
ods with rather limited layers, but this subgraph carries the key information
to determine whether the chemical molecular graph is an anomalous graph or
not. In addition, the relationship between the current graph and other graphs
in the whole dataset (e.g., as shown in the lower part of Fig. 1(a)) should also
be considered with a larger receptive field. It is because each graph is associated
latently and inseparable in the target dataset, which is particularly evident in
fields such as chemistry analysis and bioinformatics [18,34]. Existing technolo-
gies that simply increase the number of layers for the GNN encoder may cause
the over-smoothing problem [4]. Therefore, it is necessary to design a specific
module that increases the considered receptive field of the current node/graph,
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which can exploit the relationship between nodes/graphs from both intra-graph
and inter-graph perspectives, preventing ignoring key information.

Secondly, some existing methods employ data augmentation techniques to
get multiple graph views to enrich the graph information. The latent mutual
agreement between different views is then maximized in the form of a loss item
(e.g., InfoNCE-like Loss [14]) [7,33,37,38]. Nevertheless, these works consider
different views separately in a parallel manner and simply consider the latent
influence between different views via a loss function at the final training step,
which is not able to capture the complicated view co-occurrence across different
views. In fact, the features of nodes and the structure between nodes influence
and entangle each other in the anomalous graph forming process. Specifically,
nodes with certain characteristics are more likely to form abnormal links. Simi-
larly, the characteristics of nodes connected by abnormal links may also change
accordingly [5]. Information from different views reflects different characteris-
tics of an anomalous graph, which are consistent in nature and own view co-
occurrence instinctively [1]. For example, as shown in Fig. 1(b), it is hard to
determine whether the current graph is an anomalous graph or not from any
single view alone. Only by comprehensively considering the cross-view informa-
tion can a more accurate judgment be made. Therefore, there is an urgent need
for a novel mechanism to capture such co-occurrence across different views in an
explicit way to bridge the inter-view gap of graph-level anomalies.

In this paper, to address the aforementioned issues, we propose a novel Sim-
plified Transformer with Cross-View Attention for Unsupervised Graph-level
Anomaly Detection (CVTGAD in short). In concrete, for the first issue, we
design a simplified transformer module including projection network, residual
network, and transformer to exploit the relationship between nodes/graphs from
not only intra-graph but also inter-graph perspectives for increasing the recep-
tive field. For the second issue, we design a cross-view attention mechanism
to directly exploit the view co-occurrence between different views (i.e., feature
view and structure view), bridging the inter-view gap at node level and graph
level. Finally, the anomaly score is obtained by an adaptive anomaly scoring
module. Our major contributions are summarized as follows:

– We propose a novel simplified transformer framework with cross-view atten-
tion for unsupervised graph-level anomaly detection task (CVTGAD). To
the best of our knowledge, this is the first work to introduce transformer
and cross-attention to unsupervised graph-level anomaly detection, realizing
graph neural network and transformer working collaboratively.

– We design a simplified transformer with its attention mechanism to capture
the relationship between nodes/graphs in both intra-graph and inter-graph
perspectives, preventing ignoring key information. In addition, a cross-view
attention module is introduced to directly exploit the view co-occurrence
across different views, bridging the inter-view gap at both node level and
graph level.
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– We conduct comprehensive experiments against 15 real-world datasets of dif-
ferent fields to demonstrate the effectiveness and superiority of CVTGAD on
unsupervised graph-level anomaly detection task.

2 Related Work

2.1 Graph-Level Anomaly Detection

Given a graph dataset, graph-level anomaly detection aims to distinguish anoma-
lous graphs from normal graphs [20], where the anomalous graphs usually rep-
resent very few but essential patterns. Most traditional methods contain two
modules: firstly, a graph kernel, such as Weisfeiler-Leman kernel (WL) [26] and
propagation kernel (PK) [24], is used to learn node representations. And sec-
ondly, an anomaly detector, such as isolation forest (iF) [12], one-class support
vector machine (OCSVM) [22], and local outlier factor (LOF) [3], is applied to
detect anomalous graphs based on the acquired graph representations.

In addition, graph neural networks (GNNs) have attracted significant
attention due to their remarkable performance in dealing with graph data
[6,10,14,30,32]. Thus, various types of GNN are employed as the backbone to
conduct graph-level anomaly detection [18,19,35]. For example, LocalKD [19]
employs GNN as encoder and achieves random knowledge distillation (KD) [2,8].
The method is achieved by predicting one GNN via training another GNN,
where the network weights are all initialized in a random way [19]. GOOD-D
[14] designs a novel graph data augmentation method and employs GIN [32]
as encoder to conduct graph-level anomaly detection. However, according to our
investigation, graph-level anomaly detection is still under-explored and there are
only several research works.

2.2 Graph Contrastive Learning

Graph contrastive learning utilizes the mutual information maximization mech-
anism to obtain a rich representation by maximizing instances with similar
semantic information [13,16]. It has been widely employed for achieving remark-
able graph representation learning performance in an unsupervised manner
[7,15,17,25,27,31,33,36,38]. For instance, GraphCL [33] proposes four general
data augmentations for graph-structured data to generate pairs for contrastive
learning. For graph classification tasks, InfoGraph [27] is proposed by max-
imizing the mutual information between graph-level representations and the
substructures-level representations. The substructures-level representations are
calculated at different scales.

Some recent works have employed graph contrastive learning to conduct
graph-level anomaly detection. For instance, by developing a dual-graph encoder
module, GLADC [18] captures node-level and graph-level representations of
graphs with graph contrastive learning techniques. GOOD-D [14] detects anoma-
lous graphs based on semantic inconsistencies at different granularities according
to the designed hierarchical contrastive learning framework.
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3 Problem Definition

A graph is denoted as G = (V, E), where V is the set of nodes and E is the set
of edges. The topology information of G is represented by an adjacent matrix
A ∈ R

n×n, where n is the number of nodes. Ai,j = 1 if there is an edge between
node vi and node vj , otherwise, Ai,j = 0. An attributed graph is denoted as
G = (V, E ,X), where X ∈ R

n×df represents the feature matrix of node features.
Each row of X represents a node’s feature vector with df dimensions. The graph
set is denoted as G = {G1, G2, ..., Gm}, where m is the total number of graphs.

In this paper, we focus on the unsupervised graph-level anomaly detection
problem. Given a graph set G containing normal graphs and anomalous graphs,
CVTGAD aims to distinguish the anomalous graphs which are different from
the normal graphs.

4 Methodology

In this section, we introduce the proposed method named Simplified Transformer
with Cross-View Attention for Unsupervised Graph-level Anomaly Detection
(CVTGAD). The overall framework of CVTGAD is illustrated in Fig. 2, which
contains three modules: a graph pre-processing module, a simplified transformer-
based embedding module, and an adaptive anomaly scoring module. In the graph
pre-processing module, we create two views of each graph by data augmentation.
Then, the preliminary node/graph embeddings are calculated by GNN encoders.
After that, we exploit the view co-occurrence in the simplified transformer-based
embedding module. In this module, we design a simplified transformer structure
with a cross-view attention mechanism to obtain the node/graph embedding
with cross-view information. Finally, an adaptive anomaly scoring module is
employed to estimate the anomaly detection score.

4.1 Graph Pre-processing Module

In this module, we first generate the feature view and the structure view of
each graph. Then, the preliminary node/graph embeddings of two views are
calculated, which are used as the input for the simplified transformer-based
embedding module. To generate the feature view and structure view of each
graph, we adopt the perturbation-free graph augmentation strategy [14,28].

To calculate the preliminary node embedding, we adopt a GNN encoder.
Specifically, we employ GIN [32] and GCN [10] as GNN encoder in this work.
Through the GNN encoder, two preliminary node embeddings of feature view
and structure view are obtained. As the calculating process of the two kinds of
representation is the same, we only show the calculating process of feature view
representation obtained from GIN and GCN. The propagation rule in the l-th
layer on the feature view of GIN (ε = 0 for simplicity) can be expressed as [32]:

h(f,l)
i = MLP (f,l)

⎛
⎝h(f,l−1)

i +
∑

vj∈N (vi)

h(f,l−1)
j

⎞
⎠ , (1)
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Fig. 2. (a) The overview of CVTGAD. The proposed method contains three modules:
graph pre-processing module, simplified transformer-based embedding module, and
adaptive anomaly scoring module. (b) Specially, we extend the receptive field through
a simplified transformer structure and design a cross-view attention mechanism by
crossing the matrix K.

where f is the indicator for the feature view. MLP is a multi-layer perception
network. h(f,l−1)

i is the preliminary embedding of node vi in the l − 1-th layer
of feature view, and N (vi) is the set of first-order neighbor nodes of node vi.

And the propagation rule in the l-th layer on the feature view of GCN can
be expressed as [10]:

H(f,l) = σ
(
D̂− 1

2 ÂD̂− 1
2 H(f,l−1)W(l−1)

)
, (2)

where Â = A+ IN is the adjacency matrix of the input graph G with added
self-connections, and IN is the identity matrix. D̂ is the degree matrix, H(f,l−1)
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is node embedding matrix in the l−1-th layer of feature view, W(l−1) is a layer-
specific trainable weight matrix, and σ(·) is a non-linear activation function.
h(f,l)

i is the i-th row of H(f,l). And the preliminary node embedding of structure
view h(s,l)

i can be calculated in the same way, where s is the indicator for the
structure view.

After getting the preliminary embeddings of nodes, a readout function is
needed to acquire the preliminary graph embeddings. In this work, we employ
global mean pooling as the readout function, which can be represented by:

h(f)
G =

1
|VG|

∑
vi∈VG

h(f)
i , h(s)

G =
1

|VG|
∑

vi∈VG

h(s)
i , (3)

where VG is the node set of input graph G. h(f)
G and h(s)

G are the feature view
and structure view preliminary graph embedding of input graph G, respectively.

4.2 Simplified Transformer-Based Embedding Module

In this module, we design a novel and simple transformer to adapt to the cur-
rent graph datasets and unsupervised graph-level anomaly detection task. The
proposed simplified transformer architecture comprises a projection network, a
residual network, and a transformer (including an attention mechanism, a feed-
forward layer, and a norm layer). After we get the preliminary embeddings of
nodes/graphs from different views through graph pre-processing module, we feed
them into the projection network, which is achieved by a multi-layer perceptron
(MLP) to project them into latent space. The output of it is the input of the
residual network and the transformer. The residual network is achieved by a
MLP and makes a shortcut between the output of the projection network and
the output of the attention layer.

We achieve feed-forward layer and norm layer with MLP and LayerNorm,
respectively [29]. The attention mechanism comprises three parametric matrices:
the query matrix Q ∈ R

m×dk , the key matrix K ∈ R
m×dk , and the value matrix

V ∈ R
m×dk . m is the number of embedding fed into the transformer and dk is the

dimension of embedding. For each embedding, the attention matrix Att ∈ R
m×m

represents how much it attends to other embeddings, and then transforms the
embedding into contextual one [9]. Att is computed as follows:

Att|B| = softmax

(
QKT

√
dk

)
. (4)

Each input embedding attends to all other embeddings through the attention
mechanism, which could be computed as:

Attention(Q,K,V)|B| = softmax

(
QKT

√
dk

)
V. (5)

Note that B reflects the receptive field. For each node/graph, we calculate
the attention of all the nodes/graphs in B. And such a number of nodes/graphs



192 J. Li et al.

is extremely larger than the existing works. Through this module, the receptive
field is extended, which leads to a better representation of nodes/graphs.

Furthermore, we propose a cross-view attention mechanism that aims to
directly exploit the view co-occurrence between different views. Specifically, the
output of cross-view attention mechanism on the feature view is computed as
follows:

Attention(Q(f),K(s),V(f))(f)|B| = softmax−L1 norm

(
Q(f)K(s)T

√
dk

)
V(f), (6)

where B is the training/testing batch. Following [11], softmax − L1 norm
means we adopt softmax and L1 norm to normalize the two dimensions of the
attention matrix, respectively. The output of cross-view attention mechanism on
the structure view is computed as follows:

Attention(Q(s),K(f),V(s))(s)|B| = softmax − L1 norm

(
Q(s)K(f)T

√
dk

)
V(s). (7)

Through the cross-view attention mechanism, we could directly exploit the
view co-occurrence between different views, which bridges the inter-view gap at
both node level and graph level.

4.3 Adaptive Anomaly Scoring Module

Following [14], we design an adaptive strategy considering both node-level loss
and graph-level loss to calculate the anomaly score.

Node-Level Cross-View Contrastive Loss. For an input graph G, we con-
struct node-level contrastive loss to maximize the agreement between the embed-
ding belonging to different views on the node level:

Lnode =
1

|B|
∑

Gj∈B

1
2|VGj

|
∑

vi∈VGj

[
l(h(f)

i ,h(s)
i ) + l(h(s)

i ,h(f)
i )

]
, (8)

l(h(f)
i ,h(s)

i ) = −log
e(sim(h

(f)
i ,h

(s)
i )/τ)

∑
vk∈VGj

\vi
e(sim(h

(f)
i ,h

(s)
k )/τ)

. (9)

In Eq. 8, B is the training/testing batch and VGj
is the node set of graph Gj .

The calculation of l(h(s)
i ,h(f)

i ) and l(h(f)
i ,h(s)

i ) are the same, and we show the
calculation of l(h(f)

i ,h(s)
i ) in Eq. 9 for briefly. In Eq. 9, the sim(., .) is the function

to measure the similarity between different views. In this work, we compute the
cosine similarity.

Graph-Level Cross-View Contrastive Loss. Similar to node-level loss, we
construct a graph-level loss for mutual agreement maximization on graph level:
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Lgraph =
1

2|B|
∑

Gi∈B

[
l(h(f)

Gi
,hs

Gi
) + l(h(s)

Gi
,h(f)

Gi
)
]
, (10)

l(h(f)
Gi

,h(s)
Gi

) = −log
e
(sim(h

(f)
Gi

,h
(s)
Gi

)/τ)

∑
Gj∈B\Gi

e
(sim(h

(f)
Gi

,h
(s)
Gj

)/τ)
, (11)

where notations are similar to node-level loss, and l(h(s)
Gi

,h(f)
Gi

) is calculated

in the same way as l(h(f)
Gi

,h(s)
Gi

).
In the training phase, we employ the adaptive loss function:

L = λ1Lnode + λ2Lgraph, (12)

where λ1 = (σnode)
α, and λ2 = (σgraph)α. σnode/σgraph is the standard

deviations(std) of predicted errors of the node-level/graph-level, where α ≥ 0 is
a hyper-parameter.

In the inference phase, we employ the normalization method norm to get the
final anomaly score:

scoreGi
= norm(LnodeGi

) + norm(LgraphGi
), (13)

where norm(LnodeGi
) = (LnodeGi

− μnode)/σnode and norm(LgraphGi
) =

(LgraphGi
− μgraph)/σgraph. μnode/μgraph is the mean values of predicted errors

of training samples of node-level/graph-level.

5 Experiment

In this section, we conduct extensive experiments to validate the effectiveness of
our proposed CVTGAD method against 9 baselines on 15 real-world datasets.

Table 1. The statistics of the 15 datasets [23].

Dataset PROTEINS full ENZYMES AIDS DHFR BZR COX2 DD NCI1 IMDB-B REDDIT-B COLLAB HSE MMP p53 PPAR-gamma

Graphs 1113 600 2000 467 405 467 1178 4110 1000 2000 5000 8417 7558 8903 8451

Avg. Nodes 39.06 32.63 15.69 42.43 35.75 41.22 284.32 29.87 19.77 429.63 74.49 16.89 17.62 17.92 17.38

Avg. Edges 72.82 62.14 16.20 44.54 38.36 43.45 715.66 32.30 96.53 497.75 2457.78 17.23 17.98 18.34 17.72

Node Attr. 29 18 4 3 3 3 – – – – – – – – –

5.1 Experimental Setting

Datasets. We conduct experiments on 15 public real-world datasets from [23],
which involved small molecules, bioinformatics, and social networks. Following
the setting in [14,19], the samples in the minority class or real anomalous class
are viewed as anomalies, while the rest are viewed as normal data. Similar to
[14,19,35], only normal data are used for training. The statistics of the datasets
are presented in Table 1.
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Baselines. To illustrate the effectiveness of our proposed model, we compare
CVTGAD with 9 competitive baselines, which can be classified into two groups
according to whether contrastive learning is utilized: (1) For non-contrastive
learning-based methods, we select 6 baselines, including PK-OCSVM, PK-iF,
WL-OCSVM, WL-iF, OCGIN, and GLocalKD. The PK and WL represent the
propagation kernel [24] and the Weisfeiler-Lehman kernel [26] separately, which
are used to learn the graph embedding. The OCSVM and the iF represent one-
class SVM [22] and isolation forest [12] separately, which are used as detectors.
OCGIN [35] and GLocalKD [19] are the two latest methods that realize graph
anomaly detection in an end-to-end manner; (2) For contrastive learning-based
methods, we select 3 baselines named InfoGraph+iF, GraphCL+iF, and GOOD-
D. InfoGraph [27] and GraphCL [33] are two graph embedding methods that use
contrastive learning. GOOD-D [14] is the latest work that realizes graph anomaly
detection in an end-to-end manner using contrastive learning.

Table 2. The performance comparison in terms of AUC (in percent, mean value ±
standard deviation). The best performance is highlighted in bold, and the second-best
performance is underlined. †: we report the result from [14].

Method PK-OCSVM† PK-iF† WL-OCSVM† WL-iF† InfoGraph-iF† GraphCL-iF† OCGIN† GLocalKD† GOOD-D† CVTGAD

PROTEINS-full 50.49± 4.92 60.70± 2.55 51.35± 4.35 61.36± 2.54 57.47± 3.03 60.18± 2.53 70.89± 2.44 77.30±5.15 71.97± 3.86 75.73 ± 2.79

ENZYMES 53.67± 2.66 51.30± 2.01 55.24± 2.66 51.60± 3.81 53.80± 4.50 53.60± 4.88 58.75± 5.98 61.39± 8.81 63.90 ± 3.69 67.79±5.43

AIDS 50.79± 4.30 51.84± 2.87 50.12± 3.43 61.13± 0.71 70.19± 5.03 79.72± 3.98 78.16± 3.05 93.27± 4.19 97.28 ± 0.69 99.39±0.55

DHFR 47.91± 3.76 52.11± 3.96 50.24± 3.13 50.29± 2.77 52.68± 3.21 51.10± 2.35 49.23± 3.05 56.71± 3.57 62.67 ± 3.11 62.95±3.03

BZR 46.85± 5.31 55.32± 6.18 50.56± 5.87 52.46± 3.30 63.31± 8.52 60.24± 5.37 65.91± 1.47 69.42± 7.78 75.16 ± 5.15 75.92±7.09

COX2 50.27± 7.91 50.05± 2.06 49.86± 7.43 50.27± 0.34 53.36± 8.86 52.01± 3.17 53.58± 5.05 59.37± 12.67 62.65 ± 8.14 64.11±3.22

DD 48.30± 3.98 71.32± 2.41 47.99± 4.09 70.31± 1.09 55.80± 1.77 59.32± 3.92 72.27± 1.83 80.12±5.24 73.25± 3.19 77.82 ± 1.60

NCI1 49.90± 1.18 50.58± 1.38 50.63± 1.22 50.74± 1.70 50.10± 0.87 49.88± 0.53 71.98±1.21 68.48± 2.39 61.12± 2.21 69.07 ± 1.15

IMDB-B 50.75± 3.10 50.80± 3.17 54.08± 5.19 50.20± 0.40 56.50± 3.58 56.50± 4.90 60.19± 8.90 52.09± 3.41 65.88 ± 0.75 70.97±1.35

REDDIT-B 45.68± 2.24 46.72± 3.42 49.31± 2.33 48.26± 0.32 68.50± 5.56 71.80± 4.38 75.93± 8.65 77.85± 2.62 88.67±1.24 84.97 ± 2.41

COLLAB 49.59± 2.24 50.49± 1.72 52.60± 2.56 50.69± 0.32 46.27± 0.73 47.61± 1.29 60.70± 2.97 52.94± 0.85 72.08 ± 0.90 72.92±1.44

HSE 57.02± 8.42 56.87± 10.51 62.72± 10.13 53.02± 5.12 53.56± 3.98 51.18± 2.71 64.84± 4.70 59.48± 1.44 69.65 ± 2.14 70.30±2.90

MMP 46.65± 6.31 50.06± 3.73 55.24± 3.26 52.68± 3.34 54.59± 2.01 54.54± 1.86 71.23±0.16 67.84± 0.59 70.51± 1.56 70.96 ± 1.01

p53 46.74± 4.88 50.69± 2.02 54.59± 4.46 50.85± 2.16 52.66± 1.95 53.29± 2.32 58.50± 0.37 64.20 ± 0.81 62.99± 1.55 67.58±3.31

PPAR-gamma 53.94± 6.94 45.51± 2.58 57.91± 6.13 49.60± 0.22 51.40± 2.53 50.30± 1.56 71.19±4.28 64.59± 0.67 67.34± 1.71 68.25 ± 4.66

Avg.Rank 8.73 7.73 6.93 7.47 6.53 6.93 3.60 3.27 2.40 1.40

Evaluation Metrics. We evaluate methods using a popular graph-level
anomaly detection metric, i.e., the area under the receiver operating charac-
teristic curve (AUC) following [14,18,19]. Higher AUC values indicate better
anomaly detection performance.

Implementation Details. In practice, we implement CVTGAD with Pytorch1

In order to reduce the uncertainty of this process and ensure reproducibility, we
set random seeds explicitly as much as possible following [14]. We achieve the
projection networks and residual networks with two-layer MLP.

5.2 Overall Performance Comparison

The overall performance of all methods w.r.t AUC against 15 datasets is shown
in Table 2. As shown in Table 2, our proposed CVTGAD outperforms all base-
lines on 9 datasets and achieves the second-best performance on 6 datasets.
1 https://pytorch.org/.

https://pytorch.org/
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And CVTGAD achieves the first place in average rank among all comparative
methods against 15 datasets as shown in the last row in Table 2. The graph
kernel-based methods achieve the worst performance. It may be because they
fail to capture regular patterns and key information. The GCL-based methods
achieve a modest performance, indicating that GCL-based methods are compet-
itive on this task. These results demonstrate the superiority and effectiveness of
CVTGAD on graph-level anomaly detection in different fields.

Fig. 3. The comparison of ablating different key components in terms of AUC.

Table 3. Ablation study results of key components in terms of average rank.

CVTGAD CVTGAD w/o L1 norm CVTGAD w/o CM CVTGAD w/o L1 norm-CM CVTGAD w/o Transformer-CA

Avg.Rank 1.40 1.87 1.80 1.80 2.80

5.3 Ablation Study–Effects of Key Components

To get a better understanding of the proposed model CVTGAD, we conduct
ablation study experiments on 15 datasets to investigate the effects of the three
key components: simplified transformer, crossing matrix, and L1 norm. For con-
venience, let CVTGAD w/o L1 norm, CVTGAD w/o CM, CVTGAD w/o L1
norm-CM, CVTGAD w/o Transformer-CA denote the customized variants of
CVTGAD without L1 norm, crossing matrix operation, L1 norm and cross-
ing matrix operation, and simplified transformer module with cross-view atten-
tion module, respectively. The experimental results are illustrated in Fig. 3 and
Table 3. We can observe that CVTGAD consistently achieves the best perfor-
mance against other variants, demonstrating that the simplified transformer with
cross-view attention is necessary to yield the best detection results. Compared
with CVTGAD, the poor performance of CVTGAD w/o CM proves the signifi-
cance of directly exploiting view co-occurrence between different views. And the
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poor performance of CVTGAD w/o Transformer-CA proves the importance of
directly exploiting the relationship between nodes/graphs in both intra-graph
and inter-graph perspectives. By observing CVTGAD w/o L1 norm, CVTGAD
w/o CM, and CVTGAD w/o L1 norm-CM simultaneously, we can draw a pre-
liminary conclusion: L1 norm and crossing operation are both important for
implementing the cross-view attention mechanism. L1 norm has little signifi-
cance for the self-attention mechanism and is even harmful to it.

5.4 Hyper Parameter Analysis and Visualization

Fig. 4. The comparison of crossing different matrices in cross-view attention mechanism
in terms of AUC.

Table 4. The comparison of crossing different matrices in cross-view attention mech-
anism in terms of average rank.

Model CVTGAD CVTGAD-Cross Matrix Q CVTGAD-Cross Matrix V

Avg. Rank 1.40 1.80 1.87

The Effect of Different Matrices in Cross-View Attention. In cross-
view attention, there are three parametric matrices that can cross. We conduct
experiments on 15 datasets to investigate the impact of crossing different matri-
ces on detection performance. For convenience, let CVTGAD-Cross Matrix Q
and CVTGAD-Cross Matrix V denote the customized variants of CVTGAD by
crossing matrix Q and crossing matrix V in cross-view attention, respectively.
The experimental results are illustrated in Fig. 4 and Table 4. We find that: 1)
the performance of crossing matrix K is better than the other two operations; 2)
the performance of crossing matrix K on attribute graphs is more pronounced
than on plain graphs. We think it may be that attribute graphs tend to rely on
explicit information, while plain graphs can only rely on implicit information,
and crossing operation is better at capturing implicit information.
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Fig. 5. The comparison of different numbers of layers for projection network and resid-
ual network in terms of AUC.

Table 5. performance of different numbers of layers for the projection network and
residual network in terms of average rank.

Model CVTGAD CVTGAD-PN-1 CVTGAD-PN-3 CVTGAD-RN-1 CVTGAD-RN-3

Avg. Rank 1.40 1.73 1.87 1.60 1.87

Number of Layers for Projection Network and Residual Network. We
conduct experiments on 15 datasets to investigate the impact of layer number on
the projection network and residual network. For convenience, let CVTGAD-PN-
1 and CVTGAD-PN-3 denote the customized variants of CVTGAD by achiev-
ing the projection network with 1 layer- and 3 layers- MLP, respectively. Let
CVTGAD-RN-1, and CVTGAD-RN-3 denote the customized variants of CVT-
GAD by achieving the residual network with 1 layer- and 3 layers- MLP, respec-
tively. The experimental results are illustrated in Fig. 5 and Table 5. Based on
the performance of different variants of CVTGAD, we can conclude that setting
the number of layers for the projection network and residual network to 2 is the
best choice. We think that the poor performance obtained when the number of
layers is 1 is due to insufficient expression ability of the network, and the poor
performance when the number of layers is 3 is due to overfitting caused by too
deep layers.

Visualization. We use t-SNE [21] to visualize the embeddings learned by CVT-
GAD. We can observe that it is difficult to directly distinguish anomalous graphs
from normal graphs by relying solely on feature space or structure space. But
there is a clear scoring boundary (anomaly score=18), which results in a good
performance on anomaly detection. This shows the effectiveness of CVTGAD.
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Fig. 6. Visualization on AIDS dataset (a) and (b): visualization of testing sample
embeddings of feature view (f-view) and structure view (s-view) on graph-level by
t-SNE. (c): anomaly score on testing samples.

6 Conclusion

In this paper, we propose a novel framework named CVTGAD, which mainly
employs a simplified transformer with a proper receptive field to capture key
information and employs a cross-view attention mechanism to directly exploit
the view co-occurrence across different views. To the best of our knowledge,
we are the first to introduce a transformer and cross attention to the UGAD
task, achieving graph neural network and transformer working collaboratively.
Extensive experiments demonstrate the superiority of CVTGAD against 15 real-
world datasets of different fields.
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Abstract. Graph-level anomaly detection aims to identify abnormal
graphs that exhibit deviant structures and node attributes compared
to the majority in a graph set. One primary challenge is to learn nor-
mal patterns manifested in both fine-grained and holistic views of graphs
for identifying graphs that are abnormal in part or in whole. To tackle
this challenge, we propose a novel approach called Hierarchical Memory
Networks (HimNet), which learns hierarchical memory modules—node
and graph memory modules—via a graph autoencoder network architec-
ture. The node-level memory module is trained to model fine-grained,
internal graph interactions among nodes for detecting locally abnormal
graphs, while the graph-level memory module is dedicated to the learning
of holistic normal patterns for detecting globally abnormal graphs. The
two modules are jointly optimized to detect both locally- and globally-
anomalous graphs. Extensive empirical results on 16 real-world graph
datasets from various domains show that i) HimNet significantly outper-
forms the state-of-art methods and ii) it is robust to anomaly contami-
nation. Codes are available at: https://github.com/Niuchx/HimNet.

Keywords: Graph-level Anomaly Detection · Memory Networks ·
Graph Neural Networks · Autoencoder

1 Introduction

Graphs are widely used to model complex relationships between data instances
in various fields, such as social networks, bioinformatics, chemistry, etc. Graph
neural networks (GNNs) have become the predominant approach to learning
effective node/graph representations and have achieved impressive performance
in many graph-related tasks, such as node classification [13], link prediction [42]
and graph classification [40]. Despite the remarkable success achieved by GNNs,
it is still challenging for GNNs to tackle some notoriously difficult tasks. Graph-
level anomaly detection (GLAD), which aims to identify abnormal graphs that
exhibit deviant structures and node attributes in comparison to the majority in
a set of graphs, is one of such tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In recent years, a number of graph anomaly detection methods have been
proposed. However, a majority of them focus on the detection of abnormal nodes
or edges in a single graph [7,9,14,19,28,35]. In contrast, graph-level anomaly
detection is significantly less explored, despite its great importance and broad
application [1,15,21]. In general, anomalous graphs can be any graphs that are
abnormal in part or in whole, which are referred to as locally-anomalous or
globally-anomalous graphs [20,21]. The local abnormality requires a fine-grained
inspection of the graphs, as it is primarily due to the presence of unusual local
graph structures, e.g., nodes and their associated local neighborhoods, compared
to the corresponding structures in the other graphs. The global abnormality, on
the other hand, requires a holistic treatment of the graphs, as it is manifested
only at the graph-level representations. Thus, the main challenge in GLAD is
to learn normal patterns from both fine-grained and holistic views of graphs for
identifying both locally- and globally-anomalous graphs.

A few GLAD methods have been introduced, e.g., [20,21]. They employ
knowledge distillation [21] or contrastive learning [20] on the node and graph
representations to capture the local/global normal patterns. The key intuition of
these methods is that the model trained to fit exclusively normal training graphs
learns normality representations, on which abnormal test graphs would be dis-
criminative from the normal graphs. Despite their effectiveness, the learned nor-
mality representations may not preserve the primary semantics of graph struc-
tures and attributes, since their learning objectives ignore these semantics and
focus on enlarging the relative difference between normal and abnormal graphs
in the representation space. Consequently, they become ineffective in detecting
abnormal graphs in which semantic-rich graph representations are required.

This paper introduces a novel approach, namely hierarchical memory
networks (HimNet), via a graph autoencoder architecture to learn hierarchical
node and graph memory modules for GLAD, which not only help effectively
differentiate normal and abnormal graphs but also preserve rich primary seman-
tics. Autoencoder (AE) [3,11], which utilizes a decoder to reconstruct the orig-
inal input based on the representations learned by an encoder, is a widely-used
approach to preserve the rich semantics of the input data in the new repre-
sentation space. AE is also commonly used for anomaly detection in various
domains [6,8,27,41,46,47] since anomalies are generally difficult to reconstruct,
and thus, they have a higher reconstruction error than normal samples. However,
reconstructing graphs is difficult since it involves the reconstruction of diverse
graph structures and attributes. Our hierarchical memory learning is designed to
address this issue. Specifically, the node-level memory module captures the local
normal patterns that describe the fine-grained, internal graph interactions among
nodes, and it is optimized by minimizing a graph reconstruction error between
original input graphs and the graphs reconstructed from the node memory mod-
ule. On the other hand, the graph-level memory module is dedicated to the learn-
ing of holistic normal patterns of graph-level representations, and it is optimized
by minimizing a graph approximation error between graph-level representations
and their approximated representations based on the graph memory. The two
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modules are jointly optimized to detect both locally and globally anomalous
graphs. Memory-augmented AEs [8,27] have been introduced to add a memory
module for anomaly detection in image and video data. The memory module
has shown promise in enabling improved detection performance. However, their
memory module is not applicable to graph data. HimNet addresses this problem
by learning hierarchical node and graph memory modules to capture the local
and global normal patterns of those non-Euclidean graph data.

In summary, our main contributions include: i) we introduce a hierarchical
node-to-graph memory network HimNet for GLAD, which is the first work of
memory-based GLAD; ii) we introduce a three-dimensional node memory mod-
ule that consists of multiple two-dimensional memory blocks (with each block
capturing one type of normal pattern on the representations of all nodes), as well
as a graph memory module with each memory block capturing graph-level nor-
mal patterns; and iii) we further propose to learn these two memory modules by
jointly minimizing a graph reconstruction error and a graph approximation error.
We evaluate the effectiveness of HimNet via extensive experiments on 16 GLAD
datasets from different domains, which show that HimNet significantly outper-
forms several state-of-art models and it also demonstrates remarkable robustness
to anomaly-contaminated training data.

2 Related Work

2.1 Graph-Level Anomaly Detection

Graph anomaly detection has attracted increasing research interest in recent
years and various methods have been proposed [2,24]. However, most of them
focus on detecting anomalous nodes or edges in a single graph [7,9,14,19,28,35];
significantly fewer studies are conducted on GLAD. Recently, a few GLAD meth-
ods have been proposed. These works can be divided into two categories: two-step
methods and end-to-end methods. The first category typically obtains graph rep-
resentations using graph kernels (e.g., Weisfeiler-Leman Kernel [32] and propa-
gation kernels [23]), or advanced GNNs (such as Graph2Vec [22] and InfoGraph
[33]). An off-the-shelf anomaly detector is then applied to the learned graph
representations to detect abnormal graphs, such as k-nearest-neighbor distance
[26], isolation forest [17], local outlier factor [4], and one-class support vector
machine [31]. However, the two-step methods may achieve suboptimal perfor-
mance since the anomaly detectors are independent of the graph representation
learning. To address this issue, end-to-end methods unify graph representation
learning and anomaly detection. Typically, they utilize powerful GNNs as the
backbone and learn graph representations tailored for graph anomaly detection.
For example, [45] applied the Deep SVDD objective [30] on top of the GNN-
based graph representations for anomalous graph detection. [21] utilized random
knowledge distillation on both node and graph representations to capture graph
regularity information. Some works also employed contrastive learning strategy
for detecting anomalous graphs [18,20,29]. These methods show better perfor-
mance than the two-step methods, but they focus on learning discriminative
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representations only, which may fail to preserve the primary graph semantics.
Our method addresses this issue by learning hierarchical memory modules with
the objective of preserving as much semantic as possible in the representation
space.

2.2 Memory Networks

Due to the ability to store and retrieve important information, memory net-
works have been proposed and successfully applied to a wide range of domains
[8,10,16,27,36,38]. For generative models, external memory is exploited to store
local detail information [16] and prevent the model collapsing problem [10]. Con-
sidering that memory can be used to record prototypical patterns of normal data,
a number of studies [8,27] proposed to augment AEs with a memory module for
image or video anomaly detection. Despite the success of these methods, their
memory networks are not applicable to GLAD as graph data is non-Euclidean
and contains diverse graph structures and attributes where graph abnormal-
ity may exist. Our hierarchical node-to-graph memory modules are specifically
designed to address this problem.

3 Methodology

3.1 The GLAD Problem

Let G = (V, E) denote a graph, where V is the set of N nodes and E is the set of
edges. E is commonly represented by an adjacency matrix A ∈ [0, 1]N×N where
Aij = 1 if node i and j are connected with an edge and Aij = 0 otherwise. If G is
an attributed graph, the node features can be represented as X ∈ R

N×d where d
is the feature dimension. Therefore, a graph can also be denoted as G = (A,X).
This work targets graph-level anomaly detection. Specifically, given a set of K
normal training graphs {Gi = (Ai,Xi)}Ki=1, we aim to learn an anomaly scoring
function that assigns a high anomaly score to a test graph G if it significantly
deviates from the majority in a set of graphs.

3.2 Overview of the Proposed Hierarchical Memory Networks

We introduce HimNet to learn hierarchical node and graph memory blocks that
respectively capture local and global normal patterns for GLAD. HimNet con-
sists of four key components, namely graph encoder, graph decoder, node and
graph memory modules, as shown in Fig. 1. The node memory module is designed
as a three-dimensional tensor that consists of multiple two-dimensional memory
blocks, with each block capturing one type of normal pattern on all nodes. On the
other hand, the graph memory is designed as a two-dimensional matrix, with
each memory block capturing normal patterns on graph-level representations.
These two memory modules are trained to capture hierarchical normal patterns
of graph data, enabling the detection of locally- and globally-anomalous graphs.
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Fig. 1. Overview of the proposed HimNet. It learns a three-dimensional node memory
module Mn ∈ R

P×N×D and a two-dimensional graph memory module Mg ∈ R
Q×D,

where P and Q denotes the number of node and graph memory blocks respectively, D
is the dimensionality of learned node representations, and N is the number of nodes.

Given an input graph, the graph encoder learns the node-level representation,
and graph-level representation is obtained by applying a readout function on it.
Traditionally, the graph decoder takes the node-level representation as input
to reconstruct the input graph. However, this would increase the probability
of the graph autoencoder reconstructing the abnormal graphs well. To tackle
this issue, HimNet decouples the decoder from the encoder by replacing the
encoded node-level representation with a combination of local patterns in the
node memory module. Moreover, the graph-level representation is approximated
by global patterns in the graph memory module. Then, the proposed model is
optimized by minimizing graph reconstruction error and graph approximation
error. This not only optimizes the parameters of the encoder and decoder but
also forces the two memory modules to learn prime patterns of normal training
graphs at both node and graph levels. After model optimization, given a test
graph, the decoder takes the local normal patterns in the node memory module
as input and the graph-level representation is approximated by global normal
patterns in the graph memory module. In this way, the graph reconstruction
error together with the graph approximation error can be used as an effective
anomaly score.

3.3 Graph Autoencoder

In this paper, we build HimNet using a graph autoencoder (GAE) [12] archi-
tecture to learn hierarchical memory modules. Before delving into the details
of HimNet, we give an introduction to graph autoencoder which consists of a
GNN-based encoder and decoder.
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Encoder. GNNs have recently emerged as a powerful class of deep-learning
models for graph-structured data [13,34,40]. In this work, we employ GCN [13]
as the graph encoder to generate the latent node-level and graph-level represen-
tations.

Let φe(· : Θe) be the encoder parameterized by Θe. For every graph Gi =
(Ai,Xi), the encoder takes the adjacency matrix Ai and node attributes Xi as
input. The formulation of the encoder at l-th layer can be expressed as follows:

Hl
i = ReLU(ÂiH

(l−1)
i Θl

e), (1)

where Hl
i and Θl

e represent the node representations and weight parameters
of the GCN encoder at the l-th layer respectively, and ReLU(·) is the non-

linear activation function. Âi = D̃− 1
2

i ÃiD̃
− 1

2
i , where Ãi = Ai + I (I is an

identity matrix) and D̃i is the degree matrix of Ãi. H
(l−1)
i represents the node

representation at the (l − 1)-th layer and H(0)
i = Xi. If the input graph Gi is

a plain graph, the node degree is typically used as the attribute [43]. Assuming
the output dimension of the encoder is D, the learned node representation can
be formulated as Hi ∈ R

N×D where N is the number of nodes in the graph.
To obtain the graph-level representation, a readout function is commonly

applied to the learned node representation Hi. There are many readout func-
tions, such as maxing, averaging, summation, and concatenation [39,44]. In
this paper, we adopt the averaging function which calculates the mean of node
representations along the node dimension to get the graph-level representation
Hg

i ∈ R
D. The resulting representation Hg

i captures the overall structural and
semantic information of the graph Gi.

Decoder. To accurately reconstruct the original graph Gi, two decoders φs
d(Hi)

and φa
d(Hi), which take node representation Hi as input, are employed to recon-

struct the graph structure and node attribute respectively.
For the graph structure decoder φs

d(Hi), we implement it as the inner product
of the latent node representation Hi as follows:

A
′
i = σ(HiHT

i ), (2)

where A
′
i denotes the reconstructed graph structure, HT

i is the transpose of Hi,
and σ(·) represents the activation function.

To reconstruct the node attribute, we use the GCN [13] as the attribute
decoder φa

d(Hi) and the formulation at the l-th layer can be expressed as:

H̃l
i = ReLU(ÂiH̃

(l−1)
i Θl

d), (3)

where H̃l
i and Θl

d represent the latent node representations and weight param-
eters at l-th layer of the decoder respectively, with H̃(0)

i = Hi. We denote the
reconstructed node attribute as X

′
i, which is the output of the decoder φa

d(Hi).
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For each input graph Gi = (Ai,Xi), GAE is optimized to minimize the
reconstruction errors on the graph structure and node attributes:

LGAE = ‖Ai − A
′
i‖2F + ‖Xi − X

′
i‖2F , (4)

where ‖ · ‖F represents Frobenius norm.
By minimizing Eq. (4), GAE is driven to fit the patterns of normal training

graph data and preserve the semantics of them. During inference, GAE would
produce higher reconstruction errors for anomalous graphs than normal graphs,
as abnormal graphs are distinctive from normal graphs and are not accessible
to GAE during the training process. Therefore, the reconstruction error LGAE

can be directly used as the criterion for anomaly detection. However, solely
relying on LGAE often cannot yield satisfactory anomaly detection performance,
as demonstrated in the experiments section. This is primarily because graph is
difficult to reconstruct, leading to less discriminative power in differentiating
normal and abnormal graphs. Moreover, such a GAE cannot model graph-level
patterns well, as graph representations are not explored in GAE. In this work,
we propose to learn hierarchical memory modules to address this problem.

3.4 Hierarchical Memory Learning

Hierarchical memory learning consists of two memory modules: node and graph
memory modules, which are designed to capture hierarchical node-to-graph pat-
terns of the normal training graphs and facilitate the detection of graphs that
are abnormal in part or in whole.

Graph Memory Module. The graph memory module aims to capture the
prototypical patterns inherent in the graph representations {Hg

i }Ki=1 (K is the
number of training graphs) through a set of graph memory blocks, denoted as
Mg = {Mg

q ∈ R
D}Qq=1, where Q is the total number of memory blocks and each

block Mg
q is of the same dimensionality size as the graph representation Hg

i .
Since the graph memory blocks capture prototypical patterns of graph repre-

sentations, a graph representation Hg
i can be approximated using the following

equation:

Ĥg
i =

Q∑

q=1

wiqMg
q , s.t.

Q∑

q=1

wiq = 1, (5)

where Ĥg
i is the approximated representation of Hg

i from the memory blocks,
and wiq is the weight of the memory block Mg

q for Hg
i , with the summation

of the weights constrained to be one. The weight wiq reflects the correlation
between each graph memory block and the graph representation, i.e., a higher
correlation induces a larger weight. Therefore, to calculate wiq, we first employ
a cosine similarity function s(·) to measure the similarity between Mg

q and Hg
i :

s(Hg
i ,M

g
q) =

Hg
i (M

g
q)

T

‖Hg
i ‖‖Mg

q‖ . (6)
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To impose the summation constraint, we further normalize the similarities via
the following softmax operation to obtain the final weight:

wiq =
exp(s(Hg

i ,M
g
q))∑Q

q=1 exp(s(Hg
i ,M

g
q))

. (7)

After obtaining the approximated graph representation Ĥg
i , we calculate the

approximation error via the following Lapp loss:

Lapp = ‖Hg
i − Ĥg

i ‖2F . (8)

In the training phase, the optimization of Eq. (8) not only minimizes the
approximation error through an efficient combination of the graph memory
blocks but also forces the graph memory blocks to learn the most crucial patterns
of the graph representations. In this way, during the test phase, the approxima-
tion errors for normal and abnormal graphs would become distinct. This occurs
because the approximated graph representation is constructed solely through the
weighted combination of the learned normal patterns of graph representations.

Node Memory Module. Different from the graph memory module that cap-
tures the normal patterns at the graph-level representations, the node memory
module is designed to capture the fine-grained, normal patterns on the node rep-
resentations {Hi ∈ R

N×D}Ki=1. Specifically, the node memory module is designed
as a three-dimensional tensor, consisting of P two-dimensional memory matri-
ces, Mn = {Mn

p ∈ R
N×D}Pp=1, with each memory block Mn

p having the same
dimensionality size as the representations of all nodes. This way helps effectively
capture interactions across all nodes and their local neighborhood.

To reduce the probability of the decoder reconstructing the abnormal graph
unexpectedly, for a node representation Hi, the node memory module approxi-
mates it with Ĥi and feeds Ĥi to the decoder. Formally, Ĥi is obtained by:

Ĥi =
P∑

p=1

wipMn
p , s.t.

P∑

p=1

wip = 1, (9)

where wip is the weight of the memory block Mn
p for Hi and the summation

of wip is constrained to 1. To compute the value of wip, we adopt the same
approach used in the graph memory block. Specifically, we first calculate the
similarity between the node representation Hi and each node memory block
Mn

p . Then, we normalize the similarities through the softmax function to obtain
the final weight value wip.

The approximated node representation Ĥi is fed as the input to the graph
structure decoder φs

d(·) and node attribute decoder φa
d(·). In this way, the recon-

struction error based on Ĥi can be reformulated as:

Lrec = ‖Ai − φs
d(Ĥi)‖2F + ‖Xi − φa

d(Ĥi)‖2F . (10)
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Compared to GAE which reconstructs the original graph depending on the
encoded node representation, the node memory module performs graph con-
struction solely based on the weighted combination of the node memory blocks.
During training, the graph memory blocks are driven to learn the most repre-
sentative patterns in the encoded node representations by minimizing the recon-
struction error in Eq. (10). While in the testing phase, regardless of whether
the input graph is normal or not, the decoder only takes different combinations
of the learned normal patterns as input and outputs the normal-like graphs.
Consequently, the reconstruction errors between normal and abnormal graphs
would become significantly different. Overall, the node memory module decou-
ples the decoder from the encoder, resulting in the graph reconstruction being
more sensitive to the anomaly.

3.5 Training and Inference

Training Objective. By jointly employing the graph and node memory mod-
ules, HimNet aims to capture the hierarchical normal patterns of graphs. To
achieve this goal, for each graph, our model is optimized by minimizing the
combined objective of Eq. (8) and Eq. (10):

L′
rec = ‖Ai − φs

d(Ĥi)‖2F + ‖Xi − φa
d(Ĥi)‖2F + ‖Hg

i − Ĥg
i ‖2F . (11)

To further enhance the discrimination of HimNet for normal and abnormal
graphs, we adopt the hard shrinkage strategy [8] to promote the sparsity of weight
parameters wip and wiq. Besides, the entropy of wip and wiq are calculated and
minimized during the training, which can be formulated as follows:

Lentropy =
P∑

i=1

−wip log wip +
Q∑

i=1

−wiq log wiq. (12)

By employing the hard shrinkage and the entropy term, the weight parameters
would become more sparse, i.e., the encoded node and graph representations
are approximated with fewer memory blocks. This requires the chosen memory
blocks to be more relevant to the encoded representations and also forces the
memory blocks to learn more informative patterns.

The final training objective is obtained by combining Eq. (11) and Eq. (12):

Ltrain = L′
rec + αLentropy, (13)

where α is a hyperparameter controlling the importance of the entropy term.

Inference. By optimizing Eq. (13), HimNet can capture the hierarchical nor-
mal patterns of graphs. As a result, for a normal graph, HimNet is capable of
reconstructing it effectively with the memory blocks learned in both node and
graph memory modules. However, for an abnormal graph, the value in Eq. (11)
tends to be high. Therefore, we adopt the loss term Eq. (11) as the anomaly
score, where a higher value indicates a larger probability of being an abnormal
graph.
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4 Experiments

4.1 Experimental Setups

Datasets. To verify the effectiveness of HimNet, we conduct experiments on 16
publicly available graph datasets from two popular application domains: i) bio-
chemical molecules (PROTEINS full, ENZYMES, AIDS, DHFR, BZR, COX2,
DD, NCI1, HSE, MMP, p53, PPAR-gamma, and hERG) and ii) social networks
(IMDB, REDDIT, and COLLAB). The statistics of these graph datasets1 are
summarized in Table 1. Specifically, the first six datasets in Table 1 are attributed
graphs and the other datasets consist of plain graphs. Moreover, HSE, MMP,
p53, and PPAR-gamma contain real anomalies while the other graph datasets
are originally constructed for graph classification. Following [5,17,21,25], these
datasets are converted for GLAD by treating the minority class in these datasets
as anomalies.

Table 1. Key Statistics of Graph Datasets.

Dataset Category # Graphs # Avg.Nodes # Avg.Edges #

Anomaly

Rate

PROTEINS full Biochemical Molecules 1,113 39.06 72.82 0.60

ENZYMES Biochemical Molecules 600 32.63 62.14 0.17

AIDS Biochemical Molecules 2,000 15.69 16.2 0.20

DHFR Biochemical Molecules 467 42.43 44.54 0.61

BZR Biochemical Molecules 405 35.75 38.36 0.79

COX2 Biochemical Molecules 467 41.22 43.45 0.78

DD Biochemical Molecules 1,178 284.32 715.66 0.58

NCI1 Biochemical Molecules 4,110 29.87 32.3 0.50

HSE Biochemical Molecules 8,417 16.89 17.23 0.04

MMP Biochemical Molecules 7,558 17.62 17.98 0.16

p53 Biochemical Molecules 8,903 17.92 18.34 0.10

PPAR-gamma Biochemical Molecules 8,451 17.38 17.72 0.06

hERG Biochemical Molecules 655 26.48 28.79 0.31

IMDB Social Networks 1,000 19.77 96.53 0.50

REDDIT Social Networks 2,000 429.63 497.75 0.50

COLLAB Social Networks 5,000 74.49 2,457.78 0.52

Competing Methods. Several competing methods from two categories are
used for comparison to the proposed method. The first category consists of
two-step methods that use state-of-art graph representation learning methods

1 All the graph datasets are available on https://chrsmrrs.github.io/datasets/
docs/datasets/ except hERG which is obtained from https://tdcommons.ai/
single pred tasks/tox/.

https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/
https://tdcommons.ai/single_pred_tasks/tox/
https://tdcommons.ai/single_pred_tasks/tox/
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to extract graph representations and then apply an advanced anomaly detec-
tor on the learned representations to identify anomalous graphs. Specifically,
we employ InfoGraph [33], Weisfeiler-Lehamn (WL) [32], and propagation ker-
nel (PK) [23] as the graph encoder respectively and utilize isolation forest as
the anomaly detector following [21]. The second category of baselines includes
OCGCN [45], GLocalKD [21], and GAE [12] that are trained in an end-to-end
manner. OCGCN [45] applied an SVDD objective on top of GCN-based represen-
tation for graph anomaly detection. GLocalKD [21] utilized random knowledge
distillation to identify anomalies. GAE [12] used the graph reconstruction error
to detect anomalous graphs.

Implementation Details. To ensure fair comparisons, we utilize a three-layer
GCN [13] as the graph encoder following [21]. The dimensions of the latent
layer and output feature are set to 512 and 256 respectively. The node attribute
decoder is a two-layer GCN with the dimension of the latent layer set as 256.
The batch size is 300 for all datasets except for HSE, MMP, p53, and PPAR-
gamma whose bath size is 2000 since these datasets contain more graphs. The
hyperparameter α is set to 0.01 for all datasets. This work targets detecting
anomalous graphs within multiple graphs. However, the number of nodes varies
across graphs which hinders the parallel processing of graph data. To address this
issue, we augment the adjacency and the attribute matrices with zero padding
to match the same size of the largest graph.

Evaluation. We employ the commonly used metric, area under receiver operat-
ing characteristic curve (AUC), to evaluate the anomaly detection performance.
A higher AUC value indicates better performance. The mean and standard devi-
ation of AUC results are reported by performing 5-fold cross-validation for all
datasets except for HSE, MMP, p53 and PPAR-gamma which have widely used
predefined train and test splits. For these datasets, we report the results by
running the experiments five times with different random seeds.

4.2 Comparison to State-of-the-Art Methods

The AUC results of the proposed method and the competing methods are
reported in Table 2. From the average rank results in the table, we can see
end-to-end methods generally perform better than two-step methods, which
highlights the significance of learning tailored representations for graph-level
anomaly detection. Further, our method outperforms all the methods on 13 out
of 16 datasets and achieves highly competitive performance in the remaining
three datasets. In comparison to GAE [12], our method incorporates two mem-
ory modules to learn hierarchical normal patterns. The performance improve-
ments over GAE [12] and other counterparts demonstrate the effectiveness of
exploiting memory modules to capture hierarchical normal patterns for anoma-
lous graph detection. Note that GAE performs poorly on NCI1 and REDDIT
while our method achieves very promising results. This demonstrates that the
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rich semantics learned in HimNet allow significantly better performance than
GAE in distinguishing abnormal and normal graphs, especially when the graphs
are large and difficult to reconstruct, e.g., those in REDDIT.

We also perform a paired Wilcoxon signed rank test [37] to verify the sta-
tistical significance of HimNet against the baselines across all 16 datasets and
the results are shown in the bottom line of Table 2. We can see that our method
surpasses all baseline approaches with a confidence level greater than 98%.

Table 2. AUC results (in percent, mean±std) on 16 real-world graph datasets. The
best and second performances in each row are boldfaced and underlined respectively.

Dataset InfoGraph-iF WL-iF PK-iF OCGCN GLocalKD GAE Our

PROTEINS full 46.4±1.9 63.9± 1.8 62.7± 0.9 71.8± 3.6 78.5± 3.4 76.6± 2.2 77.2 ± 1.5

ENZYMES 48.3± 2.7 49.8± 2.9 49.3± 1.3 61.3 ± 8.7 63.6± 6.1 51.6± 2.7 58.9± 7.6

AIDS 70.3± 3.6 63.2± 5.0 47.6± 1.4 66.4± 8.0 99.2 ± 0.4 99.0± 0.5 99.7±0.3

DHFR 48.9± 1.5 46.6± 1.3 46.7± 1.3 49.5± 8.0 55.8 ± 3.0 51.4± 3.6 70.1±1.7

BZR 52.8± 6.0 53.3± 3.2 52.5± 5.2 65.8± 7.1 67.9 ± 6.5 65.5± 8.3 70.3±5.4

COX2 58.0± 5.2 53.2± 2.7 51.5± 3.6 62.8 ± 7.2 58.9± 4.5 58.7± 4.9 63.7±7.6

DD 47.5± 1.2 69.9± 0.6 70.6± 1.0 60.5± 8.6 80.5 ± 1.7 80.4± 1.7 80.6±2.1

NCI1 49.4± 0.9 54.5± 0.8 53.2± 0.6 62.7± 1.5 68.3 ± 1.5 35.0± 1.9 68.6±1.9

HSE 48.4± 2.6 47.7± 0.0 48.9± 0.3 38.8± 4.1 59.1 ± 0.1 59.0± 0.5 61.3±3.9

MMP 53.9± 2.2 47.5± 0.0 48.8± 0.2 45.7± 3.8 67.6 ± 0.1 67.3± 0.4 70.3±2.9

p53 51.1± 1.4 47.3± 0.0 48.6± 0.4 48.3± 1.7 63.9± 0.2 64.0 ± 0.1 64.6±0.2

PPAR-gamma 52.1± 2.3 51.0± 0.0 49.9± 1.7 43.1± 4.3 64.4± 0.1 65.8 ± 1.6 71.1±3.4

hERG 60.7± 3.3 66.5± 4.2 67.9± 3.4 56.9± 4.9 70.4 ± 4.9 68.1± 8.7 75.4±3.2

IMDB 52.0± 2.8 44.2± 3.2 44.2± 3.5 53.6± 14.8 51.4± 3.9 65.2 ± 4.4 68.3±3.2

REDDIT 45.7± 0.3 45.0± 1.3 45.0± 1.2 75.9± 5.6 78.2± 1.6 21.8± 1.9 78.0 ± 2.5

COLLAB 45.3± 0.3 50.6± 2.0 52.9± 2.3 40.1± 18.3 52.5± 1.4 52.8 ± 1.4 55.3±3.2

Avg. Rank 5.25 5.63 5.31 4.75 2.31 3.50 1.25

p-value 0.0004 0.0004 0.0004 0.0008 0.0113 0.0004 –

4.3 Robustness w.r.t Anomaly Contamination

This subsection evaluates the robustness of HimNet under different levels of
anomaly contamination in training data. This scenario is generally very realistic
since the graph data collected in the world may be contaminated by anomalies
and noises. To simulate this setting, given the original training data that contain
normal and abnormal data, instead of discarding abnormal data, we combine τ%
of the abnormal data with the normal training data to form the contaminated
training data. Specifically, we vary the anomaly contamination rate τ from 0%
to 16% and compare the performance of HimNet, with the two best compet-
ing methods—GLocalKD [21] and GAE [12]—as the baselines. Without loss of
generality and due to the page limits, we perform experiments on four datasets,
including three from biochemical molecules (AIDS, BZR, and DHFR) and one
from social networks (IMDB).
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Fig. 2. Results of GAE, GLocalKD, and HimNet under various contamination rates.

Figure 2 shows the AUC results of GAE, GLocalKD, and HimNet w.r.t. differ-
ent anomaly contamination rates. Compared to the two baselines, our method
achieves the best anomaly detection performance in all settings, particularly
on DHFR and IMDB. We can also see that both GLocalKD and our method
demonstrate consistent performance on all datasets for different anomaly con-
tamination rates, while GAE experiences a significant performance drop with
a slight increase in the number of anomalous training instances, except for the
AIDS dataset. The reason for the superior and stable performance of our method
is its ability to learn and store hierarchical patterns of the majority of training
data. As a result, anomalous graphs can be readily detected since they cannot
be reconstructed effectively using the learned hierarchical memory blocks. Note
that all three methods perform similarly on the AIDS dataset, which could be
due to the distinguishability between normality and abnormality being more
apparent compared to the other datasets.

4.4 Ablation Study

We use the GAE as our base model to evaluate the importance of our proposed
node and graph memory modules, which are the key driving components in Him-
Net. To verify the importance of each component, we conduct experiments on
two variants of the proposed method, i.e., HimNetw/o node and HimNetw/o graph

that respectively discard the node and graph memory module.
The results of HimNet, its two variants, and GAE are reported in Table 3.

From the table, we can derive the following observations. First, by incorporat-
ing node or graph memory module into GAE, the anomaly detection performance
is significantly enhanced on nearly all datasets, which verifies the effectiveness
of each of our proposed memory modules. Using GAE without memory mod-
ules is ineffective on some challenging datasets with large graphs and/or com-
plex node attributes, such as DHFR and REDDIT. Second, HimNetw/o node and
HimNetw/o graph perform differently across graph datasets, which indicates that
the dominance of locally or globally anomalous graphs varies across the graph
datasets. For example, HimNetw/o graph outperforms HimNetw/o node on NCI1,
indicating the anomalous graphs are more dominated by locally anomalous graphs
in NCI1. Third, the performance improvement over GAE is further boosted by
the utilization of both node and graph memory modules. This demonstrates the



214 C. Niu et al.

importance of capturing the hierarchical normal patterns that enable the simul-
taneous detection of locally and globally anomalous graphs.

Table 3. AUC performance of the proposed method and its variants.

Dataset GAE HimNet w/o node HimNet w/o graph HimNet

PROTEINS full 76.6 ± 2.2 76.4 ± 2.5 76.3 ± 3.1 77.2±1.5

ENZYMES 51.6 ± 2.7 52.0 ± 4.3 55.7 ± 5.4 58.9±7.6

AIDS 99.0 ± 0.5 99.3 ± 0.4 99.6 ± 0.3 99.7±0.3

DHFR 51.4 ± 3.6 51.9 ± 3.5 68.3 ± 6.7 70.1±1.7

BZR 65.5 ± 8.3 69.9 ± 4.9 67.4 ± 4.8 70.3±5.4

COX2 58.7 ± 4.9 59.7 ± 7.0 64.7±5.9 63.7 ± 7.6

DD 80.4 ± 1.7 80.2 ± 1.8 80.4 ± 2.0 80.6±2.1

NCI1 35.0 ± 1.9 33.9 ± 5.7 62.2 ± 2.4 68.6±1.9

HSE 59.0 ± 0.5 59.4 ± 0.4 61.6 ± 4.3 61.3±3.9

MMP 67.3 ± 0.4 68.7 ± 0.8 69.1 ± 0.2 70.3±2.9

p53 64.0 ± 0.1 64.4 ± 0.1 64.9±0.8 64.6 ± 0.1

PPAR-gamma 65.8 ± 1.6 67.6 ± 0.1 67.5 ± 3.9 71.1±3.4

hERG 68.1 ± 8.7 68.7 ± 0.8 73.2 ± 3.2 75.4±3.2

IMDB 65.2 ± 4.4 65.2 ± 4.4 66.0 ± 3.0 68.3±3.2

REDDIT 21.8 ± 1.9 21.9 ± 2.4 31.1 ± 8.9 78.0±2.5

COLLAB 52.8 ± 1.4 52.2 ± 1.6 51.7 ± 1.6 55.3±3.2

4.5 Analysis of Hyperparameters

We examine the sensitivity of HimNet w.r.t the number of memory blocks in
node and graph memory modules. Specifically, for one memory module, we fix
the number of memory blocks to one and vary the number of memory blocks
in the other memory module across {1, 2, 3, 4, 5, 6}. The results of all graph
datasets are reported in Fig. 3. The results show that even using one memory
block in each memory module, the proposed method can still achieve promising
performance on some datasets, such as DD, DHFR, REDDIT, and hERG. This
may be because the normal graphs in these datasets are more homogeneous and
deviate from the abnormal graphs distinctly. HimNet is generally more robust
to the number of graph memory blocks than the number of node memory blocks
except on the AIDS, BZR, NCI1, and REDDIT. Also, increasing the number of
memory blocks does not always bring better results. In some cases, it can even
degrade the detection performance. This is mainly because the larger memory
modules may boost the expressiveness of memory modules, leading to the failure
cases that the abnormal graphs can also be well reconstructed.
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Fig. 3. Results of HimNet w.r.t different numbers of graph and node memory blocks.

5 Conclusion

This paper proposes hierarchical memory networks (HimNet) to learn hierarchi-
cal node and graph memory modules. These memory modules explicitly capture
hierarchical normal patterns of graphs by jointly minimizing graph reconstruc-
tion and graph approximation errors, enabling effective detection of both locally-
and globally-anomalous graphs. Extensive experiments demonstrate the superi-
ority of HimNet in detecting anomalous graphs compared to state-of-the-art
methods. Furthermore, HimNet achieves promising performance even when the
training data is largely contaminated by abnormal graphs, which shows its appli-
cability in real-world applications with unclean training data.

Acknowledgment. This work is partially supported by Australian Research Council
under Grant DP210101347.

Ethical Statement. In this work, we study the problem of graph-level anomaly detec-
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Abstract. Anomaly detection aims at detecting examples that do not
conform to normal behavior. Increasingly, anomaly detection is being
approached from a semi-supervised perspective where active learning
is employed to acquire a small number of strategically selected labels.
However, because anomalies are not always well-understood events, the
user may be uncertain about how to label certain instances. Thus, one
can relax this request and allow the user to provide soft labels (i.e.,
probabilistic labels) that represent their belief that a queried example is
anomalous. These labels are naturally noisy due to the user’s inherent
uncertainty in the label and the fact that people are known to be bad at
providing well-calibrated probability instances. To cope with these chal-
lenges, we propose to exploit a Gaussian Process to learn from actively
acquired soft labels in the context of anomaly detection. This enables
leveraging information about nearby examples to smooth out possible
noise. Empirically, we compare our proposed approach to several base-
lines on 21 datasets and show that it outperforms them in the majority
of experiments.

Keywords: Anomaly Detection · Probabilistic Labels · Noisy Labels

1 Introduction

Anomaly detection is the task of detecting abnormal behaviour in the data.
These unexpected occurrences are usually related to critical events, such as
machine failure [8], intrusion detection [19] or medical applications [31]. Thus,
detecting anomalies in time allows us to save money, preserve privacy and save
lives.

Because anomalies are, by definition, rare events, obtaining labels (especially
anomalous ones) is often expensive, unethical, or simply time-consuming. Hence,
anomaly detection is usually tackled from an unsupervised perspective [10,12].
However, it has been shown in the literature that providing limited, but specific
labels to the model can have a large impact on its performance [35,45]. Therefore,
one can implement active learning strategies to collect labels strategically, such
as those in regions where the model has high uncertainty [1,11,24].

However, sometimes it can be challenging to provide a correct label for a
given instance. For example, when labeling abnormal water usage, it may happen
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 219–236, 2023.
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that some normal behaviour (e.g., system maintenance) is infrequent and the
user presumes it is anomalous and labels it as such [44]. More generally, an
instance’s label may be ambiguous, and different annotators may label it in
different ways (e.g., crowdsourcing). When reconciling these inconsistencies to
get a hard decision, selecting the correct label may be a difficult task [21,39]. A
solution to this problem is to relax our request by allowing the user to provide a
soft label (i.e., a probability). Thus, one asks how likely it is that an instance is
anomalous. Previous work has shown that this relaxation increases performance,
especially in highly imbalanced data sets [26,43].

Unfortunately, soft labels that reflect the inherent label probability are hard
to collect [9,15]. For example, a user may be overly confident and annotate
a slightly excessive usage of water as having a very high probability of being
anomalous. Similarly, in crowdsourcing, a group of users may be affected by a
biased selection of instances that ends up producing inaccurate probabilities for
some specific instances [25]. Thus, asking for a user to provide soft labels often
results in examples that are annotated with noisy probabilities. This can have
a negative effect on the detector’s performance as using incorrect soft labels
at training time affects its ability to make accurate predictions at test time.
For example, overly high (low) probabilities would make the model sensitive to
producing false positives (negatives). Therefore, accounting for the (possible)
noise both during training and inference is an important problem.

Additionally, we require a method that has both an unsupervised and super-
vised component. Many, but not all, anomalies are non-repetitive events. These
anomalies are best detected by unsupervised anomaly detectors. However, these
unsupervised detectors have difficulties detecting anomalies that look similar to
normal instances or might detect some normal behavior as anomalous. Labels
can help distinguish these last two cases. Thus, we want to make predictions
such that (1) we fall back to unsupervised scores if instances are distant from
labeled training data and (2) the instances that are closer to the labeled data
receive a score that is mostly based on the soft labels.

Therefore, we fill this gap in the literature by proposing SLADe (Soft Label
Anomaly Detector), the first semi-supervised anomaly detector that learns from
noisy soft labels using active learning. Initially, it uses an unsupervised anomaly
detector as an indication of how anomalous instances are (prior knowledge).
Then, it sets up an active learning loop that (1) measures the uncertainty inher-
ent to dealing with noisy soft labels, (2) uses the uncertainty metric to collect
noisy soft labels, and (3) learns from such labels by training a Gaussian Pro-
cess to model the deviation between the given soft labels and the unsupervised
scores. Finally, at inference time, SLADe removes the noise from the soft labels
by averaging out the GP’s prediction over a Gaussian surface. By summing this
average with the unsupervised score, SLADe computes the probability that a
test instance is anomalous.
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2 Background and Notation

We assume a d-dimensional instance space X ⊆ R
d and a binary output space

Y = {0, 1} where 1 denotes the anomaly class. Moreover, we assume that we are
given an unlabeled dataset U = {xi|xi ∈ X}N

i=1 of size N , an initially empty
(soft) labeled dataset L, and a label budget B ∈ N that indicates how many (soft)
labels the user is willing to provide. We now review the necessary background
on anomaly detection and Gaussian processes.

2.1 Anomaly Detection

In unsupervised anomaly detection, the goal is to learn a function s : X → R

that assigns real-valued anomaly scores to any instance in X where, without loss
of generality, we assume that higher scores represent more anomalous instances.
Unsupervised detectors are trained by making assumptions about what consti-
tutes an anomaly, which typically results in defining how anomalies are dissimilar
to normal instances. For example, Isolation Forest (IForest) [22] assumes that
anomalies can be easily isolated when randomly splitting the instance space, and
assigns anomaly scores inversely proportional to the number of splits needed to
isolate an instance. The k-NN outlier detector (kNNO) [2] assumes that anoma-
lies are far away from normals with respect to some notion of distance, and uses
the distance to the k-th nearest neighbor as the anomaly score.

A practical issue is how to convert an anomaly score into a hard predic-
tion [32]. One way to do this is to use the contamination factor γ ∈ [0, 1], which
is the fraction of anomalies in a dataset [33,34]. Using γ one can define a thresh-
old λ so that a fraction γ of the training data receives an anomaly score greater
than λ. For an unseen test instance xt,

y(xt) =

{
0 s(xt) ≤ λ

1 s(xt) > λ .
(1)

Recently, there is increasing recognition that incorporating strategically cho-
sen labeled instances is important for improving the performance of anomaly
detectors [35,45]. Active learning (AL) is commonly used to select which
instances to label [17,41]. At a high level, it is possible to distinguish among
three approaches to AL [24]: uncertainty-based strategies aim to select the unla-
beled data samples with the highest uncertainty [11], diversity-based strategies
aim to maximize the diversity among the labeled training data [1] and combined
strategies integrate the advantages of these two [6]. The first category is widely
used due to its simplicity and strong performance. Starting with an unlabeled
dataset U and an empty (soft) labeled dataset L, a detector is learned in an
unsupervised manner. Then, the following steps are repeated until a given label
budget is exhausted. First, query a human annotator to provide a (soft) label
for the strategically chosen instances. In uncertainty sampling, one approach is
to use the probabilistic gap |P (Y = 1|x) − P (Y = 0|x)| where smaller gaps
indicate higher uncertainty. Second, the queried instances and their (soft) labels
are added to L and the model is retrained using this newly expanded dataset.
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2.2 Gaussian Processes

A Gaussian process (GP) is a collection of random variables over the instance
space, such that any finite subset of them have a joint Gaussian distribution [37].
Roughly speaking, a GP can be seen as a distribution over functions f : X → R

such that for any x, x′ ∈ X

f(x) ∼ GP(m(x),K(x, x′)),

where m : X → R is called the mean function, and K : X × X → R is the
covariance function (otherwise known as the kernel). The Gaussian process is
completely characterized by these two functions m and K, which define

E[f(x)] = m(x) and Cov[f(x), f(x′)] = K(x, x′).

Picking an appropriate prior mean and kernel enables encoding prior beliefs
of the data-generating process into the model. More importantly, the GP fully
relies on these prior beliefs to make predictions for an unseen instance that
falls in a region far from any training instance. Given a training set of pairs
R = {(xi, ri)}|R|

i=1, where ri ∈ R, the posterior distribution of a GP for any
x, x′ ∈ X is

f |R ∼ GP(mR,KR)

mR(x) = m(x) + Σx,X (ΣX,X)−1 (r − m(X))

KR(x, x′) = K(x, x′) − Σx,X (ΣX,X)−1
ΣX,x′ ,

(2)

where the elements of Σa,b depend on the kernel (Σa,b)i,j = K(ai, bj), which
makes ΣX,X the training-training covariance matrix, and Σx,X , ΣX,x′ , respec-
tively, 1×|R| and |R|× 1 covariance vectors. Note that the posterior covariance
is always lower than the prior due to the subtraction of a strictly positive term.

Given a test set T = {xt}|T |
t=1, the GP predicts a posterior multivariate normal

distribution (|T |-dimensional) N (mR(T ),KR(T, T )). Note, that each individual
instance has a Gaussian marginal distribution that can be used for instance-
wise predictions. In practice, one can derive the final prediction from the given
distribution by either taking a sample (Bayesian perspective) or extracting the
mean (frequentist perspective). In this work, we use the latter.

3 SLADE

Our goal is to learn a model to estimate the probability that an instance is
anomalous in an active learning setting where a user provides soft labels. Starting
from an unlabeled dataset U = {xn|xn ∈ X}N

n=1, an empty soft labeled dataset
L, and a label budget B, the algorithm can iteratively query instance x ∈ U .
However, instead of receiving its exact label, the user provides a real value p ∈
[0, 1] indicating the probability that the instance belongs to the anomaly class.
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Designing an approach to learn in this setting has three key challenges. First,
we need an informative unsupervised score about what is and is not likely to be
anomalous. This allows the model to output probabilities even in regions where
no soft labels are given. Second, we need a way to combine the weak supervision
provided by the soft labels with this unsupervised score such that (1) we fall back
to the initial scores if instances are distant from labeled training data and (2)
the instances that are closer to the soft labeled data in L receive a score that is
mostly based on those labels. Third, we need to explicitly model the uncertainty
that is inherent when working with soft labels.

We address these challenges by combining unsupervised anomaly detection
with a Gaussian process. Intuitively, the anomaly detector will provide an infor-
mative prior for the GP. A key question is what the GP should model. One
choice would be to have it directly model the soft labels. However, because the
labels are uncertain and noisy, we want to decouple the noise arising from the
soft labels and the uncertainty of unsupervised scores. Therefore, we model the
deviation of the soft labels from the unsupervised prior. When making a pre-
diction, we propose a novel way to combine the estimated deviation and the
unsupervised score in a noise-robust way. Next, we describe our training and
inference procedures in more detail.

3.1 Training

SLADe constructs the informative prior by taking a completely unsupervised
approach. First, SLADe trains an unsupervised anomaly detector on U that can
compute an anomaly score for any instance x ∈ X , which is denoted as s(x).
SLADe is detector agnostic and we will discuss possible choices in the experi-
mental evaluation. Second, we want to learn the deviation of the soft labels from
these scores. However, working with the raw scores is not possible because scores
provided by different unsupervised models have different meanings. Moreover,
anomaly scores often cannot be interpreted as probabilities (e.g., kNNo assigns
a distance) and thus, in this form they can not be compared with soft labels
(i.e., probabilities). Therefore, we apply the linear unification transformation
(i.e., min-max normalisation) [18]

s̃(x) =
s(x) − min(s)

max(s) − min(s)

to map anomaly scores into [0, 1], where s = {s1, . . . , sN} are the anomaly scores
for U . We opt for linear unification because we do not want to introduce strong
assumptions on the unsupervised scores (which, working as a prior, is supposed
to be flexible [46]).

Our GP models the deviation between the user-provided soft labels and these
prior probabilities and it is initialized as g0 ∼ GP(0,K). The posterior GP is then
defined as

g0|L0 ∼ GP(mL0 ,KL0),
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where L0 = {(xj , pj − s̃(xj)) : (xj , pj) ∈ L} denotes a dataset containing the
difference between the soft labels (i.e., pj) and the unified unsupervised scores
of the training data in L. To gather soft labeled training data and train the
GP, we run an active learning loop. Given a label budget B, we repeat the
following steps until our label budget is exhausted. (1) We query the instance
x∗ ∈ U where the model is the most uncertain. Quantifying uncertainty requires
assigning a prediction to each instance in U . By combining the unsupervised
prior s̃ with the GP’s mean mL0 , we obtain a first probability estimate:

P1(Y = 1|x,L) = s̃(x) + mL0(x) . (3)

Model uncertainty can arise for two reasons: making weak predictions (≈ 0.5)
and a lack of labeled instances in certain regions of the instance space. To capture
both types of uncertainty, we use Kapoor et al. [16]’s strategy to query labels
for

argmin
x∗∈U

|0.5 − P1(Y = 1|x∗, L)|√KL0(x∗, x∗)
.

This formula assigns low scores if (a) the posterior probability is close to 0.5
(small numerator), or (b) if the instance is far from the labeled instances
and hence has high prediction variance (big denominator). (2) Finally, SLADe
updates L = L ∪ {(x∗, p∗)} and U = U \ {x∗}. Subsequently, g0|L0 is updated
with the newly obtained soft labels.

3.2 Inference

Given an unseen test instance xt and a set of soft labels L, computing the poste-
rior probability P (Y = 1|xt, L) is challenging for the following reason. An initial
estimate of the posterior probability can be obtained via Eq. 3. However, this
probability is heavily affected by noisy soft labels. Per definition, the GP pre-
dicts the exact soft labels for each soft-labeled training instance. Consequently,
if xt is in close proximity to a noisy soft label, the predicted posterior probability
would be affected by this noise.

We propose to mitigate the effect of noisy labels as follows. We distinguish
between two types of test instances: (1) those that are far from the training data
and (2) those that have many training instances nearby. Since the unsupervised
anomaly scores model the proximity to other data points, we can use this as
a measure without introducing any new assumptions (i.e. high anomaly scores
represent distant instances). For the first type of test instances, there is no reason
to try and fix the noise. They are far from the training data and will thus not be
influenced by noise. The second type, on the other hand, is influenced by label
noise. We cope with this problem by smoothing out the estimated deviation over
a Gaussian surface that has xt as the center and a given variance σ2

t . Formally,

P2(Y = 1|xt, L) = s̃(xt) + EV ∼N (xt,σ2
t )

[mL0(V )], (4)
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where V is a normally distributed random variable. Using the surrounding
instances forces the model to use more soft labels when computing the posterior
probability, which clearly averages out the negative effects that the presence of
noise has on the model. σt is dependent on xt and we define it as one-third of the
radius of a hypersphere with center xt that captures q% of the instances in U .
Thus, for every test instance, we average out over the same number of training
data. We then formalize our final probability estimate as

P̂ (Y = 1|xt, L) =

{
P1(Y = 1|xt, L) s(xt) > λ

P2(Y = 1|xt, L) s(xt) ≤ λ ,
(5)

where λ denotes the anomaly score threshold as defined in Eq. 1. A hard predic-
tion is obtained by setting a threshold, typically 0.5, on the probability estimates.

4 Experiments

We address the following two research questions: Q1: How do the methods com-
pare under various noise regimes? Q2: How sensititive is SLADe to the choice
of its hyperparameters?

4.1 Experimental Setup

Methods. We compare SLADe1 against four baselines. Conceptually, these
can be divided into two groups. The first group learns directly from probabilistic
labels: GP [31] simply uses a Gaussian Process to model the soft labels with-
out including the unsupervised prior, while P-SVM [20] uses a Support Vector
Machine (SVM) with class labels that are weighted by the given soft labels. The
second group cannot operate directly on the soft labels. Therefore, we convert
them to hard labels by flipping a weighted coin. Then we apply traditional semi-
supervised models. SSDO [44] is a propagation-based detector that uses the
distance to hard labels to assign anomaly scores. HIF [23] is a semi-supervised
variant of the widely used unsupervised Isolation Forest [22] that improves its
anomaly scores by adding the distance to the anomalous hard labels.

Data. We evaluate our method and the baselines on 21 benchmark datasets that
are widely used in the anomaly detection literature [4,12]. These datasets vary in
size, number of features, and proportion of anomalies. To limit the computational
cost of the experiments, we subsample each dataset to at most 5000 instances
keeping the same proportion between normals and anomalies. See Table 1 for the
characteristics of the datasets.

1 The code and Supplement are available via https://github.com/TimoM99/SLADe.

https://github.com/TimoM99/SLADe
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Table 1. Characteristics (full size, subsampled size, number of features d, contamina-
tion factor γ) of the 21 benchmark datasets used for the experiments.

Dataset Full size Size d γ Dataset Full size Size d γ

ALOI 50,000 5000 27 0.030 Pen 9,868 5000 16 0.002

Annthy 7,200 5000 21 0.075 Pima 555 555 8 0.099

Arrhy 271 271 259 0.100 Shuttle 1,013 1013 9 0.013

Cardio 2,112 2112 21 0.221 Spam 2,661 2661 57 0.050

Glass 213 213 7 0.042 Stamps 340 340 9 0.091

Heart 166 166 13 0.096 Wave 3,443 3443 21 0.029

Hepa 80 80 19 0.163 WBC 223 223 9 0.045

Iono 350 350 32 0.357 WDBC 367 367 30 0.027

KDD 48,113 5000 40 0.040 Wilt 4,819 4819 5 0.053

Page 5,393 5000 10 0.095 WPBC 198 198 33 0.237

Parkin 60 60 22 0.200

Setup. Our setup can be divided into three parts: (1) generating the ground-
truth soft labels, (2) introducing the noise, and (3) evaluating the methods.

The first part requires modeling the human annotator: given an instance x,
a soft label p indicates the proportion of anomalous labels that we would obtain
if we queried x multiple times. Moreover, similar instances are likely to obtain
similar probabilities. We model this aspect by training a Random Forest with
low depth (= 4) on the original dataset and use it to compute the soft labels as
class probabilities. The low depth guarantees that Random Forest does not push
all probabilities to the extremes (0 or 1) but assigns smooth values over [0, 1].

In the second part, we introduce noise into the soft labels. We use a standard
transformation [7] that changes the label p into 1−p for a fixed percentage of the
soft labels. The noisy instances are picked uniformly at random. The percentage
of swapped labels is the noise level of the dataset.

Finally, for each of the 21 datasets, we run the following experiment: (i) We
randomly split the dataset into 80% training and 20% test set; (ii) We compute
the ground-truth soft labels and add the given level of noise to the training soft
labels; (iii) We run the active learning loop with a label budget B = 60% of
the training set size N , which we split into 12 rounds of 5% each. We choose a
label budget of 60% for completeness reasons. All baseline methods also employ
uncertainty sampling. (iv) We evaluate the Area Under the Receiving Operating
Curve (AUROC) [14] of each method at every iteration of the loop. As the test
set also has soft labels, we sample a hard label to make the evaluation consistent
within our probabilistic setting. To average out the randomness introduced by
sampling labels, we repeat the active learning loop 20 times. All four steps are
then repeated five times. We carry out a total of 5×20×21 = 2100 experiments.

Hyperparameters. SLADe has three hyperparameters. We choose IFor-
est [22] as the unsupervised method. We use the Matèrn kernel with ν = 1

2



Learning from Active Noisy Soft Labels for Anomaly Detection 227

in the GP as it is widely used in the literature [36]. Moreover, we optimize
the length scale hyperparameter of the Gaussian Process by maximizing the log
marginal likelihood [37]. Finally, we set q = 2. SSDO uses the same prior model
as SLADe and the default values for α and k. HIF has two hyperparameters:
α1 and α2. Since the paper does not suggest any values, we set both to 0.5,
which makes a fair weighting between the different parts of the score. P-SVM
utilizes an RBF kernel with the default parameters [20]. Finally, GP relies on a
Gaussian Process that has the same hyperparameters as for SLADe.

4.2 Experimental Results

Q1. Comparing the Methods. We want to evaluate SLADe on two aspects:
(1) its robustness against noise and (2) its ability to rank anomalies. Therefore, we
compare SLADe against the baselines on three different noise levels and compare
both their noise-robustness and performance at different label percentages.

First, we compare SLADe against the baselines for each label frequency of
the active learning loop under the three noise levels (0%, 10%, 20%). For this
task, we plot the learning curve, which has on the x-axis the label percentage
as a proportion of the dataset’s size, and, on the y-axis, the methods’ AUROC.
Figure 1 shows the results on five representative datasets, while the Supplement
includes the plots for all the remaining datasets. Regardless of the noise, SLADe
clearly outperforms all the baselines on Shuttle (left plot), while it performs
similarly to the baselines on Pima and Heart (second and third plots). On
the other hand, on Page and Iono (right plots), SLADe obtains competitive
AUROC values with no noise present while outperforming all the baselines at
higher noise levels (10% and 20%). Overall, the major strength of SLADe is the
ability to improve its performance when acquiring (possibly noisy) soft labels:
on Shuttle, SLADe’s learning curve is steeper than all the baselines’ for all
noise levels. On the other hand, looking at Page and Iono, all methods’ learning
curves are flat, but SLADe’s does not deteriorate as hard as the baselines when
introducing higher noise levels.

Second, we dive deeper into the noise-robustness of the methods. Therefore,
we aggregate the results on a per-dataset basis and measure how their perfor-
mance decreases when moving from a setting with no noise to a setting with (a)
10% and (b) 20% of noise. Figure 2 reports the methods’ mean AUROC drop
aggregated over all of the label percentages for the two scenarios. The star (cross)
markers indicate the mean AUROC with no noise (the given level of noise), while
the length of the segment is indicative of how robust each model is against noise:
the shorter the segment, the smaller the change of AUROC, and the more robust
the model. The results show that SLADe obtains the lowest/similar (i.e., within
a gap of 0.01) drop in performance in 13 out of 21 datasets when the noise goes
from 0% to 10%, while it does so on six datasets when increasing the noise to
20%. Unsurprisingly, the second-best baseline is HIF, which is naturally noise-
robust because it only leverages anomalous labels to assign scores, which hides
the negative effect of noisy negative labels provided by the user. In fact, HIF
obtains the lowest drop in performance on six datasets under 10% noise, and
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Table 2. Wins (W), Draws (D), and Losses (L) of SLADe against each baseline in
terms of average AUROC per dataset, for each label percentage, under 20% of noise.
A draw means that the absolute difference in AUROC is ≤ 0.01.

SSDO P-SVM HIF GP

Labels W D L W D L W D L W D L

5% 13 5 3 16 1 4 10 5 6 17 2 2

10% 15 3 3 16 1 4 12 5 4 16 2 3

15% 17 3 1 17 0 4 12 8 1 15 2 4

20% 16 5 0 17 0 4 17 4 0 15 0 6

25% 17 4 0 18 0 3 15 6 0 15 0 6

30% 14 6 1 18 0 3 18 3 0 14 2 5

35% 13 5 3 17 1 3 17 3 1 15 1 5

40% 13 6 2 17 1 3 17 2 2 15 1 5

45% 12 6 3 17 1 3 17 2 2 14 3 4

50% 12 4 5 17 0 4 17 2 2 14 2 5

55% 12 3 6 17 1 3 17 2 2 14 2 5

60% 12 3 6 16 2 3 16 2 3 11 6 4

nine datasets under 20% noise. Furthermore, GP is the most affected by the
noise: because it only learns from the given soft labels, incorrect probabilities
have a strong impact on the surrounding test instances.

Finally, because our task is to develop a noise-resistant model, we zoom in
on the high noise scenario (20%) and analyze how often SLADe outperforms
each baseline.2 Table 2 shows the number of times (out of 21) SLADe’s aver-
age AUROC is higher (Win), within a margin of 0.01 (Draw) or lower (Loss)
than that of the baselines at every label percentage. For any label percent-
age SLADe never loses more than six times against any baseline. As expected,
SLADe outperforms HIF more often at higher label percentages because HIF
only uses positive labels. Moreover, against GP, SLADe wins more in the lower
label percentage settings (which are more realistic in Active Learning) because
SLADe needs less data to learn effectively.

Q2. Sensitivity Analysis. We evaluate the effect of varying SLADe’s three
hyperparameters: the unsupervised anomaly detector, the GP’s kernel, and the
percentage of training instances inside the hypersphere, q, used to fix the noise
at inference time. We assume a default level of noise equal to 10% and vary one
hyperparameter at a time while keeping the other two as specified in Sect. 4.1.
We subsample the datasets to at most 500 instances for computational reasons.

Table 3 shows SLADe’s AUROC averaged over all datasets for different
label percentages when using Isolation Forest (IForest) [22], One-Class SVM

2 Results for 0% and 10% noise are, for completeness, in the Supplement.
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Fig. 1. Learning curves for all methods on five representative datasets for three different
noise levels (0%, 10%, 20%). On the x-axis we vary the label percentage, while on the
y-axis we report the average AUROC (higher is better).
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Fig. 2. Comparison on all 21 datasets between the methods’ mean AUROC when
moving from a clean setting to 10% (top) and 20% (bottom) of noise. The AUROC is
aggregated over all percentages of labels. For every dataset and method, the star/cross
marker indicates the AUROC with no noise/given level of noise. The length of the seg-
ment quantifies the drop in AUROC when introducing noise (shorter is more resistant).
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Table 3. AUROC (avg ± std) of SLADe for different unsupervised detectors.

Unsupervised detector

Labels IForest LOF kNNO OCSVM

0% 0.730 ± 0.181 0.669 ± 0.180 0.707 ± 0.173 0.664 ± 0.223

5% 0.745 ± 0.178 0.724 ± 0.175 0.750 ± 0.167 0.725 ± 0.204

10% 0.776 ± 0.174 0.763 ± 0.180 0.787 ± 0.165 0.744 ± 0.201

15% 0.800 ± 0.168 0.780 ± 0.177 0.798 ± 0.166 0.776 ± 0.183

20% 0.817 ± 0.163 0.791 ± 0.174 0.808 ± 0.160 0.794 ± 0.179

25% 0.826 ± 0.160 0.793 ± 0.179 0.816 ± 0.155 0.800 ± 0.173

30% 0.833 ± 0.154 0.805 ± 0.169 0.818 ± 0.153 0.816 ± 0.163

35% 0.839 ± 0.150 0.807 ± 0.161 0.825 ± 0.145 0.821 ± 0.159

40% 0.841 ± 0.148 0.816 ± 0.158 0.830 ± 0.137 0.822 ± 0.159

45% 0.843 ± 0.146 0.817 ± 0.156 0.832 ± 0.136 0.823 ± 0.158

50% 0.843 ± 0.143 0.821 ± 0.148 0.834 ± 0.133 0.828 ± 0.154

55% 0.844 ± 0.141 0.819 ± 0.148 0.835 ± 0.131 0.827 ± 0.152

60% 0.844 ± 0.140 0.819 ± 0.146 0.833 ± 0.134 0.826 ± 0.152

(OCSVM) [42], Local Outlier Factor (LOF) [13] and the k-NN outlier detec-
tor (kNNO) [2] as unsupervised detectors to assign the anomaly scores. SLADe
seems to be robust to the selected anomaly detector as all approaches perform
similarly. There are small differences for the three lowest label budgets, where
using IForest offers some performance gains. This happens because IForest
assigns better rankings to the anomalies, as confirmed by [12] as well. A bad
unsupervised model will thus require a certain number of labels before it is able
to accurately detect anomalies. Therefore, selecting the correct unsupervised
model is an important decision.

Table 4 shows the AUROC averaged over all datasets for different label per-
centages when using four variants of the Matérn kernel [36] as the covariance
function of the GP. We vary its hyperparameter ν ∈ {1

2 , 3
2 , 5

2 ,+∞}, where
ν = +∞ represents the Radial Basis Function (RBF) kernel [3]. The results
illustrate that SLADe has the highest performance for ν = 1

2 , in agreement
with the existing literature on Gaussian Processes [36]. Unsurprisingly, results
show that SLADe’s performance deteriorates when increasing the hyperparam-
eter ν: because ν indicates the smoothness of the GP’s kernel (i.e., high differ-
entiability), high values of ν underpin the assumption that the class probability
function is smooth, which is not true in several real-world datasets. Moreover,
the effect of changing ν increases with the number of soft labels, which ends up
being > 0.06 against ν = +∞ with 60% of soft labels.

Table 5 shows the AUROC averaged over all datasets for varying label bud-
gets for q ∈ [0.5, 1, 2, 5, 10]. The results show that the value of this hyperpa-
rameter has a negligible impact on SLADe’s performance. Therefore, we set
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q’s default value to 2, as it is an in-between value that avoids averaging over
too many instances, which might slightly decrease the performance with little
noise, and averaging over almost no instance, which would make the model too
sensitive to noise.

Table 4. AUROC (avg ± std) of SLADe for different values of the Matérn kernel’s
hyperparameter ν.

Matérn Kernel

Labels ν = 0.5 ν = 1.5 ν = 2.5 ν = +∞
0% 0.728 ± 0.183 0.728 ± 0.183 0.728 ± 0.183 0.728 ± 0.183

5% 0.742 ± 0.182 0.733 ± 0.182 0.727 ± 0.184 0.719 ± 0.186

10% 0.770 ± 0.180 0.758 ± 0.180 0.753 ± 0.179 0.745 ± 0.177

15% 0.794 ± 0.176 0.779 ± 0.175 0.771 ± 0.177 0.759 ± 0.178

20% 0.809 ± 0.175 0.791 ± 0.174 0.783 ± 0.175 0.765 ± 0.178

25% 0.820 ± 0.167 0.798 ± 0.171 0.789 ± 0.174 0.770 ± 0.178

30% 0.827 ± 0.162 0.804 ± 0.168 0.795 ± 0.170 0.774 ± 0.174

35% 0.832 ± 0.157 0.808 ± 0.165 0.798 ± 0.166 0.776 ± 0.174

40% 0.836 ± 0.152 0.812 ± 0.160 0.798 ± 0.166 0.776 ± 0.174

45% 0.837 ± 0.151 0.812 ± 0.159 0.799 ± 0.164 0.776 ± 0.173

50% 0.839 ± 0.147 0.814 ± 0.156 0.799 ± 0.161 0.778 ± 0.171

55% 0.839 ± 0.145 0.813 ± 0.154 0.799 ± 0.159 0.775 ± 0.169

60% 0.841 ± 0.143 0.813 ± 0.152 0.798 ± 0.158 0.775 ± 0.168

5 Related Work

There is, to our knowledge, no work that tackles learning from active noisy soft
labels in anomaly detection. However, three related research lines exist that are
of interest, of which the first two relate to traditional binary classification tasks.

Learning from Soft Labels. The literature on learning from soft labels consists
of three common approaches: ranking methods, regression methods and tradi-
tional methods adapted for soft labels. (1) Ranking methods solve a constrained
optimization problem where the constraints are pairwise rankings between the
soft labels [26,27,38]. (2) Regression methods use soft labels as target values in
their learning mechanism [31]. (3) Probabilistic Support Vector Machines (P-
SVM) use soft labels to micro-steer the obtained margin [20,28]. Empirical eval-
uation [26] shows that this third category performs best. However, in Sect. 4.2
we showed that SLADe outperforms P-SVM.

Learning from Noisy Hard Labels. The existing work on models that are
designed to be noise-robust mostly takes a supervised approach [5,7,48]. These
make strong assumptions that do not hold in our setting. For instance, there is
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no correctly labeled subset of data available [48]. A strictly weaker assumption
is the availability of a large set of noisy data [5]. It is non-trivial how to adapt
these methods for small sets of noisy labels.

Weakly Supervised Models. Some existing literature in anomaly detection
deals with weak supervision. For example, some semi-supervised methods need
access only to a small set of clean labels [29,30,40,47]. However, it is unclear
how to extend them to deal with soft labels.

Table 5. AUROC (avg ± std) of SLADe for different values of q (% of training
instances inside the hypersphere).

q

Labels 0.5 1 2 5 10

5% 0.739 ± 0.183 0.740 ± 0.183 0.740 ± 0.184 0.740 ± 0.184 0.741 ± 0.184

10% 0.769 ± 0.183 0.768 ± 0.184 0.768 ± 0.185 0.767 ± 0.185 0.768 ± 0.185

15% 0.794 ± 0.175 0.793 ± 0.176 0.792 ± 0.177 0.791 ± 0.177 0.790 ± 0.178

20% 0.810 ± 0.169 0.810 ± 0.170 0.809 ± 0.170 0.806 ± 0.172 0.805 ± 0.172

25% 0.821 ± 0.163 0.820 ± 0.163 0.819 ± 0.166 0.816 ± 0.168 0.815 ± 0.167

30% 0.829 ± 0.156 0.828 ± 0.157 0.827 ± 0.159 0.824 ± 0.162 0.823 ± 0.162

35% 0.835 ± 0.152 0.834 ± 0.154 0.833 ± 0.155 0.830 ± 0.157 0.828 ± 0.157

40% 0.836 ± 0.150 0.836 ± 0.151 0.834 ± 0.152 0.832 ± 0.154 0.830 ± 0.155

45% 0.838 ± 0.147 0.837 ± 0.148 0.836 ± 0.149 0.833 ± 0.152 0.831 ± 0.153

50% 0.840 ± 0.144 0.839 ± 0.145 0.838 ± 0.146 0.835 ± 0.149 0.833 ± 0.150

55% 0.840 ± 0.141 0.839 ± 0.142 0.838 ± 0.143 0.836 ± 0.146 0.832 ± 0.148

60% 0.840 ± 0.139 0.840 ± 0.141 0.839 ± 0.142 0.836 ± 0.145 0.833 ± 0.146

6 Conclusion

This paper tackled the challenge of learning a model that estimates the prob-
ability of an instance being anomalous in an active learning setting where the
user provides noisy soft labels. The soft labels indicate the probability that
the instance belongs to the anomaly class. The key challenges were how to (1)
have an initial indication of how likely instances are anomalous without having
access to labels, (2) combine the obtained soft labels with the initial unsuper-
vised scores, (3) model the uncertainty when learning from soft labels, and (4)
develop a noise-robust approach that smooths out the noisy probabilities. We
proposed SLADe, the first semi-supervised anomaly detector that leverages the
noisy soft labels by (1) computing the anomaly scores using an unsupervised
anomaly detector, and (2) fixing the scores by modeling their deviation from
the given soft labels through a GP. In the active learning loop, it queries the
most informative instances by quantifying the model uncertainty that arises from
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(a) receiving weak soft labels (e.g., 0.5) and (b) the lack of labels. Finally, at
inference time, it smooths out the noise by averaging the GP prediction over
a Gaussian surface with adaptive variance. Experimentally on 21 datasets, we
showed that SLADe is noise-robust and that it performs better than several
baselines on the majority of cases.

Ethical Statement. In general, any work on anomaly detection is beneficial
to society. In many applications, it is important to detect anomalies in due time
as they are often related to critical events, such as machine failure [8], intrusion
detection [19] or medical applications [31]. Being able to detect anomalies in
time, thus allows us to save money, preserve privacy and save lives. However,
the use of anomaly detection and soft labels in certain settings raises some eth-
ical concerns that need to be considered. One of the primary concerns is the
potential for discrimination against some minorities. As anomaly detection tech-
niques are designed to identify instances that deviate from “normal behavior”, it
is possible that someone with malicious intentions misuses anomaly detectors to
discriminate against specific groups by labeling their behavior as “anomalous”.
Another due ethical consideration relates to the potential violation of privacy
that may result from failing to detect anomalies in particular applications. For
example, in intrusion detection, the failure to detect anomalous hacker activ-
ity could compromise some people’s privacy. Finally, the traditional labeling
approaches for anomaly detection usually involve the use of an expert. However,
collecting soft labels instead of hard labels allows for the use of multiple cheap
labor forces instead of a single domain expert. While this may lower the cost of
labeling data, it raises ethical concerns regarding the exploitation of cheap labor
and the potential for unfair practices.
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Abstract. An accurate and substantial dataset is essential for training
a reliable and well-performing model. However, even manually annotated
datasets contain label errors, not to mention automatically labeled ones.
Previous methods for label denoising have primarily focused on detect-
ing outliers and their permanent removal – a process that is likely to
over- or underfilter the dataset. In this work, we propose AGRA: a new
method for learning with noisy labels by using Adaptive GRAdient-based
outlier removal (We share our code at: https://github.com/anasedova/
AGRA.) Instead of cleaning the dataset prior to model training, the
dataset is dynamically adjusted during the training process. By compar-
ing the aggregated gradient of a batch of samples and an individual exam-
ple gradient, our method dynamically decides whether a corresponding
example is helpful for the model at this point or is counter-productive and
should be left out for the current update. Extensive evaluation on sev-
eral datasets demonstrates AGRA’s effectiveness, while a comprehensive
results analysis supports our initial hypothesis: permanent hard outlier
removal is not always what model benefits the most from.

1 Introduction

The quality and effectiveness of a trained model heavily depend on the qual-
ity and quantity of the training data. However, ensuring consistent quality in
automatic or human annotations can be challenging, especially when those anno-
tations are produced under resource constraints or for large amounts of data.
As a result, real-world datasets often contain annotation errors, or label noise,
which harms the model’s overall quality.

Previous data-cleaning methods for noise reduction have attempted to
improve the data quality by identifying and removing “noisy”, i.e., mislabeled
samples before model training. Some approaches detect noisy samples based on
the disagreement between assigned and predicted labels in a cross-validation set-
ting [32,46], while others leverage knowledge transferred from a teacher model
trained on clean data [29]. Such approaches typically rely on certain assumptions
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Fig. 1. AGRA method for learning with noisy data. Each sample in the update batch
is decided to be either kept for further model training or removed depending on the
similarity of its gradient to the aggregated gradient of the comparison batch sampled
from the same data.

regarding the label noise: for instance, that the noise follows some particular
distribution, is symmetric [4,20], or class-conditioned [32]. However, the true
data-generating process and noise level are usually unknown, and these methods
easily over- or under-filter the data.

Another subtle problem arises from the static nature of these methods, as
they do not address the cases when problematic training samples for one model
actually be beneficial for another. Take the hypothetical – wrongly labeled –
movie review:

“The movie was by no means great.” – POSITIVE

Despite the incorrect label, a model that does not know anything about senti-
ment prediction still might learn the useful association between the word great
and the class POSITIVE. Therefore, this sample could be a valuable contribution
to the training process. On the other hand, the same sample might be confusing
and deteriorating for the model that has already learned to distinguish subtle
language phenomena like negation.

In this paper, we reconsider the original motivation behind noise reduction:
instead of searching and filtering out noisy samples, we focus on obtaining a
model that remains unaffected by inconsistent and noisy samples. To achieve
that, we suggest to dynamically adjust the training set during the training pro-
cess instead of denoising it beforehand. This idea is realized in AGRA - our
new method for Adaptive GRAdient-based outlier removal (see Fig. 1), which
leverages gradients during the training to measure the sample-specific impact
on the current model. During classifier training, AGRA decides for each sample
whether it is useful or not for a model at the current training stage by comparing
its gradient with an accumulated gradient of another batch that is independently
sampled from the same dataset. Depending on the state of the classifier and the
experimental setup, the sample is either used in the model update, excluded
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from the update, or assigned to an alternative label. Importantly, the effect of
the sample may change in the next epoch when the model state has changed.
Apart from that, we experimented with different loss functions and adapted
an F1-based loss function which optimizes the model directly towards the F1

performance metric. Extensive experiments demonstrate the effectiveness of our
method and show that the correctness of a training sample (as measured by
manual annotation) is not the same as its usefulness for the training process.
AGRA reliably detects the latter in a trade-off with the former, which is crucial
for the performance of the trained classifier.

Overall, our main contributions are the following:

– We propose a new gradient-based method for adaptive outlier removal,
AGRA, which dynamically identifies unusual and potentially harmful train-
ing samples during the learning process and corrects or removes them. Since
labeling errors are unknown at training time, AGRA uses the detrimental
effect on the model w.r.t. to a comparison batch as a proxy to harmfulness.

– We analyze the effect of cross-entropy- and F1-based loss functions for com-
puting the compared gradients and show that utilizing the F1 loss can improve
performance on multiple datasets.

– We demonstrate the effectiveness of our method on several benchmark
datasets where our method outperforms other denoising methods trained in
an analogous evaluation setup.

2 Related Work

The high demand for large-scale labeled training data to train a stable clas-
sifier forces researchers and practitioners to look for more feasible solutions
than relying on domain experts to annotate the data [33,36,43]. The cost of
such approaches is usually the annotation quality, and the resulting datasets
often contain mislabeled samples. Moreover, label noise can also be detected in
expert annotations due to different factors in the data collection process [13,38].
As a result, even widely-used datasets may contain incorrect annotations [32],
emphasizing the necessity for methods that enable the learning of reliable models
despite the presence of label noise.

Learning with Noisy Labels. There are multiple general strategies for handling
potential label noise. Data-cleaning approaches separate the denoising process
and the training of the final model: likely mislabeled samples are first identified
and removed or corrected, and then the final model is trained on the cleaned
dataset [20,30]. The INCV algorithm [9] iteratively estimates the joint distri-
bution between the true labels and the noisy labels using out-of-sample model
outputs obtained by cross-validation. On the basis of the estimated joint distri-
bution, the number of labeling errors is gauged, and likely mislabeled samples
are removed. Cleanlab [32] estimates the confident joint between true and noisy
labels relying on the assumption of class-dependent noise. Instead of defining a
denoising system that would clean the data before the classifier training, AGRA
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joins the denoising and training into a single process where denoising happens
during the classifier training. Moreover, AGRA does not make any assumption
regarding the label noise distribution.

Other approaches, commonly referred to as model-centric, focus on modify-
ing the model architecture or the loss function to facilitate learning with noisy
data. Wang et al. [45] add a noise-tolerant term to the cross-entropy loss, Ziyin
et al. [31] propose a gambler’s loss function, and Sukhbaatar et al. [41] add
an additional noise layer to convolutional neural networks. Other authors have
explored more intricate training strategies for learning with noisy annotations:
e.g., Li, Socher, and Hoi [26] leverage ensemble methods, and Li et al. [27] exploit
meta-learning techniques. In contrast to these approaches, AGRA does not put
any restrictions on the loss function and does not alter the model architecture.

Outlier Detection. Outlier detection is crucial in many real-world applications,
such as fraud detection and health diagnosis [44]. There are several general
approaches for identifying outliers [44]: distance-based methods consider a sam-
ple an outlier if it is far away from its nearest neighbors [15,23], density-based
approaches declare samples in low-density regions as outliers [6,8], clustering-
based strategies identify samples that are not associated with a large cluster
[1,11]. AGRA defines outliers in terms of their utility at the current training
step and aims at removing the ones that harm the current model.

Weak Supervision. To reduce the need for manual annotations, datasets can
be labeled by automated processes, commonly referred to as weak supervision
[12,25,37]. In the weakly supervised setting, expert knowledge and intuition are
formalized into a set of rules, or labeling functions [33], which annotate the train-
ing samples with weak, potentially noisy labels. Various approaches to denoise
the weakly supervised data include leveraging labeling functions aggregation
techniques [33,34], learning via user feedback and manual correction [19], sep-
arately modeling labeling function- and task-specific information in the latent
space [40], or utilizing a small set of manually annotated data in addition to
the weakly supervised samples [22]. In contrast to these methods, AGRA is not
restricted to the weakly supervised setting (although it can be applied for it,
even if the labeling functions are not accessible). Instead, it is applicable to any
dataset that contains noisy labels, regardless of the labeling process used.

Gradient-Based Approaches. AGRA is based on gradient comparisons, which
were studied before in different contexts [39,47,49]. For instance, Zhao et al. [49]
explored gradient matching for generating artificial data points that represent
a condensed version of the original dataset. Unlike their approach, AGRA does
not create any new data instances but adjusts how the already provided ones
are used during training. Shi et al. [39] leverage gradient matching for domain
generalization. AGRA, on the other hand, tackles a different problem and does
not explicitly assume distribution shifts in the data.



Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal 241

3 AGRA: Adaptive Gradient-Based Outlier Removal

The main goal of AGRA is detecting the instances that would harm the model
in the current training stage and filter them out or assign them to another class
before the update. Unlike common denoising approaches that clean and fix the
training dataset for the training process, AGRA does not make any decisions
about removing or relabeling the samples before training the model. Instead,
samples are relabeled or removed from the update batch on the fly, based on
the model’s current state. Their participation in gradient update can therefore
be reconsidered in later epochs.

In order to decide which instances are potentially harmful, the model gradi-
ents for each sample in the update batch (i.e., the batch used during the training
process for the model update) are compared one by one with an aggregated
gradient from another batch sampled from the same data (comparison batch).
Informally, such an aggregated comparison gradient could be seen as an expected
weight change on mostly clean data, assuming that the overall noise rate is not
too high. If the update gradient of a sample from the update batch and the
comparison gradient point in opposing directions, this could be an indication
that the sample is harmful to the training process at this stage. We refer to such
samples as outliers since they may have a negative impact on the current model
update, even though they are not necessarily mislabeled. Each identified outlier
is either removed from the update batch to prevent its influence on the weight
update or reassigned to another class if doing so results in a higher, positive
gradient similarity. If the model profits from an (even potentially mislabeled)
sample during a particular training stage, this sample is kept (but it may be
removed during another stage where it would harm the training process).

3.1 Notation

We denote the training set by X = ((x1, y1), ..., (xT , yT )), where yt is a poten-
tially noisy label associated with the input xt. Each yt corresponds to one out of
K classes {c1, ..., cK}. The task is to utilize X to learn a classifier f (·; θ), param-
eterized by θ, using an update loss function L (x, y). Additionally, we define a
comparison loss function ˜L (x, y) that is used for computing the compared gradi-
ents. AGRA does not put any restrictions on the used loss functions; the update
loss L (x, y) and the comparison loss ˜L (x, y) can differ.

3.2 Algorithm Description

AGRA consists of a single model training loop. For each update batch B, another
batch ˜B of the same size is independently sampled from the training dataset X .
While B is leveraged to adjust the model weights during training, ˜B represents
the comparison batch that is used to detect outliers.

First, the batch-wise gradient on the comparison batch ˜B is computed with
respect to the loss function ˜L and flattened into a vector, resulting in the
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comparison gradient ∇ ˜Lcom. Then, the gradient for each individual data point
(xt, yt) ∈ B is calculated with respect to the loss ˜L and flattened, resulting
in ∇ ˜L (xt, yt). Next, the pair-wise cosine similarity of each per-sample gradient
with the comparison gradient is computed as given below1.

simyt
= sim

(

∇ ˜L(xt, yt),∇ ˜Lcom

)

=
∇ ˜L (xt, yt) · ∇ ˜Lcom

||∇ ˜L (xt, yt) ||2 ||∇ ˜Lcom||2
(1)

In the following, simyt
is referred to as the similarity score given label yt. The

next step can be realized in two different settings:

– without an alternative label : a data sample is removed from the update batch
if its associated similarity score is non-positive and kept otherwise:

B ←
{

B \ {(xt, yt)}, if simyt
≤ 0

B, otherwise

– with an alternative label : in addition to the options of removing a training
instance or retaining it with its original annotation, the instance can also be
included in the update with the alternative label y′. If such an alternative
label y′ is specified, the similarity simy′ = sim

(

∇ ˜L (xt, y
′) ,∇ ˜Lcom

)

is addi-
tionally calculated (Eq. 1). Depending on the values of simyt

and simy′ , the
sample is handled as follows:

• if the similarity score is non-positive given both yt and y′, the sample is
removed from the batch,

• if the similarity score given label y′ is positive and higher than the simi-
larity score given yt, the original label yt is changed to y′,

• if the similarity score given label yt is positive and higher than or equal
to the similarity score given y′, the original label yt is kept.

B ←

⎧

⎪

⎨

⎪

⎩

B \ {(xt, yt)}, if simyt
≤ 0, simy′ ≤ 0

B \ {(xt, yt)} ∪ {(xt, y
′)}, if simy′ > 0, simy′ > simyt

B, otherwise

The decision regarding the choice of an alternative label and its sensibility
depends on the characteristics and requirements of the specific dataset. An
intuitive approach is to use a negative class if it is present in the data (e.g.,
“no relation” for relation extraction, or “non spam” for spam detection).

After each sample in B was considered for removal or correction, the model
parameters are updated with respect to L and B before the processing of the
next batch starts. The method is summarized in Algorithm 1, and the graphical
explanation is provided in Fig. 1.

1 The subscript xt is omitted in the short-hand notation simyt for brevity.
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Algorithm 1: AGRA Algorithm for Single-Label Datasets
Input: training set X , initial model f (·; θ), number of epochs E, batch size M ,
(optionally: alternative label y′)
Output: trained model f (·; θ∗)
for epoch = 1,..., E do

for batch B do

Sample a comparison batch ˜B, ˜B ⊂ X , | ˜B| = M

Compute ∇ ˜Lcom on ˜B
for (xt, yt) ∈ B do

Compute ∇ ˜L (xt, yt)

simyt = sim
(

∇ ˜L (xt, yt) , ∇ ˜Lcom

)

(Eq. 1)

if an alternative label y′ is specified then

Compute ∇ ˜L(xt, y
′)

simy′ = sim
(

∇ ˜L(xt, y
′), ∇ ˜Lcom

)

(Eq. 1)

if simyt ≤ 0 and simy′ ≤ 0 then
B ← B \ {(xt, yt)}

if simy′ > 0 and simy′ > simyt then
B ← B \ {(xt, yt)} ∪ {(xt, y

′)}
else

if simyt ≤ 0 then
B ← B \ {(xt, yt)}

θ ← Optim (θ, B, L)

3.3 Comparison Batch Sampling

Since the comparison gradient is an essential component of AGRA’s outlier
detection, it should be sampled in a way that does not disadvantage instances of
any class. For datasets with a fairly even class distribution, randomly selecting
samples from the training data might be sufficient to get a well-balanced com-
parison batch. However, when dealing with imbalanced datasets, this approach
may result in an underrepresentation of rare classes. Consequently, the gradi-
ents of samples belonging to rare classes may not match the aggregated gradient
computed almost exclusively on instances assigned to more common classes.

For such cases, AGRA provides class-weighted sampling in order to shift the
balance towards including more instances of minority classes in the comparison
batch. The weight for class ck is computed as the inverted number of occurrences
of class ck in training set X :

1
|X |
∑

t=1
11 (yt = ck)

.

As a result, the comparison batch includes less samples of common classes than
those of rare classes, thus creating a well-formed representation of all classes.



244 A. Sedova et al.

3.4 Selection of Comparison Loss Functions

AGRA does not imply any restrictions on the choice of the comparison loss func-
tion. For example, it can be combined with a standard cross-entropy (CE) loss
function, which is suitable for both binary and multi-class classification prob-
lems, or binary cross-entropy (BCE), which is commonly used in the multi-
label setting. However, despite its effectiveness in many scenarios, the cross-
entropy loss has been shown to exhibit overfitting on easy and under-learning
on hard classes when confronted with noisy labels [45]. Overall, cross-entropy
losses can hardly be claimed robust to noise, making learning with noisy data
even more challenging.

Aiming at reducing this effect, we adapted an F1 loss function which
directly represents the performance metric and aims to maximize the F1 score.
The F1 loss function is similar to the standard F1 score with one major difference:
the predicted labels used for the calculation of true positives, false positives, and
false negatives are replaced by the model outputs transformed into predicted
probabilities by a suitable activation function. This modification enables the F1

score to become differentiable, making it compatible with gradient-based learn-
ing methods. In contrast to previous research on leveraging the F1 score as a
loss function [7], we investigate F1 loss variants outside of the multi-label setting
and gauge its efficacy in the presence of label noise.

For the multi-class single-label case, the F1 loss is based on macro-F1 metric:

LF1M
(B) = 1 − 1

K

K
∑

k=1

2̂tpk

2̂tpk + ̂fpk + ̂fnk + ε
,

where

̂tpk =
M
∑

t=1

ŷt,k × 11 (yt = ck) ,

̂fpk =
M
∑

t=1

ŷt,k × (1 − 11 (yt = ck)) ,

̂fnk =
M
∑

t=1

(1 − ŷt,k) × 11 (yt = ck)

and ŷt,k denotes the predicted probability of class k for sample t after application
of the softmax, × represents the element-wise product, and ε = 1e − 05 in our
experiments. The F1 loss for the multi-class multi-label setting is also based
on the macro-F1 score, while for the binary single-label setting, it is based on
the F1 score of the positive class. The exact formulas for these variants are
provided in Appendix A2. Our experiments demonstrate that the F1 loss function
2 The appendix is available by the following link: https://github.com/anasedova/

AGRA/raw/main/appendix.pdf.

https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
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is beneficial as a comparison loss for some datasets compared to the classic cross-
entropy loss. However, we emphasize that use of F1 loss (or any other loss) is
not mandatory for our algorithm: AGRA is compatible with any loss function.

4 Experiments

In this section, we demonstrate the performance of our algorithm on several noisy
datasets, compare it with various baselines, and analyze the obtained results.

4.1 Datasets

We evaluate our method AGRA on seven different datasets. First, we choose
three weakly supervised datasets (also included to the Wrench [48] benchmark):
(1) YouTube [2] and (2) SMS [3,5] are spam detection datasets, and (3) TREC
[5,28] is a dataset for question classification. The labeling functions used to
obtain noisy annotations based on keywords, regular expressions, and heuristics
are provided in previous work [5,48]. Next, there are two weakly supervised topic
classification datasets in African languages: (4) Yorùbá and (5) Hausa [18];
the keyword-based labeling functions were provided by the datasets’ authors.
In order to obtain noisy labels for the training instances of the above datasets,
we apply the provided labeling functions and use simple majority voting with
randomly broken ties. Samples without any rule matches (which are 12% in (1),
59% in (2), 5% in (3), and none in (4) and (5)) are assigned to a random class.

Apart from NLP datasets, we also conduct experiments on two image datasets:
(6) CIFAR-10 [24], for which the noisy labels were generated by randomly flip-
ping the clean labels following Northcutt et al. [32] with 20% noise and 0.6 sparsity,
and (7) CheXpert, a multi-label medical imaging dataset [21]. Since the CheX-
pert test set is not revealed in the interest of theCheXpert competition, the original
hand-labeled validation set was used as a test set as in previous works [16], while
a part of the training set was kept for validation purposes. We use the noisy train-
ing annotations provided by Irvin et al. [21], which were obtained by applying the
CheXpert labeler to the radiology reports associated with the images3. Since it is
a multi-label classification task, we adapt our algorithm to the multi-label setting
by performing the gradient comparison with respect to each output node, allowing
to ignore individual entries of the label vector.

The dataset statistics are collected in Table 1. More details about datasets,
preprocessing, and label distributions are provided in Appendices B and C4.

4.2 Baselines

We compare AGRA towards seven baselines. For datasets that include gold train-
ing labels (i.e., all datasets in our experiments except CheXpert), we trained a (1)
Gold model with ground-truth labels; it can serve as an upper-bound baseline.

3 The reports are not publicly accessible; only the noisy labels are available for the train-
ing data. The gold labels are not provided.

4 The appendix is available by the following link: https://github.com/anasedova/
AGRA/raw/main/appendix.pdf.

https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
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Table 1. Datasets statistics. The percentage of noise is calculated by comparing the
noisy labels to the gold-standard annotations. The gold training labels are not provided
for CheXpert, so its noise rate value is missing in the table.

Dataset #Class #Train #Dev #Test %Noise

YouTube 2 1586 120 250 18.8

SMS 2 4571 500 500 31.9

TREC 6 4965 500 500 48.2

Yorùbá 7 1340 189 379 42.3

Hausa 5 2045 290 582 50.6

CheXpert 12 200599 22815 234 -

CIFAR-10 10 50000 5000 5000 20

(2) No Denoising baseline entails simple model training with the noisy labels,
without any additional data improvement. (3) DP [35] stands for the Data Pro-
gramming algorithm, which improves the imperfect annotations by learning the
structure within the labels and rules in an unsupervised fashion by a generative
model. (4) MeTaL [34] combines signals from multiple weak rules and trains a
hierarchical multi-task network. (5) FlyingSquid [14] rectifies the annotations
using an Ising model; parameters are recovered by the Triplet Method. The
experiments with the above baselines were realized using the Wrench framework
[48]. In addition to the methods (3), (4), and (5) that are specifically designed
for the weakly supervised setting, we also compare AGRA with two baselines
that have broader applicability for learning with noisy labels: (6) CORES2

[10], which utilizes confidence regularization to sieve out samples with corrupted
labels during training, and (7) Cleanlab [32], which aims at detecting noisy
annotations by estimating the joint distribution between noisy and true labels
using the out-of-sample predicted probabilities.

Since DP, MeTaL, and FlyingSquid require access to annotation rules and
rule matches, they cannot be applied to non-weakly supervised datasets or other
datasets for which this information is not available (such as CheXpert, for which
the reports used for annotation are not publicly released). In contrast, Cleanlab,
CORES2, and AGRA directly utilize noisy labels and do not require additional
information regarding the annotations, making them more broadly applicable.

4.3 Experimental Setup

We evaluate our method with a logistic regression classifier optimized with
Adam5. For text-based datasets, we use TF-IDF feature vectors to represent
the data. The CheXpert images were encoded using a fine-tuned EfficientNet-
B0 [42], and the CIFAR-10 images were encoded using a fine-tuned ResNet-50

5 AGRA can also be used with any PyTorch-compatible deep model as our method
has no model-related limitations.
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Table 2. Experimental results on NLP and image datasets averaged across five runs
and reported with standard deviation.

YouTube
(Acc)

SMS
(F1)

TREC
(Acc)

Yorùbá
(F1)

Hausa
(F1)

Avg. CIFAR
(Acc)

CXT
(AUR)

Gold 94.8±0.8 95.4±1.0 89.5±0.3 57.3±0.4 78.5±0.3 83.1 83.6±0.0 −
No Denoising 87.4±2.7 71.7±1.4 58.7±0.5 44.6±0.4 39.7±0.8 60.4 82.4±0.2 82.7±0.1

Weak Supervision

DP [35] 90.8±1.0 44.1±6.7 54.3±0.5 47.8±1.7 40.9±0.6 55.6 − −
MeTaL [34] 92.0±0.8 18.3±7.8 50.4±1.7 38.9±3.1 45.5±1.1 49.0 − −
FS [14] 84.8±1.2 16.3±6.0 27.2±0.1 31.9±0.7 37.6±1.0 39.6 − −
Noisy Learning

CORES2 [10] 88.8±3.6 85.8±1.8 61.8±0.5 43.0±0.7 51.2±0.5 66.1 83.4±0.1 −
Cleanlab [32] 91.3±1.2 80.6±0.3 60.9±0.4 43.8±1.3 40.3±0.3 63.4 83.3±0.0 81.2±0.2

AGRA 93.9±0.7 87.7±1.2 63.6±0.7 46.9±1.5 46.2±1.6 67.7 83.6±0.0 83.9±0.3

[17] following previous work [32]. More details on the data encoding and result-
ing feature vectors are provided in Appendix D6. In our experiments with TF-
IDF representations, we found that the gradient entries corresponding to the
biases of the model strongly influence the computed similarity scores despite
being feature-independent. Hence, we exclude the elements corresponding to the
biases when determining the gradient similarity for sparse features. To make our
experiments consistent, we apply the same strategy to CIFAR-10 and CheX-
pert. AGRA was implemented based on Python using the PyTorch library. In
our implementation, the class weights are passed to WeightedRandomSampler
(note that it does not assume that the weights sum up to 1).

For each dataset, we report the same evaluation metrics as in previous works:
commonly used accuracy and F1 scores and macro-AUROC (Area Under the
Receiver Operating Characteristics) for CheXpert [21]7. The hyper-parameters
were selected with a grid search; more details and the selected parameter values
are provided in Appendix E7. After training each model for 10 epochs (5 epochs
for CheXpert), we reload the best model state based on validation performance
and evaluate it on the test set.

4.4 Results

The results of the experiments across all datasets are summarized in Table 2.
AGRA is the best-performing method overall for three weakly-supervised NLP
datasets, providing better results than the methods specifically designed for
weakly supervised data. Among the text-based datasets, the average improve-

6 The appendix is available by the following link: https://github.com/anasedova/
AGRA/raw/main/appendix.pdf.

7 The AUROC was computed on the nine classes which have more than one positive
observation in the test set.

https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
https://github.com/anasedova/AGRA/raw/main/appendix.pdf
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Table 3. AGRA experimental test results with different settings: use of class-weighted
sampling, [training loss]/[comparison loss]. The results marked with † are obtained by
AGRA with an alternative label. All results are averaged across 5 runs and reported
with standard deviation.

No Weighted Sampling Weighted Sampling

CE/CE CE/F1 CE/CE CE/F1

YouTube 92.0 ± 1.0 93.9 ± 0.7 91.9 ± 0.5 93.4 ± 0.8

YouTube† 90.5 ± 1.0 − 92.0 ± 0.7 −
SMS 79.0 ± 3.2 61.1 ± 5.2 87.7 ± 1.2 49.1 ± 3.0

SMS† 71.1 ± 3.1 − 86.3 ± 1.2 −
TREC 61.6 ± 0.6 62.1 ± 0.4 62.8 ± 1.1 63.6 ± 0.7

Yorbá 44.3 ± 2.5 44.2 ± 1.4 43.5 ± 1.0 46.9 ± 1.5

Hausa 41.2 ± 0.4 40.9 ± 0.6 43.8 ± 2.8 46.2 ± 1.6

CheXpert 82.6 ± 0.6 83.9 ± 0.3 − −
CIFAR 82.2 ± 0.2 83.5 ± 0.0 83.1 ± 0.0 83.6 ± 0.0

ment achieved by AGRA over FlyingSquid, MeTaL, and DP is 28.1 percent-
age points (pp), 18.7pp, and 12.1pp correspondingly. Compared to the base-
lines designed for denoising the weakly supervised data, Cleanlab and CORES2

worked better on average, but AGRA demonstrates an improvement over them as
well (by 4.3pp and 1.6pp, respectively). Notably, AGRA improves the results of
all datasets over simple training without additional denoising (by 7.3pp on aver-
age). For image datasets, AGRA also performs better than Cleanlab, CORES2,
and the no denoising baseline; the other baselines are not applicable8.

4.5 Ablation Study

Table 3 shows the AGRA performance across all comparison losses and com-
parison batch sampling strategies (the best results from Table 3 are included in
Table 2). Overall, it outperforms the baselines on most of the datasets in the vast
majority of settings. For the binary YouTube and SMS datasets, we also perform
experiments with an alternative label (the negative “non spam” class for both
datasets). However, the models trained with the alternative label setting are not
the best-performing AGRA configuration for either dataset (although they out-
perform some of the corresponding settings without the alternative label). The
F1-based comparison loss function was beneficial for all datasets except SMS.

As expected, weighted comparison batch sampling turns out to be especially
helpful for imbalanced datasets such as Hausa (for which the most popular class

8 The weak supervision baselines cannot be run on CIFAR since it is a non-weakly
supervised dataset; they also cannot be run on CheXpert as we do not have access to
the labeling function matches. Furthermore, CORES2 is not applicable for CheXpert
as it does not support multi-label settings.
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Fig. 2. Case study on the YouTube dataset. The plots represent the percentage of
samples in each batch that were correctly kept, correctly removed, falsely kept and
falsely removed during the training of the best-performing models for all combinations
of comparison losses and sampling strategies.

is represented by 53.7% training samples, while the least frequent class only
covers 7.9%) and TREC (56.6% and 1.0% correspondingly; see detailed statistics
in Appendix C9. ). On the other hand, the fairly balanced YouTube dataset
performs marginally better without it.

4.6 Case Study

Finally, we provide a more fine-grained analysis of our AGRA method on the
example of the YouTube dataset. By comparing the noisy labels to the manual
labels provided for this dataset, we calculate the fraction of samples in each
batch that are (1) mislabeled and removed, (2) correctly labeled and removed, (3)
mislabeled and kept, (4) correctly labeled and kept. These statistics are reflected
in Fig. 2 for all available combinations of comparison losses and comparison batch
sampling strategies.

9 The appendix is available by the following link: https://github.com/anasedova/
AGRA/raw/main/appendix.pdf.

https://github.com/anasedova/AGRA/raw/main/appendix.pdf
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A remarkable trend is that the correctness of removed samples appears to
be not crucial for training a reliable model. The amount of mislabeled samples
kept (“falsely” kept) and correctly labeled samples removed (“falsely” removed)
is high for many batches; the amount of mislabeled samples kept (“falsely” kept)
even exceeds the amount of mislabeled samples removed (“correctly” removed)
at some of the training stages. Yet, all configurations outperform the baselines
(excluding MeTaL which ties with the CE-based settings). This observation rein-
forces our point that the usefulness of a sample at the current training stage
cannot be solely determined by whether it is mislabeled or not; mislabeled sam-
ples can be beneficial at certain stages, and cleaning the dataset by filtering
out all presumably mislabeled samples before training (as is done in common
data-cleaning methods) might be a suboptimal approach.

Weighted comparison batch sampling seems to only have a minor influence
on the training process for YouTube. This observation can likely be explained
by the already balanced noisy label distribution of the YouTube dataset.

5 Conclusion

In this work, we address the challenge of training a classifier using noisy labels.
Most importantly, we reconsider the goal of learning with noisy annotations and
focus on training a stable and well-performing classifier rather than obtaining
clean and error-free data. Instead of following the traditional approach of first
denoising the data and then training a classifier on the cleaned data, we propose a
novel integrated approach that dynamically adjusts the use of the dataset during
the learning process. In our new algorithm AGRA, samples from which the
model can benefit at the current training stage are retained for updating, while
the ones that may hinder the learning process are disregarded or relabeled. Our
algorithm demonstrates a stable result on seven noisy dataset and outperforms
several recent baselines for training with noisy data.
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7. Bénédict, G., Koops, H.V., Odijk, D., de Rijke, M.: Sigmoidf1: a smooth f1 score
surrogate loss for multilabel classification. Trans. Mach. Learn. Res. (2022)

8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pp. 93–104 (2000)

9. Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neu-
ral networks trained with noisy labels. In: International Conference on Machine
Learning, pp. 1062–1070 (2019)

10. Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., Liu, Y.: Learning with instance-
dependent label noise: a sample sieve approach. arXiv preprint arXiv:2010.02347
(2020)

11. Elahi, M., Li, K., Nisar, W., Lv, X., Wang, H.: Efficient clustering-based outlier
detection algorithm for dynamic data stream. In: 2008 Fifth International Confer-
ence on Fuzzy Systems and Knowledge Discovery, vol. 5. IEEE (2008)

12. Fang, Z., Kong, S., Wang, Z., Fowlkes, C.C., Yang, Y.: Weak supervision
and referring attention for temporal-textual association learning. CoRR abs/
arXiv: 2006.11747 (2020)

13. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

14. Fu, D., Chen, M., Sala, F., Hooper, S., Fatahalian, K., Re, C.: Fast and three-rious:
speeding up weak supervision with triplet methods. In: III, H.D., Singh, A. (eds.)
Proceedings of the 37th International Conference on Machine Learning, 13–18 Jul,
vol. 119, pp. 3280–3291 (2020)

15. Ghoting, A., Parthasarathy, S., Otey, M.E.: Fast mining of distance-based outliers
in high-dimensional datasets. In: Data Mining and Knowledge Discovery, vol. 16
(2008)

16. Giacomello, E., Lanzi, P.L., Loiacono, D., Nassano, L.: Image embedding and model
ensembling for automated chest x-ray interpretation. In: 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition,
pp. 770–778 (06 2016)

http://arxiv.org/abs/2010.02347
http://arxiv.org/abs/2006.11747


252 A. Sedova et al.

18. Hedderich, M.A., Adelani, D.I., Zhu, D., Alabi, J.O., Markus, U., Klakow, D.:
Transfer learning and distant supervision for multilingual transformer models: A
study on african languages. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, Online, 16–20 November 2020, pp. 2580–2591 (2020)

19. Hedderich, M.A., Lange, L., Klakow, D.: ANEA: distant supervision for low-
resource named entity recognition. arXiv: 2102.13129 (2021)

20. Huang, J., Qu, L., Jia, R., Zhao, B.: O2u-net: A simple noisy label detection
approach for deep neural networks. In: 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October - 2 November
2019, pp. 3325–3333 (2019)

21. Irvin, J., et al.: Chexpert: A large chest radiograph dataset with uncertainty labels
and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, pp. 590–597 (2019)

22. Karamanolakis, G., Mukherjee, S., Zheng, G., Awadallah, A.H.: Self-training with
weak supervision. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-
Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.)
Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2021, Online, 6–11 June 2021, pp. 845–863 (2021)

23. Knox, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large
datasets. In: Proceedings of the International Conference on Very Large Data
Bases, pp. 392–403. Citeseer (1998)

24. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
25. Li, J., et al.: Hybrid supervision learning for pathology whole slide image clas-

sification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp.
309–318. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3 30

26. Li, J., Socher, R., Hoi, S.C.: Dividemix: Learning with noisy labels as semi-
supervised learning. In: ICLR (2020)

27. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled
data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 5051–5059 (2019)

28. Li, X., Roth, D.: Learning question classifiers. In: COLING 2002: The 19th Inter-
national Conference on Computational Linguistics (2002)

29. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.J.: Learning from noisy labels with
distillation. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 1928–1936 (2017)

30. Lipton, Z.C., Wang, Y., Smola, A.J.: Detecting and correcting for label shift with
black box predictors. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, vol. 80 (2018)

31. Liu, Z., et al.: Learning not to learn in the presence of noisy labels. CoRR abs/
arXiv: 2002.06541 (2020)

32. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in
dataset labels. J. Artifi. Intell. Res. 70, 1373–1411 (2021)

33. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid
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Abstract. Self-supervised learning (SSL) has proven effective in solv-
ing various problems by generating internal supervisory signals. Unsu-
pervised anomaly detection, which faces the high cost of obtaining true
labels, is an area that can greatly benefit from SSL. However, recent lit-
erature suggests that tuning the hyperparameters (HP) of data augmen-
tation functions is crucial to the success of SSL-based anomaly detection
(SSAD), yet a systematic method for doing so remains unknown. In this
work, we propose DSV (Discordance and Separability Validation), an
unsupervised validation loss to select high-performing detection models
with effective augmentation HPs. DSV captures the alignment between
an augmentation function and the anomaly-generating mechanism with
surrogate losses, which approximate the discordance and separability of
test data, respectively. As a result, the evaluation via DSV leads to select-
ing an effective SSAD model exhibiting better alignment, which results
in high detection accuracy. We theoretically derive the degree of approxi-
mation conducted by the surrogate losses and empirically show that DSV
outperforms a wide range of baselines on 21 real-world tasks.

Keywords: Anomaly detection · Self-supervised learning ·
Unsupervised model selection · Data augmentation

1 Introduction

Through the use of carefully annotated data, machine learning (ML) has demon-
strated success in various applications. Nonetheless, the high cost of acquiring
high-quality labeled data poses a huge challenge. A recent alternative, known as
self-supervised learning (SSL), has emerged as a promising solution. Intuitively,
SSL generates a form of internal supervisory signal from the data to solve a task,
thereby transforming an unsupervised task into a supervised problem by produc-
ing (pseudo-)labeled examples. It has achieved remarkable progress in advancing
natural language processing [1,6] and computer vision tasks [4,12].

SSL can be particularly advantageous when dealing with unsupervised prob-
lems such as anomaly detection (AD). The process of labeling for such problems,
such as correctly identifying fraudulent transactions, can be challenging and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 254–269, 2023.
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Fig. 1. The performance of self-supervised anomaly detectors on the MVTec AD
dataset with different hyperparameters of augmentation faug. Each line is drawn from
one of the 15 tasks that MVTec AD contains. The AUC changes from 0.242 to 0.815
based on the choice of hyperparameters (in Carpet), where the optimum depends on
the type of faug and true anomalies.

expensive. As a result, a group of SSL-based AD (SSAD) approaches [2,7,13]
have been proposed recently, where the core idea is to inject self-generated pseudo
anomalies into the training data to improve the separability between inliers and
pseudo anomalies. To create such pseudo anomalies, one may transform inliers
via data augmentation function(s) such as rotate, blur, mask, or CutPaste [13],
which are designed to create a systematic change without discarding important
original properties such as texture or color depending on the dataset.

Despite the surge of SSAD methods, how to set the hyperparameters (HPs),
e.g., rotation degrees, remain underexplored, which can significantly affect their
performance [25]. In the supervised ML community, these augmentation HPs are
systematically integrated into the model selection problem to be chosen with a
hold-out/validation set [16,29]. However, choosing the augmentation HPs has
been arbitrary and/or “cherry-picked” in SSAD [2,7] due to the evaluation chal-
lenges. Recent literature shows that the arbitrary choice of SSAD augmentation
has implications [25]. Firstly, due to the no-free-lunch theorem [23], different aug-
mentation techniques perform better on different detection tasks, and arbitrary
selection is thus insufficient. Secondly, in some cases, the arbitrary selection of
augmentation HPs can lead to a biased error distribution [24]. Thus, augmenta-
tion HPs in SSAD should be chosen carefully and systematically.

Figure 1 shows how the performance of SSAD methods changes by the choice
of augmentation HPs. The CutOut [5] and CutPaste [13] augmentations are used
for MVTec AD [3], which is a real-world dataset for anomaly detection. In Carpet
of Fig. 1a, for example, the detection AUC changes from 0.242 to 0.815 with the
choice of HPs. The expected accuracy without prior knowledge is severely worse
than its optimum, highlighting the importance of a proper HP choice, which is
not even the same for different augmentation functions and tasks.
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One solution is to select augmentation HPs in SSAD via unsupervised outlier
model selection (UOMS) [26,27], which aims to choose a good AD model and its
HPs for a new dataset without using any labels. Given an underlying AD model,
we may pair it with different augmentation HPs to construct candidate models to
find the best performing one. Existing UOMS approaches can be briefly split into
two groups. The first group solely depends on the model’s output or input data
[15], while it cannot capitalize on the nature of SSAD. The second group uses
learning-based approaches to select a model using the performances on (similar)
historical datasets, while this prior information may be inaccessible.

In this work, we propose DSV (Discordance and Separability Validation), an
unsupervised objective function that enables the search for optimal augmenta-
tion HPs without requiring true labels. The main idea of DSV is to decompose
the alignment between data augmentation and true anomalies, which cannot be
computed without labels but plays an essential role in estimating the detection
performance, into discordance and separability. Since each of them reflects only
a part of the original alignment, the decomposition allows us to devise surrogate
losses which effectively approximate the alignment in combination.

We summarize our key contributions below:

– Unsupervised validation loss for SSAD: We propose DSV, an unsuper-
vised validation loss for the search of best augmentation HPs in SSAD. The
minimization of DSV leads to a high-performing AD model, which exhibits
better alignment between augmentation and true anomalies.

– Theoretical analysis: We theoretically show that DSV is an effective approx-
imation of the alignment between data augmentation and true anomalies, and
its minimization leads to well-aligned augmentation HPs.

– Extensive experiments: We conduct extensive experiments on 21 different
real-world tasks. DSV surpasses 8 baseline approaches, showing up to 12.2%
higher average AUC than the simple average. We also perform diverse types
of ablation and case studies to better understand the success of DSV.

Reproducibility. All of our implementation and datasets are publicly available
at https://github.com/jaeminyoo/DSV.

2 Problem Definition and Related Works

2.1 Problem Definition

Let faug : Rm → R
m be a data augmentation function on m-dimensional data,

such as the rotation of an image, which plays an important role in self-supervised
anomaly detection (SSAD). Then, we aim to solve the unsupervised outlier model
selection (UOMS) problem, focusing on the hyperparameters (HP) of faug, based
on observations that choosing good HPs of faug is as important as selecting the
detector model or faug itself. We formally define the problem as Problem 1.

Problem 1. Let Dtrn be a set of normal data, and Dtest be an unlabeled test set
containing both normal data and anomalies. Given Dtrn, Dtest, and a set {φi}i of

https://github.com/jaeminyoo/DSV
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detector models, each of which is trained on Dtrn with an augmentation function
faug of different hyperparameters, our goal is to find the model φ∗ that produces
the highest detection accuracy on Dtest, without having true labels.

We also assume that every detector model φ = φenc ◦ φdec which we consider
for UOMS consists of an encoder φenc ∈ R

m → R
l and a decoder φdec ∈ R

l → R,
which is typical of most AD models based on deep neural networks.

2.2 Self-supervised Anomaly Detection (SSAD)

With the recent advance in self-supervised learning, SSAD has been widely stud-
ied as a promising alternative to unsupervised AD models. The main idea is to
create pseudo-anomalies and inject them into a training set, which contains only
normal data, to utilize supervised training schemes. For example, a popular way
is to learn a binary classifier that divides normal and augmented data [13] or an
n-way classifier that predicts the type of augmentation used [2,7]. Many SSAD
methods have shown a great performance on real-world tasks [17,19,20,22].

However, most existing works on SSAD are based on arbitrary and/or cherry-
picked choices of an augmentation function and its HPs. This is because AD does
not contain a labeled validation set for a systematic HP search unlike in typical
supervised learning. A recent work [25] pointed out such a limitation of existing
works and showed that augmentation HPs, as well as the augmentation function
itself, work as important hyperparameters that largely affect the performance on
each task. Thus, a systematic approach for unsupervised HP search is essential
to design generalizable and reproducible approaches for SSAD.

2.3 Unsupervised Outlier Model Selection (UOMS)

UOMS aims to select an effective model without using any labels. Clearly, choos-
ing the augmentation hyperparameters (HPs) of an AD algorithm in SSAD can
be considered a UOMS problem. In this case, a candidate model is defined as a
pair of the underlying AD algorithm and augmentation HPs, and the goal is to
choose the one that would achieve high detection rate on test data.

Existing UOMS approaches can be categorized into two groups. The first
group uses internal performance measures (IPMs) that are based solely on
the model’s output and/or input data [15]. We adopt three top-performing
IPMs reported in [15] as baselines (see §4.1). The second group consists of
meta-learning-based approaches [26,27]. In short, they facilitate model selec-
tion for a new unsupervised task by leveraging knowledge from similar historical
tasks/datasets. It is important to note that in this work we do not assume access
to historical training data. Thus, learning-based UOMS approaches do not apply
here.

3 Proposed Method

We introduce DSV (Discordance and Separability Validation), our unsupervised
validation loss for the search of augmentation HPs in SSAD. The minimization of
DSV leads to better alignment between data augmentation and true anomalies,
which in turn results in higher accuracy on anomaly detection.
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3.1 Definitions and Assumptions

We first introduce definitions and assumptions on which DSV is based. We start
by defining set distance and projection functions. Note that by Definition 1, the
set distance d satisfies the triangle inequality between three different sets.

Definition 1. We define a set distance d as the average of all pairwise distances:
d(A,B) = 1

|A||B|
∑

a∈A
∑

b∈B ‖a − b‖. We also represent the vector distance as
d for the brevity of notations: d(a,b) := d({a}, {b}).

Definition 2. We define a projected norm as proj(a,b, c) = (c−a)�(b−a)
‖(b−a)‖ . The

meaning of proj is the norm of c−a projected onto the direction of b−a, using
a as the anchor point. Note that proj(a,b, c) ≤ ‖c − a‖.

Then, we introduce an assumption on data embeddings. Recall that our
detector φ = φenc ◦ φdec contains an encoder function φenc ∈ R

m → R
l. Let

Ztrn and Ztest be sets of embeddings for training and test samples, respectively,
such that Ztrn = {φenc(x) | x ∈ Dtrn} and Ztest = {φenc(x) | x ∈ Dtest}. Let
Z(n)

test and Z(a)
test be the normal and anomalous data in Ztest, respectively. We also

define Zaug = {φenc(faug(x)) | x ∈ Dtrn} as a set of augmented embeddings.

Assumption 1. By convention, we assume that training normal and test nor-
mal data are generated from the same underlying distribution. Let d(Ztrn,Ztrn) =
σ. Then, d(Z(n)

test,Z(n)
test) = σ and d(Ztrn,Z(n)

test) = σ + ε, where ε < σ.

3.2 Main Ideas: Discordance and Separability

Let fgen ∈ R
m → R

m be the underlying (unknown) anomaly-generating function
in Dtest, which transforms a normal data into an anomaly. We aim to find faug
that maximizes the functional similarity between faug and fgen, which we refer
to alignment in this work. There are various ways to measure the alignment, but
we focus on the embedding space, as it allows us to avoid the high dimensionality
of real-world data. We informally define the extent of alignment as follows.

Proposition 1. Data augmentation function faug is aligned with the anomaly-
generating function fgen if Lali = d(Zaug,Z(a)

test) is small.

The problem is Lali cannot be computed without test labels. To extract Z(a)
test

from Ztest is as difficult as solving the anomaly detection problem itself. Then,
how can we approximate Lali without test labels? We propose to decompose
the alignment geometrically into discordance hd and separability hs as shown in
Fig. 2. For an intuitive illustration, we assume that only one data exists in each
set, e.g., Ztrn = {ztrn}. Then, the simplified definitions of hd and hs are given as

hd(ztrn, zaug, z
(a)
test) =

d(ztrn, z
(a)
test) + d(zaug, z

(a)
test)

d(ztrn, zaug)
− 1 (1)

hs(ztrn, zaug, z
(a)
test) =

proj(ztrn, zaug, z
(a)
test)

d(ztrn, zaug)
. (2)
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Fig. 2. Simplified illustrations of discordance and separability. We assume that all sets
are of size one, e.g., Ztrn = {ztrn}. Blue is better than red in (b) and (c). To minimize
Lali = d(zaug, z

(a)
test) as in (a), we propose the (b) discordance hd, which is the distance

between z
(a)
test and the line segment �, and the (c) separability hs, which is the distance

between ztrn and z
(a)
test projected onto �. (Color figure online)

In combination, hd and hs allow us to minimize Lali = d(zaug, z
(a)
test) without

actually computing it. Let � = ztrn + t(zaug − ztrn) be a line segment between
ztrn and zaug, where t ranges over [0, 1]. Then, hd represents a distance between
z(a)test and �, which is minimized when z(a)test is exactly on �. On the other hand, hs

means the distance between z(a)test and ztrn when z(a)test is projected onto �. Thus,
Lali is minimized as zero if hd = 0 and hs = 1.

A difference between hd and hs is that hd becomes a more accurate approx-
imation of Lali if z(a)test is far from both ztrn and zaug. Thus, we consider hd as a
coarse-grained measure, while we bound the range of hs into [0, 1] and consider
it as a fine-grained measure to address the incapability of hd to locate z(a)test on
�. Then, hd is lower the better (alignment), while hs is higher the better.

The exact definitions of hd and hs are direct generalization of Eq. (1) and (2)
from vectors to sets. The idea is to compute the average of all possible distances
by replacing the vector distance with the set distance in Definition 1:

hd(Ztrn,Zaug,Z(a)
test) =

d(Ztrn,Z(a)
test) + d(Zaug,Z(a)

test)
d(Ztrn,Zaug)

− 1 (3)

hs(Ztrn,Zaug,Z(a)
test) =

∑
ztrn,zaug,z

(a)
test∈Ztrn,Zaug,Z(a)

test
proj(ztrn, zaug, z

(a)
test)

d(Ztrn,Zaug)|Ztrn||Zaug||Z(a)
test|

. (4)
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Surrogate Losses. Based on our decomposition of the alignment, we pro-
pose surrogate losses Ldis and Lsep to approximate hd and hs, respectively, which
have the term Z(a)

test (unknown at test time) in their definitions. Our final vali-
dation loss LDSV is given as

LDSV(Ztrn,Zaug,Ztest) = Ldis(·) − max(Lsep(·), 1/2)
Ldis(·) , (5)

where Ztrn, Zaug, and Ztest are inputs also to the right-hand side terms. The
minus sign is used since higher Lsep means better alignment until it reaches the
optimum, which is 1/2 in Lsep, while it is 1 for hs. We divide Lsep by Ldis, since we
want Lsep to have an effect especially when Lsep is small. Then, we use LDSV to
perform unsupervised model selection by choosing the hyperparameters of faug
that yields the smallest LDSV, which indicates the model with best alignment.

3.3 Discordance Surrogate Loss

We now describe how our surrogate losses Ldis and Lsep effectively approximate
the discordance hd and separability hs, respectively. Ldis is defined as

Ldis(Ztrn,Zaug,Ztest) =
d(Ztrn ∪ Zaug,Ztest)

d(Ztrn,Zaug)
. (6)

The idea is that d(Ztrn∪Zaug,Ztest) can approximate hd based on the triangle
inequality. To show the exact relation between Ldis and hd, we first derive the
lower and upper bounds of Ldis with respect to hd in Lemma 1. Then, we show in
Corollary 1 that Ldis is represented as a linear function of hd if some constraints
are met, which makes Ldis an effective approximation of hd.

Lemma 1. If |Ztrn| = |Zaug|, then the lower and upper bounds of Ldis are given
as functions of hd and d(Ztrn,Zaug):

c2hd + c2 + c3 ≤ Ldis(·) ≤ c2hd + c2 + c3 +
(c1 + c3)(σ + ε)
d(Ztrn,Zaug)

,

where ci = ĉi/
∑4

k=1 ĉk are data size-based constants such that ĉ1 = |Ztrn|·|Z(n)
test|,

ĉ2 = |Ztrn| · |Z(a)
test|, ĉ3 = |Zaug| · |Z(n)

test|, and ĉ4 = |Zaug| · |Z(a)
test|.

Proof. The proof is in Appendix A.1. �

Corollary 1. If |Ztrn| = |Zaug|, σ � d(Ztrn,Zaug), and ε � d(Ztrn,Zaug), then
Ldis is a linear function of hd: Ldis(Ztrn,Zaug,Ztest) ≈ c2hd + c2 + c3.

3.4 Separability Surrogate Loss

The separability surrogate loss Lsep for approximating hs is defined as follows:

Lsep(·) =
std({proj(μtrn, zaug, ztest) | zaug, ztest ∈ Zaug,Ztest})

d(Ztrn,Zaug)
, (7)
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Table 1. Average AUC (top) and rank (bottom) across 21 different tasks in the two
datasets. The best is in bold, and the second best is underlined. Our DSV achieves the
best in six, and the second-best in two out of the 8 cases.

faug Avg. Rand. Base MMD STD MC SEL HITS DSV

CutOut 0.739 0.776 0.741 0.735 0.739 0.749 0.727 0.757 0.813

CutAvg 0.739 0.817 0.721 0.692 0.745 0.751 0.744 0.742 0.806

CutDiff 0.743 0.711 0.739 0.730 0.744 0.747 0.741 0.777 0.811

CutPaste 0.788 0.841 0.694 0.756 0.818 0.862 0.830 0.850 0.884

faug Avg Rand Base MMD STD MC SEL HITS DSV

CutOut 7.33 6.10 6.62 6.93 6.29 6.50 7.10 5.43 3.79

CutAvg 7.00 5.02 7.64 8.36 5.52 5.48 5.98 5.60 4.19

CutDiff 6.43 7.24 6.45 7.38 6.00 5.64 6.24 6.21 3.60

CutPaste 7.67 6.29 8.67 7.21 5.60 4.33 5.17 4.64 4.57

where std(A) =
√|A|−1

∑
a∈A(a − mean(A)) is the standard variation of a set,

and μtrn is the mean vector of Ztrn. One notable difference from Eq. (4) is that
only the mean μtrn is used in the numerator, instead of whole Ztrn, based on the
observation that Ztrn is usually densely clustered as a result of training.

Intuitively, Lsep measures how much Ztest is scattered along the direction of
zaug − μtrn. The amount of scatteredness is directly related to the value of hs,
since we assume by convention that Z(n)

test is close to Ztrn. In Lemma 2, we show
that Lsep is a linear function of hs if some constraints are met, and its optimum
is 1/2 in the ideal case, which corresponds to hs = 1, if σ̄test � ‖zaug − ztrn‖.

Lemma 2. We assume that Ztrn = {ztrn}, Zaug = {zaug}, and z(n)test = ztrn for
all z(n)test ∈ Z(n)

test. Let γ = |Z(a)
test|/|Ztest|, and σ̄test be the standard deviation of the

projected norms Z(p)
test = {proj(ztrn, zaug, z) | z ∈ Z(a)

test}. Then, the separability
surrogate loss Lsep is rewritten as a function of hs as follows:

Lsep(Ztrn,Zaug,Ztest) =
√

γ(1 − γ)hs +
√

γσ̄test

‖zaug − ztrn‖ .

Proof. The proof is in Appendix A.2. �

4 Experiments

We answer the following questions through experiments on real datasets:

Q1. Performance. Are the models selected by DSV better than those selected
by baseline measures for unsupervised model selection? Is the improvement
statistically significant across different tasks and datasets?
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Q2. Ablation study. Are the two main components of DSV for the discor-
dance and separability, respectively, meaningful to performance? How do
they complement each other across different augmentation functions and
tasks?

Q3. Case studies. How does DSV work on individual cases with respect to the
distribution of embedding vectors or anomaly scores?

Fig. 3. Ablation study to compare Ldis, Lsep, and LDSV on 21 different tasks and on
average when faug = CutPaste. DSV shows a dramatic improvement in a few cases,
such as tasks T2 (both fail), T4 (Lsep fails), T11 and T14 (Ldis fails).

4.1 Experimental Settings

Datasets. We include two datasets for anomaly detection in natural images:
MVTec AD [3] and MPDD [10], which contain 21 different tasks in total. MVTec
AD mimics real-world industrial inspection scenarios and contains 15 different
tasks: five unique textures and ten unique objects from different domains. MPDD
focuses on defect detection during painted metal parts fabrication and contains
6 different object types with a non-homogeneous background. The evaluation is
done by AUC (the area under the ROC curve) scores on test data.

Detector Models. We use a classifier-based anomaly detector model used in
a previous work [13], which first learns data embeddings and then computes
anomaly scores on the space. The model structure is based on ResNet18 [9]. All
model hyperparameters are set to the default setting, except for the number of
training updates, which we changed for MPDD since the model converged much
faster due to the smaller data size; we set the number of updates to 10,000 in
MVTec AD, while to 1,000 in MPDD.
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Fig. 4. The AUC and loss values Ldis, Lsep, and LDSV with CutOut or CutPaste as
faug. We preprocessed Lsep so that it can be directly added to Ldis for creating LDSV.
We have two main observations from the figures. First, LDSV is negatively correlated
with the actual AUC. Second, Lsep and Ldis work in a complementary way, which is
shown especially well on (a) and (b).

Augmentation Functions. We use four different augmentation functions in
experiments: CutOut [5], CutAvg, CutDiff, and CutPaste [13]. CutOut replaces
a random patch from an image with black pixels. CutAvg is similar to CutOut,
but it replaces a patch with the average color of the patch, instead of the black.
CutDiff is a smooth version of CutOut, and it makes a smooth boundary when
selecting a patch. The resulting image has the black at the center of the original
position of the patch, and it becomes brighter as it goes close to the boundary.
CutPaste copies a patch and pastes it into a random location of the image.

We use the patch size as the target augmentation hyperparameter to search
for all these functions, since it directly controls the amount of modification by
faug. We consider 17 settings in the range from 10−5 to 0.64 in the log scale. For
example, 0.1 represents we select a patch whose size is 10% of the image.

Baselines. We compare our DSV with eight baseline methods for unsuper-
vised model selection. Average is the simplest one, which is to take the average
performance of all settings we consider. Random means we change the hyperpa-
rameter for each inference during training and test. Base is to use the distance
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Ldis(Ztrn,Zaug,Ztest) as the simplest approximation of Lali. MMD replaces the
distance function in Base with the maximum mean discrepancy [21]. STD mea-
sures standard deviation of the all-pair distances between Ztrn and Ztest.

MC, SEL, and HITS were proposed in a previous work [15] for unsupervised
outlier model selection (see §2.3). They are top-performing baselines based on
internal performance measures. MC [14,15] combines different models based on
outlier score similarities, assuming that good models have similar outputs as the
optimal model, and thus are close to each other. HITS uses the HITS algorithm
originally designed for web graphs [11] to compute the importance of each model.
SELECT (SEL in short) originates from model ensembles [18,28], and calculates
the similarity between the output of each model and the “pseudo ground truth”
which is initialized to the average of all candidate models.

4.2 Detection Performance (Q1)

Fig. 5. Wilcoxon signed rank test for
all pairs of approaches. DSV is supe-
rior to all other approaches with p-values
smaller than 0.001.

Table 1 shows the average AUC and rank
of various methods on 21 different tasks.
Due to the lack of space, we include the
full results on individual tasks in the
supplementary material. DSV shows the
best performance on 6 out of the 8 cases,
and the second-best on the remaining
two cases. MC and HITS perform well
compared to the other baselines, but
their performances are not consistent
across different augmentation functions
and tasks.

In Fig. 5, we perform the Wilcoxon
signed rank test [8] to check if the dif-
ferences between models are statistically
significant. Each number in the (i, j)-
th cell represents the p-value comparing
models i and j, and it represents model
i is significantly better than model j if
the p-value is smaller than 0.05. DSV is significantly better than all of the other
approaches in the figure, demonstrating its superiority in unsupervised model
selection.
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Fig. 6. t-SNE visualizations of embeddings in (top) faug = CutOut and (bottom)
faug = CutPaste, where values in parentheses represent different HPs. LDSV is the
smallest in (b) and (e), where the anomalies are in between Ztrn and Zaug. Detection
fails in (a), (c) & (d), (f), showing larger LDSV than in (b) & (e), resp.

Fig. 7. Anomaly scores for the three different HPs of faug = CutOut in Fig. 6. The
distributions of embeddings are clearly observed also in the scores: (a) No separation
in test data, (b) reasonable separation with as high AUC as 0.815, and (c) drastic
separation between augmented points and all other sets.
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4.3 Ablation Studies (Q2)

We perform an ablation study in Fig. 3, comparing LDSV with its two surrogate
losses Ldis and Lsep on faug = CutPaste. The difference between the three models
is more significant in individual cases, rather than on average, as denoted by the
red arrows in the figure. This is because each of Ldis and Lsep is incomplete by
its design. For example, hd surpasses hs on average, but it shows some dramatic
failure cases as in T11 and T14. Our proposed LDSV avoids such failures, achieving
the best performance by effectively combining the two terms.

The complementary roles of the two losses is also shown in Fig. 4, where we
draw actual AUC and three different losses together for various combinations
of faug and tasks. Overall, the value of LDSV is negatively correlated with the
true AUC, which is exactly the purpose of introducing LDSV for unsupervised
model selection. In detail, we observe complementary interactions between Ldis

and Lsep from the figures; for example, in Fig. 4a, Lsep makes the overall loss
decrease when AUC peaks the top, although Ldis makes only negligible changes.
In Fig. 4b, in contrast, the two losses change drastically in small patch sizes,
while their sums remain similar, allowing us to avoid HPs with low AUC.

4.4 Case Studies (Q3)

In Fig. 6, we visualize the embeddings when faug = CutOut (the task is Carpet)
and faug = CutPaste (the task is Metal Nut). In Figs. 6b and 6e, which show
the smallest LDSV, test anomalies Z(a)

test are scattered in between Ztrn and Zaug.
Although some of Z(a)

test are mixed with Z(n)
test in Fig. 6b, the AUC is as high as

0.815. On the other hand, in Figs. 6a and 6c, the AUC is lower than even 0.5,
while LDSV is large. In Fig. 6a, Z(n)

test and Z(a)
test are mixed completely, since the

amount of modification through augmentation is too small. In Fig. 6c, Zaug are
separated from all other sets, due to the drastic augmentation. Figures 6d and
6f show similar patterns, although the AUC is generally higher than in CutOut.

In Fig. 7, we visualize the anomaly scores generated by our detector model,
following the same scenarios as in Fig. 6 when faug = CutOut. Since the detector
model in our experiments computes an anomaly score based on the likelihood of
a Gaussian mixture model in the embedding space, the scores are related to the
actual distances. The scores represent the difference between different HPs well,
leading to the observations consistent with the t-SNE visualization.

5 Conclusion

There has been a recent surge of self-supervised learning methods for anomaly
detection (SSAD), but how to systematically choose the augmentation hyperpa-
rameters here remains vastly understudied. To address this, we introduce DSV,
an unsupervised validation loss for selecting optimal SSAD models with effec-
tive augmentation hyperparameters. The main idea is to maximize the alignment
between augmentation and unknown anomalies with surrogate losses that esti-
mate the discordance and separability of test data. Our experiments demonstrate
that DSV outperforms a broad range of baselines. Future work involves extend-
ing it to incorporate other distance measures such as the Chebyshev distance.
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A Proofs of Lemmas

A.1 Proof of Lemma 1

Proof. Let σ̂ = σ + ε. We rewrite the numerator of Ldis based on the definition
of h and Assumption 1.

d(Ztrn ∪ Zaug,Ztest) = c1σ̂ + c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Zaug,Z(n)
test) + c4d(Zaug,Z(a)

test)

Then, we derive the lower bound as follows:

d(Ztrn ∪ Zaug,Ztest)

≥ c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Ztrn,Zaug) + c4d(Zaug,Z(a)
test) + (c1 − c3)σ̂

= (c4 − c2)d(Zaug,Z(a)
test) + (c2 + c2h + c3)d(Ztrn,Zaug) + (c1 − c3)σ̂

Similarly, the upper bound is given as follows:

d(Ztrn ∪ Zaug,Ztest)

≤ c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Ztrn,Zaug) + c4d(Zaug,Z(a)
test) + (c1 + c3)σ̂

= (c4 − c2)d(Zaug,Z(a)
test) + (c2 + c2h + c3)d(Ztrn,Zaug) + (c1 + c3)σ̂

If we apply the assumption |Ztrn| = |Zaug|, which results in c2 = c4, the
first term from both bounds disappears. We get the inequalities in the lemma
by dividing both bounds by d(Ztrn,Zaug). �

A.2 Proof of Lemma 2

Proof. Let μtest = mean({proj(ztrn, zaug, z) | z ∈ Z(a)
test}) be the average of pro-

jected norms. We first rewrite hs as follows:

hs =

∑
ztrn,zaug,z

(a)
test∈Ztrn,Zaug,Z(a)

test
proj(ztrn, zaug, z

(a)
test)

d(Ztrn,Zaug)|Ztrn||Zaug||Z(a)
test|

=

∑
z
(a)
test∈Z(a)

test
proj(ztrn, zaug, z

(a)
test)

‖zaug − ztrn‖|Z(a)
test|

=
|Z(a)

test|μtest

‖zaug − ztrn‖|Z(a)
test|

=
μtest

‖zaug − ztrn‖
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We rewrite the squared numerator of Lsep:

std2({proj(μtrn, zaug, ztest) | zaug, ztest ∈ Zaug,Ztest})

= std2({proj(μtrn, zaug, ztest) | ztest ∈ Ztest})

=
1

|Ztest|
∑

ztest

(proj(μtrn, zaug, ztest) − γμtest)2

=
1

|Ztest|
(
|Z(n)

test|γ2μ2
test + |Z(a)

test|(σ̄2
test + (1 − γ)2μ2

test)
)

= (1 − γ)γ2μ2
test + γ(σ̄2

test + (1 − γ)2μ2
test)

= γ(1 − γ)μ2
test + γσ̄2

test.

Then, Lsep is rewritten as follows:

Lsep =

√
γ(1 − γ)μ2

test + γσ̄2
test

d(Ztrn,Zaug)
=

√
γ(1 − γ)hs +

√
γσ̄test

‖zaug − ztrn‖ ,

which is the equation in the lemma. �
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Abstract. Data acquisition for ML-driven malware detection is chal-
lenging. While large commercial datasets exist, they are prohibitively
expensive. On the other hand, an entity (e.g., a bank or government),
may be targeted with unique malware, but the data samples available
will never be sufficient to train a bespoke ML-based detector. While data
augmentation has been a key component in improving deep learning mod-
els by providing requisite diversity for generalization, it has proven far
more challenging for malware detection. The main challenges are that (1)
determining the augmentations to make is not straightforward, (2) oper-
ations are on binaries rather than source code (which is not available),
complicating correctness and understanding, and (3) labeling new files
mandates expensive binary reverse engineering. We present Marvolo

for creating realistic, semantics preserving transformations that mimic
the code alterations made by malware authors in practice, allowing us
to generate augmented data on raw binary files. This also enables Mar-

volo to safely propagate labels to newly-generated data. Across several
malware datasets and recent ML-based detectors, Marvolo improves
accuracy and AUC by up to 5% and 10% respectively, while boosting
efficiency by 79x by avoiding redundant computation.

1 Introduction

Malware detection is a problem with real-world ramifications, and machine learn-
ing has been used in building malware detectors for decades which can be trained
with large commercial datasets [6,12] of malicious and benign binaries. Unfortu-
nately, detection in the wild continues to fall short of expectations, with attacks
regularly occurring [2]. The core issue is cost: large and comprehensive datasets
generally require licensing costs that can reach $400 k/year. Thus, it is often
impractical to obtain sufficiently general and representative training datasets,
and yet, these datasets govern the efficacy of these models. As a result, a victim
may only be able to discover 1–50 samples of a malware family [15]. Worse, tar-
geted malware, such as banking and nation-state malware, which are designed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 270–285, 2023.
https://doi.org/10.1007/978-3-031-43412-9_16
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for a specific target for which data samples are limited makes detection even
more difficult due to the lack of available training samples.

Data augmentation techniques have been proposed to mitigate these
issues [14,18], but they face several challenges that limit their utility. The main
issue is that augmentation strategies are typically decoupled from the behav-
ior of malware authors in the wild, and instead focus on random alterations
to boost dataset heterogeneity. Further, they directly modify feature represen-
tations of raw binaries (since source code is unavailable), which further convo-
lute the semantic understanding of the effects of those perturbations. This, in
turn, also precludes correctness-preserving labeling of the newly created samples.
Lastly, despite the focus on coarse alterations, the programmatic processing of
binaries is costly, both resource- and time-wise.

Analysis of malware over the years has revealed that malware authors typi-
cally use semantics preserving transformations [1,28] to sidestep malware detec-
tors and deter reverse engineering efforts. Our key insight is that the same obser-
vation can be used to enhance the efficacy of malware datasets through data
augmentation. We introduce Marvolo, a data augmentation engine for malware
datasets. The key insight underlying Marvolo is the use of semantics-preserving
code transformations inspired by a study of real-world datasets we conducted
in Sect. 3 that highlight the nature with which malware authors use code trans-
formations. Building on this, Marvolo embeds several key ideas. First, we use
a ’lifter’ to convert the files into a higher level representation, allowing us to
perform code transformations on binaries and check for correctness. Second, we
embed two complementary optimizations to collectively maximize the utility
(i.e., number of realistic and diverse data samples) of the transformations within
a time budget. Third, Marvolo automatically labels newly-generated samples
without mandating expensive binary reverse engineering.

We test Marvolo using the state of the art MalConv2 [22] malware detector
and multiple commercially-available large/small-scale datasets, i.e., the large-
scale Ember [6] dataset, as well as a small-scale Brazilian dataset [9]. Overall,
Marvolo boosts detection accuracy by up to 5% and AUC by up to 10%,
with most wins coming from detecting previously unseen novel families, which
are intuitively more difficult to catch. Marvolo also yields 2.35–3.8% higher
accuracy and 8.4–9% higher AUC over prior augmentation approaches, which
modify feature representations. Our optimizations provide a 79× speedup in
contrast to the naive binary rewriting approach, making our approach tenable for
generating large amounts of data samples. Further, we show that Marvolo also
yields accuracy and AUC improvements with non-deep baselines for detection.

We have open sourced Marvolo at https://github.com/michaeldwong/
marvolo. Appendices can be found at https://michaeldwong.github.io/papers/
marvolo.pdf.

2 Background and Related Work

Though prior attempts have been made in data augmentation for malware
detection, they do not yet perform meaningful data augmentation. In [14,18],

https://github.com/michaeldwong/marvolo.
https://github.com/michaeldwong/marvolo.
https://michaeldwong.github.io/papers/marvolo.pdf.
https://michaeldwong.github.io/papers/marvolo.pdf.
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Fig. 1. Performance of MalConv2 [22] when training on different subsets of the Ember
dataset [6]. All accuracy results were attained using a fixed threshold.

programs are represented as sequences of opcodes and augmentation is performed
by replacing one opcode with another without necessarily preserving semantics.
Further, [19] augments “images” generated from malware, which are known to
be flawed representation [20]. These unrealistic augmentations exacerbate a com-
mon problem in malware research that labels are not always accurate [7]. In
contrast to these efforts, Marvolo’s contributions lie in (1) a deep-dive analy-
sis of large-scale malware datasets to uncover the usage patterns of semantics-
preserving code transformations in malware, and (2) a system that leverages
those insights to efficiently grow small datasets into larger ones with improved
heterogeneity and realism that aid ML-based malware detection.

There exists a wide array of malware detection approaches with varying trade-
offs, ranging in amount of pre-processing done at prediction time from none (fast,
less accurate) [4,20] to full dynamic analysis (slow, more accurate) [13]. In this
work we are focusing on small and incomprehensive datasets, where there is a
need to triage files proactively especially when there is targeted malware. For
this reason, signature-based methods are separate tools that capture what is
known [25], where we still want a method to triage potential risk that are not
known. In these situations it is common to use the probability of a classifier as
a ranking for triage [17], meaning we often care about Area Under the Curve
(AUC) as it corresponds to the quality of the detector at ranking correctly [21].
Put differently, the probability score from the classifier to rank is important for
characterizing and ranking the files by maliciousness so that the most malicious
files are identified and quarantined sooner rather than later. The goal of our
modeling is thus to be good enough to triage for more expensive analysis (auto-
mated or human), as building an accurate detector standalone is not realistic
given limited data.

We note that high quality labeled data is extraordinarily difficult to obtain for
research purposes. The seminal EMBER [6] and SOREL-20M [12] require a Virus-
Total license to obtain the original files, which can cost up to $400k/year. Conse-
quently, groups must resort to far smaller datasets [26]. To show the importance
of large datasets, we show the accuracy and AUC degradation of using progres-
sively smaller Ember datasets in 1. To contextualize these results, we note that
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Fig. 2. Code snippets from two malware families in the Ember dataset that exhibit
semantics-preserving code transformations.

the implications of detecting even a single additional malicious binary in the wild
can be substantial, and that single-digit accuracy improvements are celebrated by
malware analysts. For this reason our work uses only a subset of Ember with only
several malware families as well as a Brazilian dataset [9], which will let us test
the effectiveness of Marvolo. This maintains relevance to our target use case as
defenders can run honeypots to collect malware targeted at themselves [8]. Further
background and related work is provided in Appendix A.

3 Approach

Our results from Sect. 2 highlight the inadequacies of small malware datasets
relative to the large (commercial) datasets that have supported high accuracies
for ML-driven malware detectors in practical settings. However, given the supe-
rior attainability of small datasets, our main goal is to determine whether they
can be altered to more closely mimic the properties of their larger counterparts
and deliver similar efficacy when used to train malware detectors. To do so, we
programmatically analyzed the binaries in the large Ember dataset to identify
their defining characteristics. We start with several representative case studies
that illustrate our findings, before describing more general takeaways.

Case Study I. Figure 2 shows code snippets from the Zenpak and Sivis malware
families.1 The Zenpak binary uses a code obfuscation technique called junk code
insertion [28]. As its name suggests, junk code is comprised of instructions that
are executed but do not affect the externalized output(s) of the program. Here,
junk code manifests as a series of inc instructions (line 1-8) that each increment
a register’s value, immediately followed by a series of dec instructions (lines
9-16) that decrement them.

The Sivis binary also uses multiple forms of junk code insertion: (1) the nop
instructions (lines 1-3) which do not trigger any computation or data movement,
(2) the interleaved inc and dec that sequentially alter the same registers (lines
5-8, 13-14), and (3) lines 10-12 which push the value of edx onto the stack, set
the value of edx to 0 using xor, and then pop the old value of edx from the
stack and store it back into edx (rendering the xor operation useless). The Sivis
1 x86 assembly code samples are written in Intel syntax.
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Fig. 3. Snippets from two binaries in the same “InstallMonster” family that exhibit
minor differences due to code obfuscations.

Fig. 4. Percentages of code blocks in Ember’s binaries that are affected by different
code transformations.

binary embeds another code obfuscation technique called opaque predicates [28],
which are (typically) known a priori by a programmer to always evaluate to true
or false. This manifests in relation to eax. At the start of the snippet, eax is
definitively set to 0 after the xor instruction (line 4). However, at the point of
the cmp instruction in line 15, the value stored in eax is definitively 1 due to the
series of inc and dec operations in the preceding statements. In line 15, since
eax �= 0x17b8ef93, the jump in the following jne instruction is always taken.

Case Study II. Figure 3 depicts snippets from two sample binaries from the
Ember dataset that belong to the same family. Unsurprisingly, the two code
snippets are similar at first glance. However, there exist minor differences due
to two code obfuscation techniques that they embed. First, each binary uses
a mov instruction to write data from the data segment into eax. However, the
data is located in different memory locations across the two version; the two
binaries retrieve the value from ds:0x470208 and ds:0x324e88, respectively.
This pattern is also seen in the lea instructions where the two binaries use
different offsets from the stack base pointer, ebp, to retrieve their values. In
addition, the two binaries use instruction swapping to reorder instructions (in
this case, the mov instruction) in a manner that preserves overall semantics.

Takeaways. Our case studies highlight two main points (which we repeatedly
observed across the Ember dataset):
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Fig. 5. Pairwise byte diffs between binaries in five representative malware families.

(1) Semantics-preserving code transformations. Malware authors rou-
tinely alter prior versions of malicious programs using code obfuscation tech-
niques that preserve program behavior. The reason is intuitive: generating mal-
ware involves a lot of manual labor and sophisticated code alteration. As malware
detectors discern already-deployed malware by recognizing patterns in their code
composition or execution regimes (Sect. 2), a far less challenging way for mal-
ware authors to continue deploying their malicious code is to perform semantics-
preserving code transformations. These transformations alter that code mini-
mally, to preserve its malicious behavior while deviating from the patterns used
to detect its predecessor. Unsurprisingly, we did not observe any remnants of
semantics-preserving code transformations in the benign samples that we ana-
lyzed.

(2) Combinations of Transformations. To ensure sufficient differences
from detected malware versions, malware authors often resort to performing
semantics-preserving transformations, e.g., as in case study II above. This app-
roach is fruitful as such transformations are often (logically) complementary,
and the effect of each transformation depends on subtle interactions between
the transformation logic and binary code (ranges shown in Fig. 4). Addition-
ally, we find that, to further boost diversity with multiple transformations, each
obfuscation is not necessarily applied to all possible blocks in a binary, i.e., some
binaries exhibited the effects of an obfuscation in all code blocks that it applied
to, while others demonstrated the effects in only a fraction of those blocks.

Taking a step back, these observations lead to two implications about the
large datasets that have been successfully used for ML-driven malware detec-
tion. First, there exist far fewer families of malicious binaries than malicious
binaries themselves; the Ember dataset includes 300 K malicious binary samples
spread across only 332 families. There exist many binary versions per family:
there are 287 and 13,951 binaries in the median and 99th percentile families,
respectively. Second, the binaries within each family can differ quite substan-
tially depending on the specific transformations that are applied across versions.
Figure 5 highlights this property, showing that for subsets of five representative
families, the constituent binaries exhibit median pairwise percent differences of
38-99% (which equates to raw differences of 0.8–5.4 MB).

Our Approach. The results above motivate a new approach to bolstering
the efficacy of the small datasets: data augmentation via semantics-preserving
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transformations. That is, we aim to grow small datasets by performing different
combinations of semantics-preserving code transformations on varying numbers of
blocks in the binaries. Doing so would mimic the techniques that malware authors
use to sidestep malware detectors over time [3], and yield data similar to that in
(proven) large datasets. We employ further code transformations done by opti-
mizing compilers to generate new benign binaries. More importantly, semantics-
preserving transformations provide a direct path to accurately labeling newly gen-
erated data without manual effort since pre- and post-transformation binaries will
exhibit the same behavior (and thus can safely share labels). In Sect. 4, we describe
our system, Marvolo, that realizes this approach in a practical manner.

4 Marvolo

4.1 Binary Rewriting Overview

Fig. 6. Marvolo workflow for mutating a
malicious binary.

Figure 6 illustrates Marvolo’s binary
mutation process for performing
semantics-preserving transformations
on a single (malicious) binary. To
begin mutation, Marvolo decom-
piles existing PE32 binaries using
Ddisasm [11] and internally repre-
sents the binary as a series of basic
instruction (or code) blocks.

To operate on (i.e., mutate)
instruction blocks, Marvolo first
disassembles each block. The result-
ing blocks are then passed into
the Marvolo code transformation
engine, which (1) selects a set of
semantics-preserving code transformations to apply to the binary during a given
iteration, (2) analyzes all blocks to determine which blocks each considered trans-
formation is applicable to, (3) selects the fraction of potential blocks to apply
each transformation to, and (4) sequentially carries out the transformations on the
selected blocks; Sect. 4.2 details this process. After code transformations are com-
plete for a given iteration, Marvolo then directly swaps out the corresponding
(unmodified) blocks with their transformed counterparts and invokes an assem-
bler to get the output binary. This binary is then added to the original dataset
and tagged with the same label (i.e., malicious or benign) as the one used during
its generation. This end-to-end process repeats multiple times for each binary in
the dataset in accordance with a user-specified time or resource budget.

4.2 Code Transformations

Marvolo currently supports a wide range of different semantics-preserving code
transformations that cover the set of mutations we observed in our analysis of
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the popular Ember dataset (Sect. 3). To ensure that a modified code block is
semantically equivalent to the original block, static analysis is performed after
the code transformation is applied. This analysis tracks program reads and writes
and determines whether the reads from the registers and memory locations in
that basic block would still return the same values after the modification. If a
violation occurs from the code transformation, it is reverted and a new transfor-
mation is attempted. Appendix B provides an overview of the transformations
supported.

Marvolo’s goal is to generate new versions of input binaries that differ in
diverse ways from their originals while adhering to a user-specified time and/or
resource budget (which dictates potential parallelism across mutation iterations).
The main challenge is that it is difficult to determine, a priori, how a given trans-
formation will alter a given binary. It depends on subtle interactions between the
transformation logic and the binary instructions, which collectively dictate how
many blocks are applicable for a transformation, and how many instructions will
be modified, added, or deleted. Thus, during each mutation iteration, Marvolo
instead opts to randomly select multiple transformations for each mutation iter-
ation and stochastically order them. This follows from our finding that malware
authors typically employ multiple transformations together, and that binaries in
the same family can differ by (largely) varying amounts (Sect. 3).

To further bolster variance across the transformed binaries, Marvolo varies
two parameters across the mutation iterations for each input binary. m specifies
the number of transformation iterations to perform on each binary, and c governs
the fraction of blocks to mutate in each iteration. Marvolo maintains a running
list of parameter values used for a given binary and selects subsequent values
to maximize diversity, i.e., maximizing the distance from all previously used
values. Note that the overarching time budget takes precedence over per-binary
parameter values; to enforce this, Marvolo round robins through the input
binaries, performing one mutation iteration on each one, and circling back to
fulfill the selected m per binary only if time permits. In practice, we find that 1–6
mutation iterations for each binary suffices in providing diversity in the amount
of code that is perturbed while still being computationally feasible (keeping
mutation times within several minutes).

4.3 Optimizations for Practicality

Sources of Inefficiency. Binary mutation of a single executable with Mar-
volo can be broken down into 3 stages: (1) invoking Ddisasm on the binary
(decompilation), (2) carrying out semantics-preserving code transformations
(mutation), and (3) generating the output binary (reasssembly). We profiled
the runtime of each stage by passing 3K random binaries from Ember through
Marvolo. As shown in Fig. 7, all three stages consume substantial time: median
values for the three stages across binary sizes are 0.6–33, 0.1–585, and 0.1–34 s,
respectively. We additionally observed that per-stage delays grow as binary sizes
grow and span upwards of 460, 961, and 44 s. Accordingly, aiming to even per-
form a single mutation iteration on each binary in existing small datasets (which
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Algorithm 1. Marvolo data augmentation
Input: dataset S, number of new binaries k, set of supported transformations T
Output: augmented dataset S∗

S∗ ← {}
for i = 1 to k do

x̂ ← SampleBinary(S)
for j = 1 to m do

t ← SelectNextTransformation(T )
x̂ ← t(x̂)

end for
S∗ ← S∗ ∪ {x̂}

end for
return S∗

would not fully bridge the size gap with large datasets) could take up to several
thousand hours! The associated resource costs would forego the savings that
practitioners reap by not purchasing existing large datasets. Instead, Marvolo
embeds the following two optimizations to boost Marvolo’s utility for a given
time budget; we evaluate their effectiveness Sect. 5, and provide more details in
Appendix C.

Fig. 7. Breakdown of time spent on each
stage in Marvolo’s pipeline (Fig. 6) for
(a single run on) binaries in different size
groups. Bars list medians, with error bars
for 25-75th percentiles.

(1) Code similarity cluster-
ing. A clustering strategy to group
binaries based on their compositions.
We make the key observation that
many binaries within a malware fam-
ily have equivalent code sections (i.e.,
the instructions are the same) and
differ in other sections of the binary
and leverage this insight to clus-
ter binaries together with the same
code section. Only a single binary
per cluster is operated on, and the
resulting code blocks are rapidly (but
safely, from a semantics perspective)
dropped into the other binaries in the
same cluster. This approach circum-
vents costly operations for all-but-
one binary per cluster, while preserving diverse interactions between code alter-
ations and other sections in each binary.

(2) Intermediate binary generation. A technique to increase the number
of diverse binaries output from each pass through the pipeline. The main diffi-
culty is that it is difficult to (efficiently) determine, a priori, the effects that a
transformation will have on a given binary’s code blocks. Thus, Marvolo opts
for a dynamic approach, whereby a lightweight runtime check determines the
efficacy of outputting a binary – based on code discrepancies from the original
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and previously output versions – after each transformation that is performed in
a pipeline pass.

5 Evaluation

5.1 Methodology

We focus on byte-based detectors that require no feature engineering and extrac-
tion to deploy. First, such methods are the fastest to run (naturally, they require
no feature extractor to run) making them realistic for triage use. Second, man-
ual human effort to understand a file can take days or weeks of work [27] and
the needed features will change over time [3]. Byte-based models allow immedi-
ate adaption to new content. Thus, we use the state-of-the-art MalConv2 deep
malware detector as our primary model [22]. We also include two non-deep
approaches based on compression algorithms that are commonly used for mal-
ware detection, the Lempel Ziv Jaccard Distance (LZJD) [23] and Burrows
Wheeler Markov Distance (BWMD) [24].

Our experiments consider two main datasets: (1) the commercial Ember
dataset with 1.1M samples, and (2) the smaller-scale Brazilian malware
dataset [9] with 50K samples. Given the realism of Ember observed by researchers
and practitioners, we use its test set, which consists of 200K benign and mali-
cious samples, to reflect malware detection scenarios in the wild. For training,
we use a subset of the 600K-sample Ember training dataset, as well as the Brazil-
ian dataset; we train a separate MalConv2 model for each case. In contrast to
the Ember subsets in Fig. 1, we constrain the number of families to realistically
mimic the dataset compositions commonly used in smaller datasets [5,26].

5.2 Overall Accuracy Improvements

Table 1. Accuracy and AUC percentage
improvements for opcode sequence augmen-
tation and Marvolo augmentation

Approach Accuracy AUC

Random Insertion 1.09 0.53

Dropout 0.27 0.69

Random Replacement 1.72 –0.10

Synonym Replacement 0.99 –3.90

Marvolo 4.07 9.06

For each dataset, we train MalConv2
to convergence. Training involves first
collecting (converged) “pre-trained”
weights on the original training
dataset, and then running an addi-
tional training round (5 epochs) with
the augmented dataset that Mar-
volo generates. For all baselines, we
use the default hyperparameters pro-
vided. Accuracy is reported as the per-
centage of correct labels (i.e., benign
or malicious) output by MalConv2. We also measure AUC, which is an espe-
cially important metric for malware analysts because of the need to characterize
and rank binaries to determine which ones should be analyzed, identified, and
quarantined sooner rather than later [5,20]. Thus, A high AUC is crucial since
it corresponds to a successful ranking of most malicious files above benign files.
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A discussion on using Marvolo following our experiments can be found in
Appendix D.

We first compare how Marvolo performs in contrast to prior malware aug-
mentation approaches. We first compared Marvolo using all code transforma-
tions across both benign and malicious files against prior approaches that modify
the opcode sequence representations of programs [14,18]. We mimic the exper-
imental setup used in [18] by using the Continuous Bag of Words (CBOW)
word2vec algorithm [16] trained on opcode sequences from the binaries in our
dataset to construct an embedding matrix with information that represents the
semantic similarity (e.g., add and adc) between opcodes. Opcodes with similar
embedding vectors tend to be semantically similar. Each opcode in the sequence
is then replaced with its corresponding word2vec embedding vector and con-
verted to a binary file to be ingested by MalConv2. We implement four core
strategies featured in opcode sequence augmentation: (1) random insertion, (2)
random deletion, (3) random replacement, and (4) synonym replacement. For
each experiment, we generated 6K mutated binaries. Table 1 contains the results,
with Marvolo yielding 2.35–3.8% higher accuracy and 8.4% – 9% higher AUC
over the opcode sequence augmentation strategies. Since Marvolo performs
meaningful data augmentation by mimicking the code alterations made in prac-
tice, we generate more realistic data samples. We also applied image-based aug-
mentation [19] to our dataset by converting our binaries to RGB images and
augmenting them with Gaussian, Poisson, and Laplace noise. Across multiple
experiments, performance improvements did not exceed 1%, and thus signifi-
cantly trails the wins delivered by Marvolo and even led to occasional accuracy
degradations.

Table 2. Accuracy and AUC percent-
age improvements for non-deep baselines
yielded by Marvolo augmentation

Model Accuracy AUC

LZJD + Logistic Regression 0.87 1.01

LZJD + XGBoost 1.14 1.14

BWMD + Logistic Regression 1.18 1.61

BWMD + XGBoost 1.01 –0.23

We also evaluated Marvolo using
the subset of the Brazilian malware
dataset which yielded accuracy gains
of 1–2%. Unlike the Ember dataset,
the Brazilian dataset does not contain
family labels for its malware so we
could not constrain the training set
to several families of interest. Thus,
the original training dataset exhibited
more heterogeneity so adding addi-
tional augmented samples had a weaker effect. Table 2 shows our results for
evaluating BWMD [24] and LZJD [23]. For each of these algorithms, we use
both logistic regression and XGBoost [10] for malware classification. Overall,
Marvolo achieves up to a 1.18% improvement in accuracy and 1.61% improve-
ment in AUC. Some of the effects of the mutations are lost after compression
so the difference between the new embeddings and the embeddings from the
unmodified binaries is less pronounced than the difference between the binaries
without compression. Nonetheless, we note that even a 1% increase in accuracy
is significant because of the sheer size and heterogeneity of our test dataset as
well as the potential catastrophic consequences of misclassifying just a single file.
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Fig. 8. Accuracy improvements (y-axis) when training MalConv2 on the Ember dataset
augmented with different numbers of mutated samples (from Marvolo).

Fig. 9. Marvolo’s accuracy improvements (y-axis) when testing on only unseen (in
the training data) malware families in the Ember test dataset. 8.

5.3 Analyzing Marvolo

Figore 8 shows the accuracy improvements that Marvolo brings to MalConv2
when augmenting the Ember training dataset with different numbers of mutated
samples (ranging from 3-12K). We run each experiment four times and report
on the distributions. Accuracy improvements range from 1–5% atop the baseline
accuracy of 61.3% and AUC improvements range from 5–10% atop the baseline
AUC of 65.2% achieved when considering the unmodified Ember dataset alone.
These results highlight that accuracy improvements typically come quickly, while
operating on only a small number of binaries, e.g., adding only 3 K and 6 K
mutated samples to the dataset delivers 3.5% and 5% of accuracy boosts, respec-
tively. The reason is that Marvolo’s efficiency-centric optimizations promote
rapid diversity amongst the generated samples, which in turn enable MalConv2
to quickly strike a desirable balance between (1) learning to detect obfuscation
patterns, while (2) not overfitting to mutated samples. Results on the smaller
Brazilian malware dataset [9] were comparable: adding 2K mutated files deliv-
ered median accuracy improvements of 2% (atop the 61% without Marvolo).

Further analysis reveals that a key driver of the overall accuracy wins deliv-
ered by Marvolo are improvements on test samples from previously unseen mal-
ware families, i.e., families that did not appear in the training dataset. Recall
from Sect. 2 that such samples are the ones which static analysis and small-
scale ML approaches typically struggle to generalize to. Figure 9 illustrates this,
showing that Marvolo’s accuracy boosts on only the subset of test binaries
that were not seen during training are on par with the wins on the complete
test set (1–5%). The underlying reason for these improvements is that code



282 M. Wong et al.

transformations provide a discernible pattern for MalConv2 to link across diverse
binaries in different families.

Fig. 10. Time spent on various stages of the mutation pipeline for two versions of
Marvolo: one with both optimizations, and one without. Mutation and reassembly
are combined into a single bar for ease of disposition. Results are aggregate times when
generating 3K mutated samples.

Importance of Number of Binaries Mutated. Figures 8 and 9 show Mar-
volo’s performance as the number of added mutated binaries changes. As dis-
cussed, the benefits from Marvolo’s mutations come early as most accuracy
wins can be realized by using only a small fraction of the overall dataset as

Table 3. Marvolo’s accuracy improve-
ments when using a version of Mar-

volo that only performs a single type
of semantics-preserving code transfor-
mation during mutation.

Code transformation Type Accuracy

Junk code Malware 2.62

Swapping Malware 1.41

Obfuscating sub Malware 3.18

Register reassignment Malware 1.80

Code transposition Malware 2.47

Opaque predicates Malware 1.00

Optimizing sub Benign 2.83

Function outlining Benign 1.23

Function inlining Benign 2.60

Function reordering Benign 0.04

input. More generally, however, Mar-
volo’s performance with regards to
input size is collectively governed by two
factors - (1) the overall dataset size,
and (2) the number of input samples -
that influence the relationship between
the utility of malware detection insights
from newly added (mutated) samples and
the risk of overfitting. Intuitively, larger
datasets require more mutated samples
to reap benefits because they already
exhibit a sufficient amount of heterogene-
ity (as shown in Fig. 1), and they are also
far less susceptible to overfitting (as the
weight of each added sample is relatively
smaller).

Importance of Different Transformations. Table 3 shows the effect that
each transformation has on accuracy improvement. In summary, we find that
we generally reap more accuracy improvements when mutating malicious files
over benign files. Intuitively, many datasets only consist of malicious files from
several families that do not employ a diverse set of obfuscations. Delving further,
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we find that obfuscating instruction substitution (replacing an instruction with
an abstruse sequence of different instructions) yields the highest accuracy wins
followed by junk code insertion and code transposition (reordering code blocks).
These are commonly obfuscations that significantly change the file’s appearance.
Further, we attain significant improvements for mutations on benign files with
optimizing instruction substitution and function inlining being the most promi-
nent. These transformations improve the model by mimicking common types of
optimizations that compilers employ in practice (which are not as widely used by
malware authors, who opt to use their own toolchains and have fewer incentives
to deploy optimized code). Function reordering, which changes the positions of
functions in the file, shows that simply making arbitrary modifications that do
not represent the transformations made in practice provide little benefit.

Importance of Marvolo’s Optimizations. Recall from Sect. 4 that Mar-
volo embeds two optimizations to tackle the overheads in the mutation process.
To uncover the effects of these optimizations, we profiled two runs of Marvolo’s
mutation pipeline, one with the two optimizations enabled, and one without
them. Each pipeline was used to generate 3K mutated samples, and we note
that the MalConv2 models trained on these mutated samples (atop the Ember
dataset) delivered accuracy within 1% of one another.

Figure 10 shows the aggregate time spent in each pipeline stage across these
two variants. The optimized version runs 79× faster to generate mutated samples
of similar efficacy (given the near-identical MalConv2 performance across the two
cases noted above). Speedups are primarily from the lower decompilation and
mutation/reassembly costs, which in turn are due to running only a single binary
per cluster through the pipeline (85% fewer binaries), with each run yielding a
larger number of mutated samples. These drops dwarf the drop-in overheads
used to mix (altered) code and data blocks, and the slight (blocking) overhead
of performing clustering prior to mutation; note that clustering overheads are
paid once, and will thus steadily decrease in relative importance as the number
of mutated samples grows.

6 Conclusion

Marvolo is a data augmentation engine that boosts the efficacy of the malware
datasets that practitioners commonly are restricted to by performing semantics-
preserving code transformations on the constituent binaries. To the best of our
knowledge, we are the first to leverage insights from a deep-dive analysis of
existing malware datasets to apply meaningful data augmentation to the domain
of malware detection. Key to Marvolo’s practicality are its ability to (safely)
propagate labels across input and output binary samples, and its optimizations
to boost the number of fruitful (i.e., diverse and representative) data samples
generated within a fixed time budget. Experiments using commercial malware
datasets and a recent ML-driven malware detector show that Marvolo boosts
accuracies by up to 5%, while operating on only 15% of the available binaries
(mutation speedups of 79×).
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Abstract. Extensive labeled training data for anomaly detection is enor-
mously expensive and often unavailable in data-sensitive applications due
to privacy constraints. We propose TransForest, a transductive forest for
anomaly detection, in the semi-supervised setting where few labels are
available. Guided by little label information, TransForest pushes classi-
fication boundaries toward sensitive areas where abnormal and normal
points are located, increasing learning capacity. Empirically, TransForest
is competitive with other unsupervised and semi-supervised representa-
tive detectors given a small number of labeled points. TransForest also
offers a feature importance ranking consistent with the rankings provided
by popular supervised forests on low-dimensional data sets. Our code is
available at https://github.com/jzha968/transForest.

1 Introduction

Anomaly detection is a fundamental data mining task with many applications
in several domains, such as banking fraud detection, system health monitoring,
medical diagnosis, and law enforcement [1]. In these applications, the data fea-
tures are represented as a high-dimensional vector, and anomalous behaviors
tend to be masked by the noise effects of irrelevant features. More importantly,
the label information is often limited due to privacy constraints and significant
human effort. For instance, labeling medical images is very expensive, and releas-
ing their label information can be against the privacy rights [2,7]. Therefore, it is
challenging to detect anomalies effectively and efficiently, given a limited amount
of labeled points, and provide explanations regarding detected anomalous pat-
terns to support end-users decisions.

Due to the difficulty of accessing the ground truth, unsupervised meth-
ods are popular techniques to detect anomalies in the last decades [1,25].
These approaches are based on a common assumption that anomalies are
likely located in relatively sparse regions while normal points are often dis-
tributed in dense neighborhoods. Unsupervised methods proposed different
notions to measure the sparsity of a point, for example, distance/density-
based models [4,24,28], isolation-based models [10,11,17], histogram-based mod-
els [9,23,27], and distribution-based models [15,16]. Since anomaly detection is
performed in high-dimensional space and anomalies are masked by multiple irrel-
evant dimensions, anomaly detectors in relevant subspaces show superiority over
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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full space counterpart solutions [13,14,17]. However, the exponential complex-
ity of the number of subspaces is the main bottleneck in detecting anomalous
patterns accurately and efficiently.

Instead of finding relevant subspaces, recent semi-supervised models [21,26,
30] use a little label information to extract rich feature representations for the
data points. These features preserve discriminative information of abnormal and
normal points and are helpful for anomaly detection. XGBOD [30], a boosting-
based approach, combines unsupervised feature representations with the original
features to enrich the augmented feature space. Deep learning models [20,26] cou-
ple rich feature representation learning with some specific anomaly score. These
methods significantly improve unsupervised models by leveraging advances in
boosting and deep neural networks. A recent benchmark [12] shows that the
strongest baseline XGBOD [30] can improve up to 10% of the average detection
accuracy over unsupervised competitors with just 5% labeled anomalies. How-
ever, we find that these semi-supervised methods require many labeled points
for training to achieve reasonable accuracy.

This work studies tree-based semi-supervised ensembles for anomaly detection.
We propose TransForest, a novel transductive semi-supervised forest, that requires
few labeled points to select relevant subspaces for constructing the forest. Unlike
the conventional transductive decision forest [6] that maximizes the mixed infor-
mation gain derived from the unlabeled and labeled points, TransForest estimates
the information gain by spreading the known label information to the other unla-
beledpoints during the feature selectionprocess. In particular, at each tree level,we
construct a histogram on each of the randomly selected features. Then, we pseudo-
label unlabeled points based on the data distribution of the histogram and labeled
points. Both labeled and pseudo-labeled points are used to estimate the informa-
tion gain for the selected feature and its corresponding splitting value.

Given few labeled abnormal and normal points, TransForest can not only
discriminate the sparse subspace areas that contain normal points or anoma-
lies, but also push the classification boundaries toward dense subspace areas
where points from both classes constitute. Empirically, TransForest is fast and
outperforms other unsupervised tree-based forests with just 10 labeled points.
Given the same amount of label information, TransForest achieves competitive
accuracy compared with current advanced semi-supervised methods. Especially,
TransForest offers a feature importance ranking consistent with the rankings
provided by well-known supervised methods, including Random Forest [3] and
Extra Trees [8] trained on fully labeled data.

2 Related Work

We briefly review popular unsupervised and semi-supervised anomaly detectors.

Unsupervised Models. Due to the difficulty of accessing the ground truth,
traditional unsupervised models compute an anomaly score for each data point
such that anomalies are likely scored larger than normal points. The anomaly
score of a point q is derived from the sparsity of the local area around q. Different
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approaches use different notions to measure the sparsity of q in high-dimensional
space; for example, distance-based methods [24] using the k-nearest neighbor
distance and density-based methods [4] using the difference ratio between the
sparsity of q and the average sparsity of its local neighborhood.

Subspace Methods. Since proximity-based methods suffer the “curse of dimen-
sionality” and detected anomalies tend to be uninteresting noise instances, their
subspace variants [13,14] compute anomaly scores on specific subsets of dimen-
sions where interesting anomalies tend to appear. Histogram-based approaches
construct a histogram on each dimension or random subsets of dimensions [9,27],
and use the bin size of the histogram where q locates to estimate the sparsity of
q. iForest [17] and its variants [10,11] are tree-based solutions that measure the
subspace sparsity of a point via the isolation concept. Since anomalies are few
and different on a specific subset of dimensions, they will be likely isolated on
the leaf node of a decision tree built on randomly selected features and random
splitting values. Combined with subsampling, tree-based ensembles are the most
efficient and accurate unsupervised anomaly detectors [12].

Semi-supervised Models. Semi-supervised models combine a small amount
of labeled data with unlabeled data to learn better classification boundaries or
extract rich representations to distinguish abnormal and normal points.

Tree-Based Methods. Popular supervised tree-based ensembles such as Random
Forest [3] and Extra Trees [8] build the tree via the information gain derived
from labeled points. Given the limit of label information, their transductive semi-
supervised variants [6] select the feature and its splitting value that maximizes
the mixed information gain derived from both unlabeled and labeled points.
The unlabeled information gain component is derived from the Gaussian density
estimation learned by the maximum likelihood over many samples. This step
suffers substantial computational overheads, significantly increasing the training
time. A semi-supervised variant Hybrid iForest [19] incorporates a new distance-
based score from the test point to the labeled points into the iForest’s anomaly
score to improve the accuracy. Given little label information, its performance is
unstable due to the high dependence on the data distribution.

Boosting-Based Methods. XGBOD [30] is a recent semi-supervised approach that
leverages XGBoost [5], a fast and accurate gradient boosting library, to improve
detection performance. XGBOD first constructs a new set of features based
on unsupervised anomaly scores. This new set of features augmented with the
original ones forms a new rich feature space where XGBoost is used to learn a
binary classification. Though XGBOD achieves good performance, it does not
provide any explanation for detected anomalies.

Deep Learning Methods. Different from XGBOD, several deep learning-based
approaches [20,22,26] couple the learning representations and anomaly scores to
improve the detection accuracy. For example, REPEN [20] learns low-dimensional
representations that separate normal and abnormal distance-based behaviors.
DeepSAD [26] maps data points into the sphere of minimum volume and learns
a hyperplane that separates the sphere center and the projected data points.
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Algorithm 1. An ExtraTree Construction
1: procedure BuildTree(A subset of points S, hmax, nmin, the current depth h = 0)
2: If h ≥ hmax or |S| ≤ nmin, create a leaf node and return
3: Generate k pairs (fi, vfi) where fi is the feature and vfi is a random splitting

value uniformly within the empirical range of fi
4: (f∗, vf∗) = arg maxi I(S, fi, vfi) using Eq. ( 1)
5: Split S into Sl and Sr using (f∗, vf∗)
6: BuildTree(Sl, h + 1)

7: BuildTree(Sr, h + 1)

Although semi-supervised deep learning approaches require a significant number
of labeled points, their learned representations are often difficult to interpret.

3 Preliminary

We present the preliminary tree-based ensemble methods, including Extra Trees
(ET) [8], Random Forest (RF) [3], and iForest [17]. Since these forest variants
build an ensemble of t trees, each over a random sample of s points, for simplicity,
we will discuss the generic tree construction and point out their key differences.

Tree construction. Both RF and ET grow a tree by computing the feature
and its splitting values that maximize the information gain for a given node.
The information gain I measures the impurity gain of a node S after splitting S
into two nodes Sl and Sr using the feature fi and splitting value vfi . Let p0 and
p1 be the empirical probability of the normal and abnormal classes in any node
A, the impurity of A is derived from its entropy value H(A) = −p0 log2 (p0) −
p1 log2 (p1). The information gain of S for the feature fi and splitting value vfi
is as follows.

I(S, fi, vfi) = H(S) − |Sl|
|S| H(Sl) − |Sr|

|S| H(Sr) . (1)

Denote by nmin and hmax the maximum number of points on leaf nodes and the
maximum tree depth. These parameters are used to control the over-fitting in
the forests. Algorithm 1 shows how to build an ET tree using information gain.

Difference between ET and RF. While both ET and RF build a tree on a
subset of features, their primary difference is on generating the splitting values.
ET picks the splitting value uniformly within the empirical range. RF computes
the local optimal splitting value from randomly selected features. Since ET uses
more randomness than RF, ET offers slightly lower classification accuracy but
runs significantly faster than RF.

Difference between ET and iForest. In the unsupervised setting, building
a tree of iForest is identical to the ET process without Step 4. Since there is no
label information, Step 3 just needs k = 1 to reduce the training time. The key
difference between iForest and ET is that iForest sets nmin = 1, hmax = log2 (s)
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Fig. 1. An illustration of the tree constructions. Without label information, iForest’s
splits tend to separate dense/sparse regions. Guided by few labeled points and pseudo-
labeled points via constructed histograms (dashed black lines), TransForest tends to
split the node (blue lines) on sensitive regions where labeled points of two classes appear
(Rule 3). (Color figure online)

and uses the path length from the leaf node to the root as an anomaly score.
Since anomalies tend to differ from the other points on a specific subspace, they
are likely isolated at shallow leaf nodes while normal points are likely located on
deeper leaves. Building a forest will boost the performance since each tree deals
with a random subspace derived from randomly selected features.

4 TransForest: A Transductive Forest

We observe that the unsupervised isolation-based mechanism tends to detect
anomalies in sparse subspace areas. When two anomalies in a dense anoma-
lous cluster are sampled to build trees, this cluster of anomalies receives similar
anomaly scores as normal points. Since high-dimensional data sets contain multi-
ple irrelevant features caused by measurement noise, sparse regions in randomly
selected subspaces consist of both abnormal and normal points. In this case,
normal points will be flagged as anomalies by the isolation-based mechanism.

We present TransForest to overcome these drawbacks by leveraging few
labeled abnormal and normal points. TransForest is a novel transductive tree-
based ensemble that spreads the little known label information to the other
unlabeled points. Guided by pseudo-labeled and labeled points, each tree of
TransForest selects more relevant subspaces and splitting values to investigate,
providing higher performance with negligible computational overheads.

We denote the unlabeled and labeled sets by Xu and Xl, respectively. These
two sets of sizes |Xu| = nu, |Xl| = nl form the data set X of n = nu+nl points in
d dimensions. Since the number of labeled points is tiny, i.e. nl � nu, we always
use Xl to build every tree of TransForest to learn more discriminate subspaces
via the feature selection and its corresponding splitting value.

Overview. Providing the class probability is essential for enabling information
gain-based splitting criterion. Given few labeled points, the information gain
guides the feature selection on just a few shallow nodes in supervised tree-based
methods. After a certain level, supervised models switch to unsupervised learn-
ing which unfortunately limits the use of label information. To maximize the
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Algorithm 2. Compute Information Gain I(S, fi, vfi)
1: function ComputeGain(The node S, Xl, fi, vfi)
2: Create a fixed bin width histogram for S on fi using log2 (|S|) + 1 bins
3: Split the bin containing vfi into two new bins
4: Compute the density threshold Δ = 0.1|S|
5: for each bin B in the histogram do
6: Count pseudo-labeled abnormal and normal points in B using Pseudo-

label Counting(B, Δ, Xl) in Algorithm 3

7: Given the number of abnormal and normal points in each bin, compute the
entropy H(S), H(Sl), H(Sr) for the pair (fi, vfi)

8: return I(S, fi, vfi) using Eq.( 1)

Algorithm 3. Counting # pseudo-labels of each class
1: function Pseudo-label Counting(Bin B, Δ, Xl)
Ensure: # normal points, # anomalies in bin B
2: if B does not contain labeled points then
3: if |B| ≥ Δ then return (|B|, 0) � Dense area: label all points as normal
4: else return (0, |B|) � Sparse area: label all points as anomalies

5: if |B| ≥ Δ and B contains only anomalies then return (0.9|B|, 0.1|B|)
6: if B has m0 ≥ 0 normal points and m1 ≥ 0 anomalies then return(

m0
m0+m1

|B|, m1
m0+m1

|B|
)

use of labeled points, we propose a label propagation that spreads label informa-
tion to their local regions to improve the tree construction. We implement the
spreading mechanism via a histogram built from the empirical range of each fea-
ture. The constructed histograms will be used to pseudo-label unlabeled points
based on their distribution and labeled points. Given labeled and pseudo-labeled
points, we can compute the information gain and resort to standard supervised
learning Extra Trees to build learning trees. We also output approximate feature
importance ranking as an interpretation effort for TransForest. Figure 1 shows
how TransForest leverages few labels to learn better splitting values than iForest.

Training Phase. TransForest uses Algorithm 1 to build trees. Each tree uses all
labeled points, and the information gain in Step 4 is derived from a histogram-
based label propagation. On the tree node S, for a randomly selected feature fi
and random splitting value vfi , TransForest constructs a histogram and pseudo-
labels all unlabeled points by propagating labeled points to the other points
in every histogram bin, as shown in Algorithm 2. In particular, we count the
number of pseudo-labeled normal and abnormal points in each bin and use them
to compute the information gain for the pair (fi, vfi).

Counting Pseudo-Labels of each Class. We construct a fixed bin width histogram
on the empirical range of random feature fi to pseudo-label unlabeled points
due to the fact that many histogram-based unsupervised methods [9,23,27] are
efficient and effective on detecting anomalies in high-dimensional space. For a
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node S, we construct a histogram using log2 (|S|)+1 bins. If there are no labeled
points in the bin, we resort to the commonly assumed prior of unsupervised
learning, which is anomalies tend to be located in sparse local regions whereas
dense local regions tend to contain normal points. We use the threshold Δ =
0.1|S| to determine a dense/sparse bin. For a bin B of size |B|, Algorithm 3 shows
how to count the number of pseudo-labels for each class using the following rules.

1. Rule 1: If B does not have labeled points, we resort to the common unsu-
pervised prior. That is, if B is dense, i.e. |B| ≥ Δ, all points in B are labeled
as normal points; otherwise, they are all anomalies (Lines 2 – 4).

2. Rule 2: If B is dense but contains only anomalies, B will have 0.9|B| normal
points and 0.1|B| anomalies (Line 5) (e.g. normal points dominate anomalies).

3. Rule 3: Otherwise, we use the ratio between labeled abnormal and normal
points to compute the number of pseudo-labels for each class (Line 6).

Rule 1 reflects the unsupervised prior; hence, TransForest can run in the unsu-
pervised setting. Rules 2 and 3 push the classification boundaries toward sensitive
areas where abnormal and normal points appear. Since normal points dominate
anomalies, pushing the learning boundary toward sensitive areas increases the
chance of finding discriminate local sparse areas to isolate anomalies in shallow
nodes, as shown in Fig. 1.

Testing Phase. Since few labeled points of both classes are available in every
tree, we will adjust the anomaly scores on isolated leaves where labeled points
locate. In particular, for the leaves that contain only labeled anomalies, we set
anomalyScore = 1. We set anomalyScore = hmax for the leaves containing only
labeled normal points. In other words, the local areas with only one-side labeled
points are classified as this one-sided class. For most leaves without labeled
points, we set anomalyScore as the path length from the leaf to the root, similar
to iForest. This adjustment leverages the labeled points to significantly improve
the accuracy of TransForest on real-world data sets where local areas tend to
contain the same class information.

Hyperparameter Setting. Since TransForest is a semi-supervised variant of
iForest, we use t = 100 trees, each built on a subset of random points of size s.
For each tree node, we select the best (fi, vfi) among k = 10 random choices.

Since each tree of TransForest uses all labeled points Xl, and we need a
sufficient unlabeled point to execute the spreading mechanism, we set s =
max(256, 2nl) to use additional s − nl unlabeled points. Since Xl is often tiny,
this setting will not affect the training time complexity of TransForest.

We heuristically use Δ = 0.1|S| as a density threshold for the node S in the
training phase to determine dense/sparse regions. We observe that the fixed bin
width histogram constructed on the empirical range of a feature has a very skew
distribution. Most of the sampled points are distributed in a few bins, while
the rest of the bins are almost empty. Hence, the performance is similar for any
density threshold Δ ∈ {0.05, 0.1, 0.2, 0.3}|S|, as shown in the experiment.

The last hyperparameter is the heuristic setting used for the dense area with
only anomalies (Rule 2). Without the class imbalance ratio, we set the ratio of
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90% normal points and 10% anomalies to illustrate the domination of the normal
class. Otherwise, this ratio can be set as the known class imbalance ratio. We
observe that the case of dense regions with only anomalies is very rare due to
the imbalanced property, changing the anomaly ratio from 10% to 30% would
not affect the performance, as shown in the experiment.

Computational Complexity. Given the same settings of t trees, each tree
uses s samples, nmin = 1, and hmax = log2 (s), TransForest and iForest share
the same asymptotically linear running time. Though both have O(ts log2 (s))
training time, TransForest runs slower than iForest due to the additional O(ks)
cost of constructing the histogram and pseudo-labeling for feature selection. In
the testing phase, their empirical running time is similar to O(nt log2 (s)) time.

Feature Importance Ranking of TransForest. Given pseudo-labeled and
labeled points and the information gain computed in each node while construct-
ing each tree, TransForest computes an important feature ranking similar to
supervised tree-based RF and ET. Note that TransForest can compute the
feature importance ranking without any labeled points by applying the com-
mon unsupervised prior. The feature important ranking will facilitate decision-
marking on detected anomalies and identify irrelevant features from the data set.
Empirically, TransForest with few labeled points can offer the feature important
ranking consistent with supervised RF and ET on low-dimensional data sets.

5 Experiments

We implement our TransForest in Python and compare its performance with
other unsupervised models, including iForest [17], OCSVM [18] and HBOS [9],
and with recent semi-supervised models, including XGBOD [30], DevNet [22],
DeepSAD [26] and Hybrid iForest [19]. Regarding the recent benchmark
ADBench [12], these approaches are the strongest competitors in unsupervised
and semi-supervised anomaly detection. We conduct experiments on a 2.90 GHz
core i7-10700 16GB of RAM with a single CPU.

We use the standard AUC score (i.e. area under the ROC curve) to evaluate
the accuracy of unsupervised and semi-supervised ensemble detectors since they
output the outlier rankings. All results of each algorithm are the average over 5
runs. Semi-supervised models take labeled points randomly for each run. We
present empirical evaluations on real-world data sets, including tabular and con-
tinuous data sets from computer vision and natural language processing domains,
with a variety of differences in sizes and dimensions from ADBench1 (see Table 1)
to verify our claims, including:

1. Given limited label information, TransForest outperforms XGBOD, Hybrid
iForest, and recent deep learning approaches, including DevNet and Deep-
SAD, regarding detection accuracy.

1 https://github.com/Minqi824/ADBench/tree/main/datasets.

https://github.com/Minqi824/ADBench/tree/main/datasets
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2. Given just 20 labeled points, TransForest improves up to 10% AUC score
compared to strong unsupervised baselines, including iForest and HBOS.

3. TransForest offers a feature importance ranking consistent with supervised
RF and ET. TransForest is also robust to noisy and corrupted data sets
while other deep learning-based approaches are not.

5.1 Semi-supervised Comparisons

We compare the AUC scores provided by TransForest and other semi-supervised
approaches, including XGBOD, DeepSAD, DevNet, and Hybrid iForest.

Parameter Settings. TransForest uses t = 100 trees, s = max(256, 2nl) sam-
ples, nmin = 1, hmax = log2 (s), k = 10. We train Hybrid iForest with
t = 128, s = 128. The hyperparameters in score aggregation, the coefficient of
unsupervised and supervised scores α1 = 0.2, α2 = 0.7 are set as suggested in [19].
We use the DevNet implementation [22] with the setting nepochs = 50, batch size
b = 512, α = 5, and 20 steps. Keras’s RMSprop optimization has a learning rate
of 0.001 and ρ = 0.95. The pre-trained AutoEncoder uses nepochs = 100, b = 128.
Adam optimization with a learning rate of 0.001 and weight decay L2 = 10−6 is
applied in both training and pre-training stages. For XGBOD and DeepSAD, we

Table 1. Dataset descriptions: 15 tabular and 20 continuous data sets.

Dataset Size Dimension Anomalies

ALOI 50000 27 1508 (3.02%)

Annthyroid 7200 6 534 (7.42%)

Breastw 683 9 239 (35%)

Cardio 1831 21 176 (9.6%)

Letter 1600 32 100 (6.25%)

Mammography 11183 6 260 (2.32%)

Mnist 7603 100 700 (9.2%)

Optdigits 5216 64 150 (3%)

Pendigits 6870 16 156 (2.27%)

Pima 768 8 268 (35%)

Satellite 6435 36 2036 (32%)

Satimage-2 5803 36 71 (1.2%)

Shuttle 49097 9 3511 (7%)

Speech 3686 400 61 (1.65%)

Thyroid 3772 6 93 (2.5%)

20news (5 versions) 3090 768 154 (5%)

agnews (5 versions) 10000 768 500 (5%)

FashionMNIST (10 versions) 6315 512 315 (5%)
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Fig. 2. Average AUC over different types of data with various percentages of labeled
anomalies. We use the same amount of labeled points for both classes.

Fig. 3. Critical difference in average ranking of AUC scores over different types of data
using 1% labeled anomalies. We use the same amount of labeled points for both classes.

follow the parameter settings from ADBench [12]. XGBOD uses default param-
eters with unsupervised estimators, including KNN, LOF, HBOS, OCSVM and
iForest, and XGBoost, with a learning rate of 0.1. DeepSAD uses nepochs = 50
with batch size b = 128.

Limited Label Information. Due to the difficulty of labeling training data,
we limit the availability of labeled anomalies to {1%, 2%, . . . , 10%} and use the
same number of labeled normal points. In other words, we have nl/2 labeled
points from each class. We select labeled points randomly, train semi-supervised
detectors on labeled and unlabeled points, and test on all unlabeled points.

Very Limited Labeled Points on Both Classes. Figure 2 shows the average AUC
scores provided by DevNet, DeepSAD, XGBOD, Hybrid iForest, and TransForest
over a wide range of numbers of known anomalies. Overall, TransForest provides
higher accuracy than other competitors, especially on tabular data sets. The
advantage of TransForest is significant when using less label information. While
DevNet performs best in continuous data sets, TransForest offers a competitive
performance by achieving a better accuracy with up to 3% labeled anomalies.

Compared to XGBOD, the advantage of TransForest is significant when using
less label information and on continuous data sets. Since XGBOD uses unsu-
pervised outlier scores to enrich feature learning during training, it requires
more labeled points to achieve reasonable accuracy. Similarly, deep learning
approaches require significant labeled data on tabular data sets. Hybrid iFor-
est shows inferior performance. Although it incorporates labeled and unlabeled
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Fig. 4. Average AUC over different types of data with various numbers of labeled
anomalies. We use the same amount of labeled points for both classes.

points in training, its detection ability is emphasized for clustered anomalies,
and therefore benefits less from little label information.

Figure 3 shows the critical difference diagram in average rank of AUC scores
of the 5 semi-supervised approaches. While XGBOD, DeepSAD, and Hybrid
iForest perform similarly, TransForest and DevNet are statistically better over
all data sets when the label information is limited. Compared to DevNet, Trans-
Forest’s ranking is significant on tabular data sets but is marginal on continuous
ones.

More Available Labeled Points. Fig. 4 shows the increase in accuracy of all semi-
supervised methods when using more labeled points. Though TransForest still
offers superior performance over all (15 tabular + 20 continuous) data sets, its
gap with DevNet is marginal since DevNet is well-designed for continuous data
sets. Nevertheless, TransForest is still competitive with DeepSAD, XGBOD, and
Hybric iForest on both tabular and continuous data sets.

5.2 Effects of Pseudo-Labeling of TransForest

This subsection evaluates the effects of pseudo-labeling by comparing TransFor-
est to several representative unsupervised methods, including iForest, OCSVM,
and HBOS. To demonstrate the effectiveness of TransForest on utilizing label
information, we vary both numbers of abnormal and normal points from 1 to
10. For other parameter settings of TransForest, we use the same as described
above. For unsupervised methods, we use the default parameter setting provided
in PyOD [31], and the whole data set as the training and testing sets.

Figure 5 presents the average AUC provided by iForest, OCSVM, HBOS
and TransForest on tabular data sets. It is clear that TransForest significantly
improves the unsupervised approach while leveraging limited label information.
Given only 3 abnormal and 3 normal points, TransForest improves nearly 7%
detection accuracy over iForest and HBOS, and 20% over OCSVM.
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Fig. 5. Average AUC compared with unsupervised methods. We use the same amount
of labeled points for both classes.

Fig. 6. Average AUC over all data sets with different parameter configurations.

5.3 Parameter Sensitivity of TransForest

We examine the sensitivity of core hyperparameters of TransForest, including
the density threshold Δ, anomaly ratio in Rule 2, and the number of bins for
constructing the histogram. We examine Δ = {0.05, 0.1, 0.2, 0.3}|S|, the ratio of
anomalies in dense areas with only labeled anomalies {0.1, 0.2, 0.3}|B|, and the
actual class imbalance ratio of the data sets. For the number of bins, we use 3
popular recommendations, including square-root choice

√|S|, Sturges’ formula
log2 (|S|) + 1, and Rice rule 2 3

√|S| [29].
Figure 6 shows the stable performance by TransForest with different settings

of hyperparameters over all data sets for a wide range of labeled points. In other
words, TransForest does not need heavy parameter tuning.

5.4 Robustness Against Irrelevant Features

This subsection evaluates the robustness of semi-supervised approaches with
noisy features. Following ADBench [12], we add irrelevant features up to 50% of
the original features. We select a few representative data sets from a wide range
of dimensions, including Satellite, Mnist and 20news 0 to test the impact of irrel-
evant features. Similar to the previous setting, we use 10% labeled anomalies and
use the same labeled points for each class. We vary the percentage of additional
irrelevant features from 10% up to 50%. To generate an additional noisy feature,
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we randomly select a feature fi, get the minimum and maximum values of fi to
generate the uniform noise from this range, and augment this noise feature into
the original data.

Figure 7 shows the decrease in AUC scores of 5 detectors, including DevNet,
TransForest, XGBOD, Hybrid iForest and DeepSAD when increasing the number
of irrelevant features. Deep learning approaches, DevNet and DeepSAD, suffer a
substantial downgrade in accuracy when the number of irrelevant features rises.

Fig. 7. Average decrease in AUC score with additional irrelevant features. We use 10%
labeled anomalies and the same amount of labeled points for both classes.

Fig. 8. Feature importance ranking on Annthyroid and Cardio. The number is the
dimension index, and the wedge size reflects the feature’s importance.
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With augmented 50% irrelevant features, their AUC scores are reduced by 5%
and 8%, respectively. XGBOD performs superior due to its built-in feature selec-
tion to select the best splitting value, while semi-supervised forest variants show
less but reasonable robustness against irrelevant features. TransForest selects the
local-optimal feature and its splitting value among k = 10 random features to
compute the information gain. We note that increasing k will improve the robust-
ness of TransForest. In contrast, Hybrid iForest randomly selects a feature and
a splitting value. Nonetheless, Hybrid iForest combines the ratio between a test-
ing point to the centroid of labeled anomaly and normal points with iForest’s
anomaly score. By setting α2 = 0.7, the supervised score dominates, and the use
of ratio reduces the impact of irrelevant features.

5.5 Feature Importance Ranking

This subsection evaluates the feature importance ranking provided by TransFor-
est and popular supervised RF and ET on the 2 medical data sets, Annthyroid
and Cardio. Note that this utility is not available in XGBOD and deep learning
approaches. For RF and ET, we use the whole data sets to train.

Figure 8 shows the feature importance ranking provided by RF, ET, unsu-
pervised TransForest, TransForest with 10 anomalies and 100 normal points on
Annthyroid and Cardio. On these 2 data sets, TransForest shows consistent fea-
ture importance rankings to that of RF and ET. On Annthyroid, the feature
rankings provided by ET and TransForest are almost identical though TransFor-
est uses just 2% labeled anomalies. On the higher dimensional Cardio, TransFor-
est with 5% labeled anomalies shares similar top-4 important features with ET
and RF (features 6, 7, 9, 17).

5.6 Running Time

Table 2 shows the total running time of DevNet, DeepSAD, TransForest, Hybrid
iForest and XGBOD on the large 3 data sets using the same settings described
above. Though our Python implementation of TransForest is not well-optimized,
it still runs faster than Hybrid iForest and deep learning, and slightly slower
than XGBOD.

Table 2. Average running time (s).

Dataset Mammography Mnist agnews 0

DevNet 16.93 17.33 27.04

DeepSAD 35.86 28.88 52.18

TransForest 11.59 16.25 28.78

XGBOD 10.22 8.82 29.21

Hybrid iForest 52.1 55.28 81.6
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6 Conclusion

We study the semi-supervised anomaly detection with the limit of label infor-
mation. This setting suits many practical applications due to the high cost of
accessing the ground truth. We propose TransForest, a transductive forest, that
can learn feature selection from little label information. Empirically, TransFor-
est with 1% labeled anomalies provides 5% improvement in AUC score com-
pared with DevNet, and up to 20% compared to other semi-supervised learn-
ing approaches. Given 10 labeled anomalies and 100 normal points, the semi-
supervised TransForest offers a feature importance ranking consistent with pop-
ular supervised models on several low-dimensional data sets.

Ethical Statement. Since we propose a new learning model for anomaly detection,

there are no ethical issues.
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14. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel
subspaces of high dimensional data. In: PAKDD, pp. 831–838 (2009)

https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/978-3-319-47578-3


A Transductive Forest for Anomaly Detection with Few Labels 301

15. Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: COPOD: copula-based outlier
detection. In: ICDM, pp. 1118–1123 (2020)

16. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: ECOD: unsupervised
outlier detection using empirical cumulative distribution functions. In: TKDE, pp.
1–1 (2022)

17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422 (2008)
18. Manevitz, L.M., Yousef, M.: One-class svms for document classification. J. Mach.

Learn. Res. 2, 139–154 (2001)
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Abstract. Emotion-Cause Pair Extraction (ECPE) aims to extract all
emotion clauses and their corresponding cause clauses from a document.
Existing approaches tackle this task through multi-task learning (MTL)
framework in which the two subtasks provide indicative clues for ECPE.
However, the previous MTL framework considers only one round of multi-
task reasoning and ignores the reverse feedbacks from ECPE to the sub-
tasks. Besides, its multi-task reasoning only relies on semantics-level inter-
actions, which cannot capture the explicit dependencies, and both the
encoder sharing and multi-task hidden states concatenations can hardly
capture the causalities. To solve these issues, we first put forward a new
MTL framework based on Co-evolving Reasoning. It (1) models the bidi-
rectional feedbacks between ECPE and its subtasks; (2) allows the three
tasks to evolve together and prompt each other recurrently; (3) integrates
prediction-level interactions to capture explicit dependencies. Then we
propose a novel multi-task relational graph (MRG) to sufficiently exploit
the causal relations. Finally, we propose a Co-evolving Graph Reason-
ing Network (CGR-Net) that implements our MTL framework and con-
ducts Co-evolving Reasoning on MRG. Experimental results show that our
model achieves new state-of-the-art performance, and further analysis con-
firms the advantages of our method.

Keywords: Multi-Task Learning · Relational Graph Reasoning ·
Emotion-Cause Extraction · Natural Language Processing

1 Introduction

Emotion-Cause Pair Extraction (ECPE) is a new while challenging task in the
field of natural language processing/artificial intelligence. It aims to automat-
ically extract all emotion clauses and the corresponding cause clauses from a
raw document, which is of great value for real-world application [26]. Consider
a document “ [In the memory of the students]1, [he often paid the tuition fees
for them]2, [which is respectable and touching ]3.”, the third clause expresses an
emotion, which is triggered by the second clause, so these two clauses form an
emotion-cause pair. Intuitively, detecting the clauses that express causes and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 305–322, 2023.
https://doi.org/10.1007/978-3-031-43412-9_18
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Fig. 1. Comparison of the previous MTL framework and our MTL framework for
ECPE.

emotions, namely cause extraction (CE) and emotion extraction (EE), are two
subtasks of ECPE. Accordingly, recent models [1,10,13,37] implement the multi-
task learning framework shown in Fig. 1(a), introducing CE and EE to provide
indicative clues for ECPE.

Although the previous multi-task learning (MTL) framework has made
promising progress, based on our observation, it still suffers from several issues
which hinder the multi-task reasoning between ECPE and CE/EE. First, previ-
ous works only consider one-way messages from CE/EE to ECPE. The predic-
tions of CE/EE may be incorrect due to their unreliable semantics. In this case,
the false information from CE/EE may mislead ECPE. Second, the single-round
multi-task reasoning process in previous works is not competent, considering that
it is hard for machines to understand emotions, causes, and their causalities like
humans due to the inherent ambiguity and subtlety of emotions and causes [12].
Third, in previous works, the multi-task reasoning between ECPE and CE/EE
is only achieved by implicit semantics-level interactions such as shared encoders.
For one thing, this is inconsistent with human intuition and the causal relations
between ECPE and CE/EE, both of which are based on predictions or labels;
for another, the indicative information conveyed in semantics is implicit and
relatively insufficient compared with prediction information.

On account of the above issues, we propose a new MTL framework based on
Co-evolving Reasoning as shown in Fig. 1(b). Firstly, in addition to the one-way
message from CE/EE to ECPE, our MTL framework also models the reverse
feedbacks from ECPE to CE/EE. If ECPE predicts correctly, the indicative
information transferred to CE/EE can improve them. And the two improved
subtasks can further promote ECPE reversely. If ECPE predicts incorrectly, the
defective information transferred to CE/EE can act as their feedback and make
them rethink to provide better information for ECPE, which thus can further
prompt CE/EE reversely. Secondly, to achieve this virtuous cycle, we design
the recurrent multi-task reasoning mechanism. In this way, the knowledge of
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the three tasks can gradually evolve together and mutually prompt each other.
Thirdly, we propose to exploit the correlations in predictions via introducing
two kinds of prediction-level interactions: prediction-prediction and prediction-
semantics interactions. In this way, explicit correlative information conveyed
by predictions (estimated label distributions) can flow in our MTL framework
then facilitate Co-evolving Reasoning. And the semantics can get straightforward
feedback at each step from the predictions then rethink to improve.

Furthermore, the MTL sequence structures employed in previous works are
simply based on shared encoder and multi-task hidden states concatenations,
which can hardly capture the causal relations. This motivates us to seek a more
effective method to sufficiently exploit the causalities among ECPE and CE/EE.
To this end, we design a novel multi-task relational graph (MRG), in which
there are three groups of nodes derived from the clauses in the document and
corresponding to ECPE, CE, and EE, respectively. Moreover, we design differ-
ent relation types which correspond to the causal relations between ECPE and
CE/EE.

To implement our MTL framework and conduct Co-evolving Reasoning on
MRG, we propose a Co-evolving Graph Reasoning Network (CGR-Net), whose
core is a multi-task relational graph transformation (MRGT) cell. CGR-Net first
generates the task-specific hidden states and produces the initial estimated label
distributions. Then the MRGT cell recurrently takes the hidden states and label
distributions of the three tasks as input and then updates them in three steps:
projection of label distributions, relational local graph transformation, and non-
local self-transformation. Finally, the predictions of ECPE at the final step are
used to extract the potential emotion-cause pairs. And we design a harness loss
based on logical constraints to force the three tasks to gradually promote each
other in the virtuous cycle of Co-evolving Reasoning.

In summary, our contributions are three-fold:

(1) We propose a new MTL framework based on Co-evolving Reasoning and
an MRG to exploit the correlations and causal relations sufficiently. To the
best of our knowledge, our MTL framework is the first one allowing ECPE
and CE/EE to promote each other recurrently, and MRG is the first MTL
graph structure for ECPE.

(2) To implement our MTL framework and conduct Co-evolving Reasoning on
MRG, we propose a novel CGR-Net, whose core is a multi-task relational
graph transformation cell.

(3) Experimental results on the benchmark dataset show that our CGR-Net
significantly outperforms existing state-of-the-art models. And further anal-
ysis proves the effectiveness of different components of CGR-Net and the
superiority of MRG.

2 Related Works

Emotion cause extractions (ECE) [4,9,14–16,18,20,21,36] is a long-standing
task whose objective is to extract the causes of given emotion expressions in the
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document. However, it requires that the emotions must be annotated manually,
which constrains the practical application. Therefore, recently [26] propose the
ECPE task and a two-step solution while the error propagation may occur from
the first step to the second. To this end, recent works propose unified end-to-end
models [2,5,6,10,11,13,23,25] to tackle ECPE in the MTL framework.

[10] propose a model integrating the 2D representation of emotion-cause pair,
the interactions, and predictions. [23] tackle ECPE from a ranking perspective
and adopt kernel-based relative position embedding for ranking. [38] propose
a tagging scheme coding the distance between the emotion clause and cause
clause in an emotion-cause pair. Based on this, [13] propose a tag distribution
refinement method that adjusts the output label distribution of ECPE using the
ones of CE and EE according to a pre-defined rule. However, the refinement
method does not participate in model training, only working on the output of
evaluation.

More recently, Multi-Granularity Semantic Aware Graph model (MGSAG)
[1] incorporates fine-grained and coarse-grained semantic features jointly, aiming
to resolve the distance limitation of clause semantics. And the Matrix Capsule-
based multi-granularity framework (MaCa) [37] introduces the matrix capsule
to obtain more fine-grained features of clause pairs, clustering the relationship
of each clause pair.

Different from previous works, we (1) propose Co-evolving Reasoning, which
allows the three tasks gradually and sufficiently promote each other; (2) intro-
duce prediction-prediction and prediction-semantics interactions to model the
explicit correlations and provide feedback for semantics which can rethink to
improve; (3) effectively exploit the casual relations via designing a novel MRG.

3 Methodology

Before delving into MRG and CGR-Net, we first introduce the task formulation
in our work.

We cast ECPE as a tag classification task and use the cause-centric tagging
scheme [38]. Each clause xi has a two-tuples tag yt

i =(yt,c
i , yt,d

i )∈Ct , where yt,c
i ∈

{C, O} denotes whether xi is a cause clause, and yt,d
i ∈{−γ, ...,−1, 0, 1, ..., γ,⊥}

denotes the distance between xi and its triggered emotion clause, while ‘⊥’
always associates with ‘O’, denoting that xi is a non-cause clause. And γ is a
hyperparameter controlling the max span of emotion-cause pairs. Thus ECPE
(tag) totally has |Ct|=2(γ+1) classes.

As for CE (cause) and EE (emotion), they are both formulated as binary
classification tasks: yc

i ∈Cc={1, 0} and ye
i ∈Ce={1, 0}.

3.1 Constructing a MRG from a Document

In this paper, we design a multi-task relational graph (MRG) G = (V, E ,R)
to exploit the causalities via modeling the self- and mutual-interactions of the
three tasks (cause, tag and emotion). Each clause xi in document D derives
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Table 1. Relation types in MRG, w.l.o.g. γ = 2. It(i) indicates node i is a cause (c)
node, tag (t) node or emotion (e) node. ‘-’ denotes the set of [-2, -1, 0, 1, 2].

rij cc tt ee ct tc te:-2 te:-1 te:0 te:1 te:2 et:-2 et:-1 et:0 et:1 et:2

It(i) c t e c t t t t t t e e e e e
It(j) c t e t c e e e e e t t t t e
rdis(i, j) - - - 0 0 -2 -1 0 1 2 -2 -1 0 1 2

Fig. 2. An example of MRG (γ=2). W.L.O.G, only the edges directed into ci, ti and
ei are illustrated. And self-loops are not shown for simplification.

three nodes ci, ti and ei, respectively for cause, tag and emotion, thus |V|=3n.
The edge (i, j, rij) ∈E denotes the information propagation from node i to node
j, and rij ∈R is the relation type of the edge. Note that node i and node j may
correspond to different tasks. We define three kinds of rules to determine the
connection between two nodes in MRG:

Direction: (j, i, rji)∈ E if (i, j, rij)∈ E . In MRG, the information propagation
between two nodes is bidirectional. This guarantees the bidirectional correlations
between tag and cause/emotion. Local Connection: ∀(i, j, rij), |rdis(i, j)|≤ γ,
where rdis(i, j) denotes the relative distance between the clauses of node i and
node j in D. In general, the probability of two distant clauses having causal
relation is relatively small regarding the cohesion and coherence of discourse [7].
Therefore, the edges in MRG are based on local connections, and in this work,
we constrain that the relative distance of two connected nodes’ clauses in D
ranges from −γ to γ, consistent with the span range of the ECPE tag.

Relation Type for Causality: Table 1 lists the relation types in MRG. And
an example of MRG is shown in Fig. 2. To capture the self-task local contextual
dependencies, we define rij = cc, rij = tt and rij = ee to model the local
self-transformation of cause, tag and emotion, respectively. As for inter-task
interactions, first of all, regarding the scheme of tag task, there are two explicit
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causal relations between cause and tag tasks: (1) if yc
i = 1, then yt,c

i = C, and
vice versa; (2) if yc

i = 0, then yt,c
i = O, and vice versa. To model these causalities

in MRG, we define rij = ct and rij = tc to achieve the mutual transformations
between cause and tag. Besides, there are four kinds of causal relations between
tag and emotion tasks. First, if yt,c

i = C, there is at least one emotion clause
among xi−γ ∼ xi+γ : ye

i−γ = 1 or ye
i−γ+1 = 1 or ... or ye

i+γ−1 = 1 or ye
i+γ = 1.

Second, if there is no emotion clause among xi−γ ∼ xi+γ : ye
i−γ = 0 and ye

i−γ+1 =
0 and ... and ye

i+γ−1 = 0 and ye
i+γ = 0, then yt,c

i = O and yt,d
i =⊥. Third,

if yt,d
i = m, then ye

i+m = 1. Reversely, ye
i+m = 1 cannot deduce yt,d

i = m, but
intuitively if p(ye

i+m = 1) increases, p(yt,d
i = m) should also increase. Forth, if

ye
i+m = 0, then yt,d

i �= m. Reversely, although yt,d
i �= m cannot deduce ye

i+m = 0,
intuitively if p(yt,d

i = m) decreases, p(ye
i+m = 0) should increase. To model these

tag-emotion causal relations in MRG, we define a set of relations represented by
rij = It(i)It(j) : rdis(ij), and some instances are shown in Fig. 2. For example,
rij = et : −2 denotes the relation from node i (an emotion node) to node j (a
tag node) and the relative distance between node i and nodej.

In MRG, each inter-task relation corresponds to a fine-grained relative dis-
tance, consistent with the definition of the tagging scheme. Therefore, the inter-
task graph transformations along these relations can achieve more sufficient and
explicit multi-task reasoning.

3.2 CGR-Net

The overall architecture of our Co-evolving Graph Reasoning Network (CGR-
Net) is shown in Fig. 3 (1). It consists of three components: Hierarchical Encod-
ing, Initial Estimation, and Co-evolving Reasoning. Next, we depict the proce-
dures of these three components.

Hierarchical Encoding.

Word-level Clause Encoding. The objective of clause encoding is to generate a
representation containing the word-level dependencies for each clause. Following
previous works, each clause is fed into BERT [8] encoder, then the last hidden
state of [CLS] token is taken as the clause representation. Now we obtain the
sequence of clause representation for D: H = (h0, ..., hn).

Multi-task Clause-level Document Encoding. In this paper, we utilize BiLSTM
[17] to generate the context-sensitive clause hidden states via modeling the inter-
clause dependencies. To obtain task-specific clause hidden states for the three
tasks, we separately apply three BiLSTMs over H to obtain the initial clause
hidden states for cause, tag and emotion, respectively: H0

c =
(
h0

c,1, ..., h
0
c,n

)
,

H0
t =

(
h0

t,1, ..., h
0
t,n

)
and H0

e =
(
h0

e,1, ..., h
0
e,n

)
.
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Fig. 3. The architectures of CGR-Net and MRGT cell. NLST denotes Non-Local Self-
Transformation.

Initial Estimation. Since MRGT cell takes the three tasks’ label distributions
predicted in previous step as input, H0

c , H0
t and H0

e are separately fed into Cause
Decoder, Tag Decoder and Emotion Decoder to produce the initial estimated
label distributions:

P 0
c = {P 0

c,i}n
i=1, P

0
t = {P 0

t,i}n
i=1, P

0
e = {P 0

e,i}n
i=1

P 0
c,i=softmax(MLPc(h0

c,i))=
[
p0c,i[1], p

0
c,i[2]

]

P 0
t,i=softmax(MLPt(h0

t,i))=
[
p0t,i[1], ..., p

0
c,i[|Ct|]

]

P 0
e,i=softmax(MLPe(h0

e,i))=
[
p0e,i[1], p

0
e,i[2]

]

(1)

Co-evolving Reasoning. Co-evolving Reasoning is achieved by the recurrent
MRGT cell, whose details are shown in Fig. 3 (2). At step l, MRGT cell takes two
streams of inputs: 1) hidden states of the three tasks: H l−1

c ∈ R
n×d, H l−1

t ∈ R
n×d

and H l−1
e ∈ R

n×d; 2) label distributions of the three tasks: P l−1
c , P l−1

t and P l−1
e .

The procedure of an MRGT cell consists of three steps (1) projecting the input
label distributions into vectors; (2) Relational Local Graph Transformation on
MRG; (3) Non-local Self-Transformation.

Projection of Label Distribution. To achieve the prediction-level interactions,
the input label distributions should be projected into vector form, and thus they
can participate in representation learning. Accordingly, we ues P l−1

c , P l−1
t and
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P l−1
e to respectively multiply the corresponding task-specific label embedding

matrices Me
c ∈R

|Cc|×d, Me
t ∈R|Ct|×d and Me

e ∈R|Ce|×d, which are trained with
the whole model. Specifically, xi’s label representations for the three tasks are
obtained as:

el
t,i =

|Ct|∑

k=1

pl−1
t,i [k] · vk

t ; el
c,i =

|Cc|∑

k′=1

pl−1
c,i [k′] · vk′

c ; el
e,i =

|Ce|∑

k′′=1

pl−1
e,i [k′′] · vk′′

e (2)

where vk
t , vk′

c and vk′′
e denotes the label embeddings of tag, cau and emo, respec-

tively.

Relational Local Graph Transformation. Since MRG is based on local connec-
tions, we conduct relational local graph transformation inspired from [22,28–
31,33–35] for multi-task reasoning. To achieve the self- and mutual-interactions
between the semantics and predictions of the three tasks, for each node in MRG,
we superimpose its corresponding clause’s label representations of the three tasks
on its hidden state:

el
i =el

c,i + el
t,i + el

e,i,

ĥl
c,i = hl−1

c,i +el
i; ĥl

t,i =hl−1
t,i +el

i; ĥl
e,i = hl−1

e,i +el
i

(3)

Thus each node representation contains the task-specific semantic features as well
as the explicit correlative information conveyed by label representations, which
are then integrated together into the relational local graph transformation to
achieve semantics-level and prediction-level interactions.

Specifically, the relational local graph transformation updates the nodes on
MRG as follows:

h
l

i = W1ĥ
t
i +

∑

r∈R

∑

j∈N r
i

1
|N r

i |W
r
2 ĥl

j (4)

where W1 is the self-message matrix and W r
2 is the relation-specific matrix. N r

i

denotes the neighbors set of node i along corresponding to the relation r. Now
we obtain the updated hidden states: H

l

c, H
l

t and H
l

e.

Non-Local Self-Transformation Despite the advantages of the relational local
graph transformation, it has two potential issues: (1) due to the local self-
transformation, some beneficial contextual dependencies between a node and
its distant same-task nodes may be lost; (2) the information fusion weaken the
task-specificity of the nodes to some extent, which is against predictions. To this
end, inspired by [27,32], we conduct non-local self-transformation (NLST) over
the sequence of nodes of each task, and this is implemented by a task-specific
BiLSTM which can capture long-range dependencies. The final hidden states of
the three tasks at step l are obtained by:

H l
c = NLSTC(H

l

c); H l
t = NLSTT(H

l

t); H l
e = NLSTE(H

l

e) (5)

Then H l
c, H l

t and H l
e are fed to respective decoders to produce P l

c , P l
t and P l

e.
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Optimization with Logical Constraints. In CGR-Net, there are two vital
logic rules. First, the label distributions estimated in the previous step should
be relatively good to provide effective label representations for the current step.
Otherwise, much incorrect and misleading explicit correlations would be intro-
duced, harming multi-task reasoning. Second, ECPE and CE/EE are supposed
to gradually promote each other via capturing more and more beneficial mutual
knowledge and correlations in Co-evolving Reasoning. In other words, the esti-
mated label distributions should be gradually improved along the steps. To sat-
isfy these two rules, we propose a harness loss Lharn that includes two terms:
estimate loss Lest and margin loss Lmarg, corresponding to the two rules, respec-
tively.

Estimate Loss. Formally, Lest is the cross-entropy loss. For ECPE task, Ltag,l
est

is defined as:

Ltag,l
est =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,ilog

(
pl

t,i[k]
)
, (6)

Margin Loss. Lmarg works on the label distributions output in two adjacent
steps, forcing CGR-Net to produce better predictions at step l than step l − 1.
For ECPE task, Ltag,l

marg is defined as:

Ltag,(l,l−1)
marg =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,i max(0, pl−1

t,i [k] − pl
s,i[k]) (7)

Harness loss Lharn is the weighted sum of Lest and Lmarg. For ECPE task,
Ltag

harn is defined as:

Ltag
harn =

L−1∑

l=0

Ltag,l
est + β ∗

L∑

l=1

Ltag,(l,l−1)
marg (8)

where β is a hyper-parameter balancing the impact of the two kinds of punish-
ments.

Final Training Objective The total loss for ECPE task (Ltag) is the sum of Ltag
harn

and Ltag
pred:

Ltag = Ltag
pred + Ltag

harn (9)

where Ltag
pred is the cross-entropy loss of the produced tag label distributions at

the final step L:

Ltag
pred =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,i log

(
pL

t,i[k]
)

(10)

The total losses of CE (Lcau) and EE (Lemo) can be derivated like Eqs. (6)
to (10).
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The final training objective of CGR-Net is the weighted sum of the total
losses of the three tasks:

L = α ∗ Ltag +
1 − α

2
Lcau +

1 − α

2
Lemo (11)

where α is a hyperparameter balancing the three tasks and it is intuitively set
as 0.5 in this work.

4 Experiments

4.1 Datasets and Evaluation Metrics

The only benchmark dataset for ECPE task is released by [26] who construct it
on an emotion-cause extraction corpus [16]. The dataset totally consists of 1,945
documents, among which 1,746 ones have one emotion-cause pair, 177 ones have
two emotion-cause pairs, and 22 ones have more than two emotion-cause pairs.
The average number of clauses per document is 14.77, and the max number is
73.

Following previous works, we adopt the 10-fold cross-validation for evalua-
tions. And the averages of precision (P), recall (R), and F1-score over ten runs
are adopted as metrics. Besides ECPE, we also report the results of EE and
CE, which are evaluated based on the emotion clauses and cause clauses in the
extracted emotion-cause pairs.

4.2 Implement Details

We adopt the BERTChinese implemented in PyTorch [24] as the clause encoder.
And the three decoders are implemented as three 2-layer MLPs whose hidden
size is set as 256. The AdamW optimizer [19] is used for model training, and the
learning rate is 1e−5 for BERT and 1e−4 for other modules. The dimension d
is 512, the max span γ is 3 and the margin loss coefficient β is 1e−3. The step
number of Co-evolving Reasoning is 3. The dropout rate is 0.1, and the batch
size is 4. The epoch number is 10, and the early stopping strategy is adopted.
All experiments are conducted on a DGX A100 server.

4.3 Compared Baselines

We compare our CGR-Net with the following two groups of baselines.

Group 1: M1: ECPE-2D (BERT) [10]; M2 :Hier-BiLSTM-BERT; M3:
PairGCN-BERT [3]; M4: TransECPE [12]; M5: RankCP+BERT [23]; M6:
UTOS+BERT [5]; M7: ECPE-MLL(BERT) [11]; M8: MGSAG(BERT) [1]; M9:
MaCa(BERT) [37];

Group 2: M8: SLNT + BERT [38]; M9: MTST + Refinement [13].
Our CGR-Net uses the same ECPE tagging scheme with the second group

of baselines.
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Table 2. Results comparison on ECPE task and the two subtasks. All scores are
averages over 10 runs. All models adopt BERT for clause encoding. � denotes the
results are reproduced by us. † and ‡ denote the results are retrieved from [13] and
[5], respectively. ∗ denotes our CGR-Net significantly overpasses M10 and M11 with
p < 0.05 under t-test.

Models Emotion-Cause Pair Ext. Emotion Ext. Cause Ext.
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

M1: ECPE-2D(BERT) 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
M2: Hier-BiLSTM-BERT 75.37 64.34 69.26 88.80 74.70 81.00 78.03 65.35 70.96
M3: PairGCN-BERT 76.92 67.91 72.02 88.57 79.58 83.75 79.07 69.28 73.75
M4: TransECPE† 77.08 65.32 70.72 88.79 83.15 85.88 78.74 66.89 72.33
M5: RankCP+BERT‡ 68.21 74.83 71.21 86.79 89.26 87.97 72.62 76.46 74.37
M6: UTOS+BERT 73.89 70.62 72.03 88.15 83.21 85.56 76.71 73.20 74.71
M7: ECPE-MLL(BERT) 77.00 72.35 74.52 86.08 91.91 88.86 73.82 79.12 76.30
M8: MGSAG(BERT) 77.43 73.21 75.21 92.08 92.11 87.17 79.79 74.68 77.12
M9: MaCa(BERT) 80.47 72.15 73.87 88.19 89.55 87.04 78.41 72.60 74.35
M10: SLNT+BERT� 73.56 68.57 70.85 84.77 80.61 82.51 75.94 70.99 73.25
M11: MTST+Refinement� 77.14 67.81 72.11 88.25 79.01 83.31 79.18 69.79 74.12
CGR-Net (ours) 77.62 75.49∗ 76.48∗ 89.65 86.23∗ 87.75∗ 79.68 77.84∗ 78.75∗

4.4 Main Results

The overall results on ECPE and the two subtasks are shown in Table 2. We
can observe that CE is much harder than EE, and CE determines the result of
ECPE to a large extent. The reason is that CE plays a key role in identifying the
causalities, which is difficult for machines. Our CGR-Net significantly outper-
forms the previous best-performing model M8 by 1.7%, 0.7%, and 2.1% in terms
of F1 on ECPE, EE and CE, respectively. Using the same tagging scheme, our
CGR-Net overpasses M10 and M11 by 6.1%, 5.3%, and 6.2% in F1 on the three
tasks. In particular, we can find that the superior F1 of CGR-Net comes from
the high recall and competitive precision. In contrast, previous models generally
obtain low recalls because their single-round multi-task reasoning process and
the one-way message only from CE/EE to ECPE are not competent enough to
discover the emotion cause pairs sufficiently. Moreover, their implicit semantics
interactions cannot effectively exploit the causal relations. We can find that our
CGR-Net overpasses M10 and M11 by 10.1%, 7.0%, and 9.6% in terms of recall on
the three tasks. This demonstrates that through Co-evolving Reasoning, CGR-
Net can discover much more ground-truth emotion-cause pairs than baselines,
while there are not many wrong-extracted pairs at the same time. CGR-Net’s
satisfying results come from the advantages of MRG, the well-designed supervi-
sion signals, and the advanced architecture of MRGT.

4.5 Variants of MRG Structure

In this section, we investigate how the structure of MRG would affect our CGR-
Net’s performance by applying different structures to MRG. Except for the orig-
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Table 3. Results on different variants of MRG.

Variants ECPE EE CE
F1 (%) F1 (%) F1 (%)

MRG(γ = 3) 76.48 87.75 78.75
MRG(γ = 1) 75.15 (↓ 1.33) 86.31 (↓ 1.44) 77.32 (↓ 1.43)
MRG(γ = 2) 75.49 (↓ 0.99) 87.55 (↓ 0.20) 77.79 (↓ 0.96)
MRG(γ = 4) 74.87 (↓ 1.61) 86.78 (↓ 0.97) 77.21 (↓ 1.54)
OWM 74.71 (↓ 1.77 86.30 (↓ 1.45) 77.22(↓ 1.53))
NoRel 74.63 (↓ 1.85) 85.33 (↓ 2.42) 77.10 (↓ 1.65)
FCG 73.65 (↓ 2.83) 84.89 (↓ 2.86) 76.56 (↓ 2.19)

inal MRG(γ = 3), we design four variants: (1) MRG(γ = 1), MRG(γ = 2) and
MRG(γ = 4), which have different span limitation; (2) OWM (one-way message),
in which the edges from tag nodes to emotion nodes and cause nodes are deleted,
thus there is only one-way message from EE/CE to ECPE, like previous works;
(3) NoRel, in which there is no relation on edges; (4) FCG (fully-connected
graph), in which all tag nodes are fully connected with all emotion nodes and
all cause nodes, while there is no relation. The results over these variants are
listed in Table 3.

Several instructive observations can be made from the results. Firstly, with
γ varying from 1 to 4, the results first increase and then decrease. The reason
is that too small γ cannot capture all emotion-pairs, while too large γ makes it
much harder to predict correctly because |Ct| is directly proportional to γ. More
than 95% emotion-cause pairs’ spans in the dataset do not exceed 3, so intuitively
γ = 3 performs best, and the results prove this. And this is consistent with the
report of [13]. Secondly, compared with the original MRG, OWM’s performances
on all tasks drop significantly. This proves that the reverse feedbacks from ECPE
to EE/CE is crucial, while previous works ignore them. In this paper, we pro-
pose a new MTL framework based on the novel Co-evolving Reasoning mechanism
to solve this issue. Thirdly, without relations, NoRel performs much worse than
the original MRG. The distinct decrease of results proves that our designed rela-
tions are indispensable for capturing the casualties between ECPE and EE/CE
and significantly improve the performances. Finally, FCG performs even worse
than NoRel. This is because causalities often exist between close clauses. In FCG,
useless information from distant nodes is integrated into the current node, making
the crucial information diluted and discarded, resulting in poor results. And this
proves the validity of the local connection rule in MRG.

4.6 Investigation of Supervision Signals

To investigate the necessities of different supervision signals, we remove different
loss terms, and the results are listed in Table 4. Firstly, we can observe that
removing Lemo or Lcau both lead to obvious result decreases on all tasks. This
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Table 4. Results of removing different loss terms.

Variants EE CE ECPE
F1 (%) F1 (%) F1 (%)

CGR-Net 76.48 87.75 78.75
−Lemo 74.51 (↓ 1.97) 86.21 (↓ 1.54) 77.03 (↓ 1.72)
−Lcau 74.28 (↓ 2.20) 86.25(↓ 1.50) 76.94 (↓ 1.81)
−Lemo − Lcau 73.76 (↓ 2.72) 85.05 (↓ 2.70) 76.13 (↓ 2.62)
−Lest 75.43 (↓ 1.05) 87.54 (↓ 0.21) 77.97(↓ 0.78)
−Lmarg 74.22 (↓ 2.26) 86.51(↓ 1.24) 76.64 (↓ 2.11)
−Lharn 74.89 (↓ 1.59) 85.61 (↓ 2.14) 77.60 (↓ 1.15)

Fig. 4. Ablation results of MRGT cell.

is because our model exploits the beneficial mutual correlations between ECPE
and the two subtasks. So removing the supervision signal of a subtask harms not
only the performance of itself but also the performances of ECPE and another
subtask. If both subtasks do not have supervision signals, the performances of
all tasks drop dramatically. Then we can find that the performances decrease
remarkably if Lharn or any of its two terms is removed. This is because without
Lharn CGR-Net is hard to achieve the virtuous cycle of Co-evolving Reasoning.

4.7 Ablation Study of MRGT Cell

We conduct ablation experiments to study the efficacies of the components in
MRGT cell, and the results are listed in Fig. 4. When removing prediction-level
interactions (PredInt), the performances drop significantly. This proves that only
relying on semantics-level interactions is insufficient for multi-task reasoning. An
essential advantage of our model is achieving prediction-level interactions that
convey explicit correlations and provide feedback for semantics that can then
rethink to improve. Without RLGT, Co-evolving Reasoning cannot be achieved,
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Fig. 5. CGR-Net’s performances on different L.

causing the worst results. Removing NLST also leads to sharp decreases in
results. This is because without NLST the hidden states cannot obtain long-
range crucial contextual information, and the three streams of hidden states
output at each step are not task-specific enough, which both harm the predic-
tions.

4.8 Step Number of Co-evolving Reasoning

We plot the performance (F1) trends of CGR-Net on the three tasks over differ-
ent Co-evolving Reasoning step numbers, as presented in Fig. 5. The best overall
performances are achieved when L = 3, which justifies the step number setting
in Sec. 4.2. Generally, the performances of ECPE and the two subtasks steadily
increase until L = 3, while then having dropping trends or fluctuate in a rela-
tively narrow range when L continues increasing. This indicates that ECPE and
CE/EE can gradually promote each other in the process of Co-evolving Reason-
ing, whose advantage is validated. However, after the performance reaches its
peak, more steps lead to decreasing. We speculate the possible reason is that
too many Co-evolving Reasoning steps may cause redundant information and
over-fitting.

5 Conclusion and Prospect

In this paper, we improve ECPE on three aspects. First, we propose a new MTL
based on Co-evolving Reasoning, allowing ECPE and its two subtasks to pro-
mote each other gradually. Besides, prediction-level interactions are integrated
to model the explicit correlations. Second, we design a novel multi-task relational
graph (MRG) to sufficiently exploit the causal relations. Finally, we propose a
Co-evolving Graph Reasoning Network (CGR-Net) to implement our framework
and conduct Co-evolving Reasoning on MRG. Experiment results demonstrate
the superiority of our method, and detailed analyses further validate the advan-
tages.
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This work contributes a new paradigm not only for ECPE but also for a group
of scenarios in which different tasks share the same input sequence. Future works
include improving our method on ECPE and applying our paradigm to other
MTL tasks.
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Abstract. Generating molecules with a given scaffold is a challenging
task in drug-discovery. Scaffolds impose strict constraints on the gen-
eration of molecules. Moreover, the order of the simplified molecular-
input line-entry system (SMILES) strings changes substantially during
sequence expansion. This study presents a scaffold-constrained, property-
optimized transformer GAN (SpotGAN) to solve these issues. SpotGAN
employs a decoration generator that fills decorations into a given scaffold
using a transformer-decoder variant. The discriminator is a transformer-
encoder variant with a global receptive field that improves the real-
ism of the generated molecules. The chemical properties are optimized
through reinforcement learning (RL), affording molecules with high prop-
erty scores. Additionally, an extension of SpotGAN, called SpotWGAN,
is proposed to optimize and stabilize the training process leveraging
the Wasserstein distance and mini-batch discrimination. Experimental
results show the usefulness of the proposed model on scaffold-constrained
molecular-generation tasks in terms of the drug-likeness, solubility, syn-
thesizability, and bioactivity of the generated molecules(1 Our code is
available at: https://github.com/naruto7283/SpotGAN).

Keywords: Deep learning · Molecular generation ·
Scaffold-constrained

1 Introduction

In drug discovery, the postulated number of potential drug-like molecules is
up to 1060; however, only approximately 108 molecules have been synthesized
[20]. Discovering molecules with the desired properties in such a vast and infinite
chemical space is unrealistic. Deep generative models such as variational autoen-
coders (VAEs) [21] and generative adversarial networks (GANs) [13] inspired by
text and image generation in natural language processing (NLP) [9] and image
recognition [18] are promising directions for molecular generation. In de novo
molecular generation [15], molecules in deep generative models are represented
by graphs or the simplified molecular-input line-entry system (SMILES) [37].
Molecules in the SMILES notation are represented as strings and computed using
deep learning models for NLP [23]. However, generating drug-like molecules with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the desired chemical properties from SMILES strings is difficult in the framework
of GANs. Within the limited discrete space of SMILES strings, the discrimina-
tor cannot effectively guide the training of the generator nor evaluate incom-
plete SMILES strings during the generation process [38]. Although reinforce-
ment learning (RL) can alleviate the above problems and optimize the chemical
properties of the generated molecules, discrete GANs are prone to severe mode
collapse. Additionally, SMILES-based molecular representations are overly sen-
sitive to syntax, leading to unsatisfactory generated molecules [14].

Furthermore, in processes such as lead optimization [6], molecular design
often starts not from scratch but from a partially constructed molecule with
explicit attachment points, called a scaffold [40]. The scaffold is a molecular core
that preserves the underlying characteristic throughout the lead-optimization
process. Only functional groups called decorations [17] can be designed, opti-
mized, and ultimately combined with attachment points on the scaffold, form-
ing a new molecule. Unfortunately, few studies on deep generative models for
scaffold-constrained molecular generation have been conducted. It is impera-
tive to consider scaffolds in molecular-generation tasks because several struc-
tural restrictions should be imposed on generated molecular structures [2,25].
For example, the GAN must remember the rules learned during training and
the strict constraints imposed by the scaffold on the molecules. Moreover, the
optimization of chemical properties is limited by the well-defined chemical com-
position of the given scaffold. Although SMILES representations of molecules
are simple and faster than graph training, they change substantially during the
sequential extension of decorations.

A transformer [36] is a suitable candidate for generating molecules from
SMILES strings based on scaffolds. The self-attention mechanism has a global
receptive field in which each atom in the SMILES string is accessible to all
other atoms. However, the positional encoding poses two problems in scaffold-
constrained molecular generation. First, it does not preserve the attachment-
point location on the scaffold. This location is critical for the decoration because
the chemical properties and structures of the decorations vary widely at differ-
ent attachment points. Secondly, a decoration can contain an arbitrary num-
ber of atoms, whereas the transformer cannot encode strings of unknown length.
This study proposes a scaffold-constrained property-optimized transformer GAN
(SpotGAN) for addressing the above issues. In contrast to traditional transform-
ers, the SpotGAN first uses the transformer decoder as the generator and subse-
quently applies the encoder as the discriminator. The decoration generator lever-
ages a transformer-decoder variant to fill decorations into the given scaffold. The
discriminator is a transformer-encoder variant with a global receptive field that
guides the generator to produce drug-like molecules. RL is leveraged to generate
molecules with high property scores in chemical-property optimization. In addi-
tion, an extension of SpotGAN, called SpotWGAN, is proposed to optimize and
stabilize the training process using the Wasserstein distance [1] and mini-batch
discrimination [33]. The main contributions are summarized as follows:

– Novel transformer design: The first discrete GAN for generating molecules
on constrained scaffolds is proposed. In the reverse order of transformer-
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encoder-decoder, a transformer decoder and an encoder as the generator and
discriminator of the GAN, are leveraged, respectively.

– New training recipe: GAN training is stabilized by techniques such as
diversified SMILES data augmentation, Wasserstein distance, and mini-batch
discrimination.

– Superior performance: Comparisons with state-of-the-art models, ablation
studies, and case studies with five scaffolds for a therapeutic target demon-
strate the effectiveness of the proposed models in practice.

2 Related Work

2.1 Structure-Unconstrained Molecular Generation

Structure-unconstrained models aim to generate molecules from scratch and rep-
resent the generated entities as graphs or SMILES strings. JTVAE [19] is a
graph-based VAE that generates molecules using a tree-structured object repre-
senting the subgraphs and their rough relative arrangements. JTVAE constructs
a molecular graph in two steps. First, the VAE encoder extracts the features of
a molecular graph and junction tree into its latent embeddings. Secondly, the
decoder reconstructs the junction tree and reassembles the atoms in the tree into
molecules. GraphAF [34] is a flow-based molecular graph generation autoregres-
sive model that generates atoms and bonds from existing molecular subgraphs.
GraphAF examines the molecular graphs using chemical-domain knowledge at
each generation step. MolGAN [5] uses RL to generate novel molecules from
molecular graphs. However, it has a serious mode collapse problem whereby its
uniqueness is less than 5%. MoFlow [39] generates atoms of given bonds through
a graph conditional flow and finally assembles them into a valid molecular graph.
GraphCNF [26] is a normalizing flow for graph generation, which is invariant to
the order of atoms by generating all atoms and bonds at once.

The representation of molecules as strings in the SMILES notation is more
concise than representing them on graphs. However, the generated molecules are
fragile. Slight changes in the SMILES strings may lead to different or invalid
molecules. CharVAE and GramVAE [23] are parse tree-based grammar VAEs
that produce valid molecules from SMILES strings. Parse tree-based grammars
can directly incorporate knowledge of the molecular structure from SMILES
strings, whereas VAEs can encode and decode the trees. CharVAE is a character-
based VAE that generates any possible atom for every token in the generated
string, whereas GramVAE selects only the syntactically valid strings. Although
CharVAE and GramVAE produce syntactically valid molecules, they ignore the
semantic plausibility. ORGAN [14] is a SMILES-based GAN, where the gener-
ator is a recurrent neural network (RNN) that learns the features of SMILES
strings and produces new molecules to deceive the discriminator. The discrim-
inator is a convolutional neural network that distinguishes between the fake
and real molecules. RL is used to improve the chemical properties of the gener-
ated molecules. RNNAttn and TransVAE [8] are an attention-based RNN and a
transformer-based VAE that learn the semantics and syntax of SMILES strings.
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2.2 Structure-Constrained Molecular Generation

Structure-constrained models generate molecules starting from a given molecu-
lar substructure. MoLeR [27] supports scaffolds as initial seeds of the genera-
tive procedure and generates molecules by adding entire molecule fragments in
one step or generating atoms and bonds one by one. SCRNN [25] is a scaffold-
constrained molecular generative model that uses a RNN to generate decora-
tions. The scaffold-constraint algorithms of SCRNN are manually designed to
constrain the decoration sampling of the RNN, which limits the model’s capac-
ity to learn complex SMILES strings. DecRNN [2] is a SMILES-based scaffold
decorator that exploits a RNN to learn SMILES syntax and then generate dec-
orations on specific scaffolds. However, using the RNN to learn SMILES syntax
is quite limited. The generation is cost-intensive, and the validity of the gener-
ated molecules cannot be guaranteed since the RNN is sensitive to the SMILES
strings of input scaffolds.

To satisfy the increasing demand, variants of the transformer have been
employed recently [7,11]. Excluding the recurrent structure of RNN, transform-
ers only use the self-attention that can be calculated in parallel, making them
more suitable for a large chemical space. Additionally, self-attention has a global
receptive field that captures the deep semantics and syntax of SMILES strings.
This study aims to design a SpotGAN to produce molecules and optimize their
chemical properties.

3 Models

3.1 Data Augmentation

To address the problem of the substantial changes in the SMILES representations
of molecules generated during the sequential extension of decorations, a data-
augmentation technique called diversified SMILES is proposed, which sufficiently
learns the syntax and semantics from SMILES strings. Assuming that a molecule
can obtain a scaffold and decoration by splitting its acyclic bond at an arbitrary
position, then a molecule can be represented through different pairs of scaffolds
and decorations. The order variation in the SMILES strings is mitigated by
adequately learning the diversified SMILES. An example of diversified SMILES
production is provided in Appendix A.1 2

3.2 SpotGAN

In a similar manner as an NLP task [41], the generator produces decorations
from a scaffold. Formally, let X1:n = [x1, x2, · · · , xn] and Y1:m = [y1, y2, · · · , ym]
denote the SMILES strings of the scaffold and the decoration of lengths n and m,
respectively, where xi (i ∈ N≤n = {1, · · · , n}) and yj (j ∈ N≤m = {1, · · · ,m})
represent the i-th and j-th atoms, respectively. The symbol, ∗, denotes an
2 Appendices are available at https://yamanishi.cs.i.nagoya-u.ac.jp/spotgan/.

https://yamanishi.cs.i.nagoya-u.ac.jp/spotgan/
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Fig. 1. Overview of SpotGAN. SpotGAN consists of four parts: the data preproces-
sor, generator (Gθ), discriminator (Dφ), and reward network (RGθ ). During the data
preprocessing, molecules are split into scaffolds and decorations, and assigned with seg-
ment (seg.) and offset IDs (①). The decoration generator is a variant of the transformer
decoder. The scaffolds and decorations are input into the multi-head attention (②) and
masked multi-head attention (③), respectively. The decorations are generated by the
Monte Carlo (MC) search on the given scaffold (④). The generated strings and training
SMILES strings are shuffled (⑤) and input into the discriminator (⑥). The discrimi-
nator is a transformer-encoder-based classifier that distinguishes the generated strings
from the real SMILES strings (⑦). The chemical property scores and penalty scores
of valid molecules are calculated by the RDKit tool and the count of occurrences in
the training set, respectively (⑧). Finally, the outputs of the discriminator and reward
network jointly guide the generator training (⑨).

attachment point for the decoration in the scaffold. For example, in X1:n =
[x1, · · · , xi−1, ∗, xi, · · · , xn], the decoration is attached to the scaffold at the i-
th position. The SMILES string expressed as Z1:n+m = [X1:i−1,Y1:m,Xi:n]
replaces the attachment point in the scaffold with a decoration.

Transformer Decoder as the Generator. As different SMILES strings have dif-
ferent decorated positions and different numbers of decorated atoms, addi-
tional positional information must be injected into the SMILES strings. Let
S denote the seg. IDs of a SMILES string, which are assigned according to
the attachment points starting from 0. The seg. IDs distinguish the scaffold
and decoration of a SMILES string. For example, depending on the attach-
ment point, the SMILES string, Z1:n+m, can be divided into three segments:
SX1:i−1 = [0, · · · , 0], SY1:m = [1, · · · , 1], and SXi:n = [2, · · · , 2]. The offset IDs
locate the different atoms in each segment. They are denoted as O and assigned
from 0. In the string, Z1:n+m, the three offset IDs are OX1:i−1 = [0, 1, · · · , i−2],
OY1:m = [0, 1, · · · ,m − 1], and OXi:n = [0, 1, · · · , n − i]. Next, the positions are
calculated by a linear function, such as pos = a ∗ S + O, a ∈ N≤|Omax|, where
|Omax| indicates the length of the longest decoration. Finally, the positions are
input as a sinusoidal positional encoding function, summed with the embedding,
and passed to the transformer decoder (see Appendix A.2 for details).

Transformer Encoder as the Discriminator. The local and global attention fields
of the self-attention mechanism allow every atom in the SMILES string to access
all other atoms. Here, the transformer encoder acts as a classifier, evaluating the
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molecules produced by the generator and making them more drug-like. Unlike
the generator, which inputs the SMILES representations of the scaffolds and
decorations into the transformer decoder, the discriminator inputs the complete
strings without masking the multi-head self-attention. Therefore, it requires no
assignment of the seg. IDs and offset IDs for position calculations. In Z1:n+m,
the positions are computed as pos = [0, 1, · · · , n + m − 1].

Policy Gradient for Property Optimization. As the scaffold-constrained molecu-
lar generation immobilizes parts of the SMILES strings, the generated decoration
must fit the scaffold while also ensuring the desired chemical properties of the
combined SMILES strings. RL, particularly the policy gradient [35], can not
only update the policy (Gθ) but can also impart the training with the chemical
properties as rewards. The objective function of the generator maximizes the
expected reward score as

J(θ) =
∑

yj∈Y1:m

Gθ(yj |X1:n,Y1:j−1)RGθ (Y1:j−1, yj), (1)

where Gθ and RGθ denote the generator policy model parameterized by θ and
the action-value function of the average reward of the chemical properties of
state Y1:j−1 taking action yj , following policy Gθ, respectively. For a complete
decoration Y1:m, RGθ is calculated as

RGθ (Y1:m−1,ym) = λDφ(Z1:n+m) + (1− λ) [R(Z1:n+m)P (Z1:n+m)− b(Z1:n+m)] ,

(2)
where λ ∈ [0, 1] represents the trade-off between RL and GAN. R is the property
score, which can be calculated using RDKit [24]. P is the penalty for producing
duplicate SMILES strings, calculated as

P (Z1:n+m) =
# unique SMILES

(# SMILES × # repeated Z1:n+m)
. (3)

Parameter b is the baseline below which molecules with low chemical-property
scores are penalized. For simplicity, we apply the average property scores for R.

MC search for incomplete decorations. For incomplete decorations Y1:j and j <
m, the rewards are computed at intermediate time steps by K MC searches:

Zk
1:n+m = [X1:i−1,Y

k
1:m,Xi:n], Y k

1:m ∈ MCGθ (Y1:j ,K), and k ∈ [1,K], (4)

where Y k
1:m = [Y k

1:j ,Y
k

j+1:m] represents the complete decoration of the k-th MC
search. Y k

1:j = Y1:j , and Y k
j+1:M is sampled under policy Gθ. RGθ is calculated

as

R
Gθ (Y1:j−1, yj) =

1

K

K∑

k=1

λDφ(Z
k
1:n+m) + (1 − λ)

[
R(Z

k
1:n+m)P (Z

k
1:n+m) − b(Z

k
1:n+m)

]
. (5)

Then, the gradient of the objective function is derived as

∇J(θ) � 1
m

m∑

j=1

∑

yj

RGθ (Y1:j−1, yj)∇ logGθ(yj |X1:n,Y1:j−1). (6)

Finally, the policy is updated by training the generator Gθ using θ ← θ+∇J(θ).
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3.3 SpotWGAN

Although RL enables GANs to generate molecules from discrete SMILES strings,
there remain the problems of unstable convergence and mode collapse. In addi-
tion, the diversity of the generated molecules decreases with training because
the discriminator distinguishes each SMILES string independently without cor-
relation between the gradients. Molecules that are discriminated to be true and
structurally similar tend to get higher rewards, leading to a lack of diversity in
the generated molecules.

Mini-Batch Discrimination for Stable Training. The above-mentioned problems
are best avoided by mini-batch discrimination. To reduce the impact of the
hyperparameters, nonparametric mini-batch discrimination is employed in the
discriminator. Let H ∈ R

B×dmodel be the output before the last fully connected
layer of the discriminator, where B denotes the mini-batch size. We compute the
standard deviation of H on the dmodel dimension of the SMILES strings of the
mini-batch size. The average deviation is concatenated to H and fed into the
fully connected layer. For simplicity, the mini-batch size is set to the batch size.

Wasserstein GAN (WGAN) for Mode-Collapse Mitigation. An extension of
SpotGAN, called SpotWGAN, is also proposed to stabilize the training and
mitigate the mode collapse caused by the discrete space of SMILES. The dis-
criminator leverages the Wasserstein distance between the generated strings and
SMILES strings. The objective function is based on the Kantorovich-Rubinstein
duality, as follows:

W (Dr,Dz) = sup
||Dφ||L≤1

EZ∼Dr(Z ) [Dφ(Z)] − EZ∼Dz
[Dφ(Gθ(Z))] , (7)

where Dr and Dz denote the distributions of the real and generated SMILES
strings, respectively. The parameters, sup and Dφ, denote the lowest upper
bound and the 1-Lipschitz function satisfying this constraint, respectively.

Algorithm 1 in the section of Appendix A.3 shows an overview of the proposed
models. First, the generator Gθ is pre-trained by maximum likelihood estimation
on the real SMILES dataset Dr. Next, the generator produces dataset Dz with
the same number of SMILES strings as Dr to balance the two datasets. The
two datasets are shuffled before pre-training the discriminator Dφ. Finally, the
generator and the discriminator are alternately trained in adversarial training
and parameters θ are updated with an MC search using the policy gradient.

4 Experiments

4.1 Experimental Setup

Datasets. All experiments were conducted on the QM9 [31] and ZINC [16]
datasets. Each dataset contained 10,000 SMILES strings and was split into scaf-
fold and decoration pairs during data-preprocessing stage. As the ZINC dataset
contains more complex SMILES strings than the QM9 dataset, the average
length of the decorations was around four times longer in ZINC than in QM9.
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Table 1. Some average statistics for the QM9 and ZINC datasets.

Dataset LEN SLEN DLEN MW QED logP SA

QM9 15 12 5 124 0.47 0.30 0.33
ZINC 38 21 19 321 0.79 0.63 0.76

� LEN, SLEN, and DLEN indicate the average lengths of the
SMILES strings, scaffolds, and decorations of the molecules.
MW indicates the average molecular weights.

Implementation Details. The generator contained four decoder layers, each with
four attention heads. The attention heads were 128-dimensional for the QM9
dataset and 256-dimensional for the ZINC dataset. The feedforward layer was
100-dimensional for both datasets. On both datasets, the generator was pre-
trained for 100 and 200 epochs at learning rates of 1e−5 and 1e−4, respectively.
In the sampling process, 10,000 molecules were generated per epoch, and the
maximum lengths of the generated molecules were 20 and 50, respectively. The
batch size and dropout probability were 64 and 0.1, respectively. The discrim-
inator consists of four encoder layers, each with four attention heads and 128-
dimensional. The size of the feedforward layer was 200. The learning rates of the
SpotGAN and SpotWGAN were 1e−4 and 1e−5, respectively. The discriminator
was pre-trained over 10 epochs. In the adversarial training, the learning rate of
the generator was 2e−5, and λ and K were set to 0.5 and 8, respectively (unless
specified otherwise). Up to 100 and 50 training epochs were run on both datasets,
respectively. All the experiments were implemented on an NVIDIA GV100GL
GPU.

4.2 Metrics

Evaluation Measures. Validity is the proportion of chemically valid molecules
among all generated molecules. In practice, the validity of the molecules was
examined using the RDKit tool. Uniqueness (abbr. unique) is the proportion of
nonduplicated molecules among all valid molecules. Novelty is the proportion of
all unique molecules absent from the training set. Total is the total performance
measure defined as the product of validity, uniqueness, and novelty. Diversity
is the average Tanimoto distance [32] between the Morgan fingerprints [28] of
novel molecules (see Appendix B.1 for details).

Optimized Properties. Drug-likeness indicates the likeness of a molecule to be a
drug and is scored by the quantitative estimate of drug-likeness (QED) [3]. Sol-
ubility refers to the lipophilicity of a molecule and is quantified by the octanol-
water partition coefficient (logP) [4]. Synthesizability indicates the ease of syn-
thesizing a molecule and is called the synthetic accessibility (SA) score [10]. For
consistency in rewards, the difference between "synthesizability knowledge" and
synthesizability was used as the SA score. Note that the larger the SA score, the
easier the synthesis of the molecule. BIO measures the bioactivity of a molecule
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Table 2. Comparison with baselines using the ZINC dataset.

Method Validity (%) Unique (%) Novelty (%) Total (%)

ORGAN 67.96 98.20 98.39 65.66
RNNAttn 71.57 99.94 100.0 71.53
TransVAE 25.39 99.96 100.0 25.38
JTVAE 100.0 19.75 99.75 19.70
CharVAE 86.65 81.21 26.36 18.55
GramVAE 91.91 77.24 11.90 8.45
MolGAN 95.3 4.3 100.0 4.1
GraphCNF 63.56 100.0 100.0 63.56
MoFlow 27.12 99.97 100.0 27.11
GraphAF 100.0 83.19 100.0 83.19
Naïve RL 89.15 88.45 91.87 72.44
SCRNN 88.71 86.56 86.56 66.47
SCRNN-RL 79.27 93.71 94.69 70.34
MoLeR 94.53 88.22 88.22 73.57
Decorator 93.58 97.04 92.42 83.93
SpotGAN 93.26 92.78 92.75 80.25
SpotWGAN 96.21 93.63 92.37 83.21
� The values in gray cells are the maximum values.

against a therapeutic target. For example, the dopamine receptor D2 (DRD2)
[29] was used as a therapeutic target in this study. The calculations of these
chemical properties are detailed in Appendix B.2. All of the above measures and
properties range from 0 (the worst score) to 1 (the best score). We also calcu-
lated the execution times of all models in the GPU environment. Table 1 lists
some average statistics for the QM9 and ZINC training datasets.

4.3 Evaluation of Molecular Generation

The performances of different models in both structure-unconstrained (upper
panel of Table 2) and structure-constrained approaches (lower panel of Table 2)
using the ZINC dataset were evaluated. Note that “Decorator” indicates the
generator of SpotGAN. The validity, uniqueness, novelty, and total scores were
assessed. Although ORGAN, RNNAttn, and TransVAE generated highly unique
and novel molecules, the validity of these models was lower than those for the
SpotGAN and SpotWGAN. The molecules generated by JTVAE scored nearly
100% on validity and novelty; however, the uniqueness score was the lowest
among the models. CharVAE and GramVAE performed well on validity and
uniqueness; however, their novelty scores were lower than those of our proposed
models. MolGAN had severe mode collapse, with uniqueness being the lowest in
the baselines at 4.3%. GraphCNF and MoFlow had lower validity, uniqueness,
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Table 3. Evaluation results with the drug-likeness as the optimized property.

Dataset Method QED Validity (%) Unique (%) Novelty (%) Diversity Time (h)

QM9

Decorator 0.47 97.13 93.72 64.61 0.92 0.32
SpotGAN 0.53 93.25 94.23 91.29 0.92 3.07
SpotWGAN 0.53 94.72 94.42 91.90 0.92 3.40

ZINC

Decorator 0.79 93.58 97.04 92.42 0.89 1.63
SpotGAN 0.82 93.26 92.78 92.75 0.88 5.59
SpotWGAN 0.82 96.21 93.63 92.37 0.88 5.65

Table 4. Evaluation results with the solubility as the optimized property.

Dataset Method logP Validity (%) Unique (%) Novelty (%) Diversity Time (h)

QM9

Decorator 0.30 97.13 93.72 64.61 0.92 0.32
SpotGAN 0.47 89.34 93.15 96.70 0.91 3.20
SpotWGAN 0.48 84.64 91.65 95.80 0.90 3.63

ZINC

Decorator 0.63 93.58 97.04 92.42 0.89 1.63
SpotGAN 0.71 90.30 95.86 94.22 0.88 6.21
SpotWGAN 0.74 93.27 92.15 95.03 0.88 9.86

Table 5. Evaluation results with the synthesizability as the optimized property.

Dataset Method SA Validity (%) Unique (%) Novelty (%) Diversity Time (h)

QM9

Decorator 0.33 97.13 93.72 64.61 0.92 0.32
SpotGAN 0.43 96.10 90.68 90.14 0.91 3.89
SpotWGAN 0.41 95.34 94.52 92.85 0.91 4.06

ZINC

Decorator 0.76 93.58 97.04 92.42 0.89 1.63
SpotGAN 0.81 91.30 94.57 92.98 0.88 8.28
SpotWGAN 0.82 94.32 92.21 93.33 0.88 10.44

and total scores. Although GraphAF achieved state-of-the-art performance in
previous tasks, its uniqueness score was lower than those of our proposed models.
SpotGAN and SpotWGAN outperformed Naïve RL (i.e., SpotGAN when λ =
0) and SCRNN for all evaluation metrics. Further, SpotGAN and SpotWGAN
outperformed SCRNN-RL (i.e., SCRNN trained with RL) in terms of validity
and novelty, and MoLeR on uniqueness and novelty. In summary, the Decorator,
SpotGAN, and SpotWGAN achieved the top 1st, top 4th, and top 2nd spots in
the structure-unconstrained evaluation, and the top three spots in the structure-
constrained evaluation (Total).

4.4 Property Optimization

Drug-Likeness as the Optimized Property. Table 3 shows the evaluation results
on the QM9 and ZINC datasets when the optimized property was the drug-
likeness (calculated by the QED score). The proposed models delivered high
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Fig. 2. QED Distributions on QM9
dataset.

Fig. 3. Property scores on QM9
dataset.

validity, uniqueness, and novelty. With the QM9 dataset, most of the SMILES
representations of the decorations were simple (consisting only of C, N, and O),
and their lengths were less than five. Only the validity and uniqueness scores of
Decorator were high in this case. In contrast, since the molecules in the ZINC
dataset contain more complex chemical rules, Decorator scored highly on all eval-
uation measures. Both the SpotGAN and SpotWGAN produced novel molecules
and achieved high QED scores with only small costs in validity or uniqueness.
Both models obtained the same QED scores because the fixed scaffolds restricted
the generation of more molecules with high chemical-property scores. Unlike
generative models, which design molecules from scratch under no scaffold con-
straints, the proposed models must remember not only the rules learned during
the training but also the strict restriction on the generation of molecules imposed
by scaffold fixation. Furthermore, as the QED score largely depends on the scaf-
fold of a molecule, designing the decoration can only improve the QED score to
a limited extent. Therefore, the evaluation results were reasonable.

Figures 2 and Appendix B.1 depict the QED distributions on the QM9 and
ZINC datasets, respectively. Comparing the distributions of the proposed models
with those of the training dataset (REAL), the QED distributions of the pro-
posed SpotGAN and SpotWGAN models shifted toward relatively high ranges,
suggesting the effectiveness of the proposed models in terms of the enhancement
of the drug-likeness property. Additionally, the top-12 molecular structures are
shown in Appendices B.2 and B.3. The generated molecules had higher QED
scores than the original molecules in the training dataset.

Solubility as the Optimized Property. Table 4 shows the evaluation results when
the optimized property was solubility (calculated by the logP score). The logP
scores of the generated SMILES strings were significantly higher than those for
the QM9 and ZINC datasets. On the QM9 dataset, the SpotGAN achieved the
highest validity, uniqueness, and novelty scores, and the SpotWGAN achieved
the best logP score. On the ZINC dataset, the SpotGAN achieved the highest
uniqueness score, and the SpotWGAN performed best on the other scores. The
logP distributions and the top-12 molecular structures generated on the QM9
and ZINC datasets are detailed in Appendices B.4, B.5, and B.6.
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Table 6. Effect of λ on the drug-likeness of SpotGAN.

λ QED Validity (%) Unique (%) Novelty (%)

0 0.53 93.84 94.18 93.83
0.1 0.53 96.42 90.39 85.59
0.3 0.53 94.06 91.96 91.57
0.5 0.53 93.25 94.23 91.29
0.7 0.53 93.04 93.05 95.11
0.9 0.52 92.62 93.50 97.14
1.0 0.47 96.43 94.90 73.58

Table 7. Effect of K of SpotGAN on the QM9 dataset.

K Validity (%) Unique (%) Novelty (%) Time (h)

2 91.65 94.14 94.01 2.45
4 91.40 93.45 92.45 2.39
8 93.25 94.23 91.29 3.07
16 92.55 93.33 90.47 4.02
32 92.18 94.17 95.10 6.89

Table 8. Effect of diversified SMILES on the two datasets.

Dataset Method QED Validity (%) Unique (%) Novelty (%)

QM9

Decorator w/o 0.47 52.21 94.79 76.88
Decorator 0.47 97.13 93.72 64.61
SpotGAN w/o 0.51 90.07 89.15 82.95
SpotGAN 0.53 93.25 94.23 91.29

ZINC

Decorator w/o 0.75 41.61 95.65 98.17
Decorator 0.79 93.58 97.04 92.42
SpotGAN w/o 0.76 51.38 95.33 98.65
SpotGAN 0.82 93.26 92.78 92.75

Synthesizability as the Optimized Property. Table 5 shows the evaluation results
when the optimized property was synthesizability (calculated by the SA score).
The SA scores of the molecules generated by the proposed models were highly
enhanced. Additionally, the two models achieved high validity, uniqueness, and
novelty scores (> 90%) on both datasets. The SA distributions and top-12
molecules are provided in Appendices B.7, B.8, and B.9.

The property scores of SpotGAN on both datasets are plotted as functions
of the epoch in Fig. 3 and Appendix B.6, respectively. All three property scores
increased as the training epochs proceeded.
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4.5 Ablation Studies

Effect of λ. The hyperparameter λ controls the trade-off between RL and the dis-
criminator participating in the training. When λ = 0 and λ = 1, the decoration
generator is learned under the total guidance of RL and the discriminator, respec-
tively. Table 6 summarizes the effect of varying λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.
When λ was lower than 0.7, the QED score was mainly affected by the scaf-
fold and the effect of λ was minimal. When the scaffold is fixed, the property
optimization has a limited ability to improve the chemical properties of the gen-
erated molecules. In contrast, de novo molecular generation tasks can design
an arbitrary molecule. Therefore, the constant QED scores in Table 6 can be
explained by the limited ability of RL. When λ exceeded 0.7, the target task
utilized the discriminator to generate molecules with higher validity rather than
molecules with higher QED scores. Therefore, λ is influential on QED.

Effect of K. The hyperparameter K denotes the number of MC searches. A
small K increases the sensitivity of the sampling, whereas a large K increases
the computational load of the calculation. Therefore, a suitable K is critical to
the model performance. Table 7 shows the effect of K on the molecules generated
by SpotGAN on the QM9 dataset. When K = 8, the model achieved high validity
and uniqueness at acceptable computational cost.

Effect of Diversified SMILES. Diversified SMILES was proposed for data aug-
mentation and enhancement, making models sufficiently learn the semantics and
syntax of SMILES strings. Table 8 shows the effect of diversified SMILES in Spot-
GAN on the QM9 and ZINC datasets. The experimental results suggest that the
proposed diversified SMILES trained the models more sufficiently and generated
more valid and unique molecules.

4.6 Case Studies of Bioactivity Optimization for a Therapeutic
Target

As case studies, we applied SpotGAN to generate new molecules with high bioac-
tivity for a therapeutic target (DRD2 in this study) on the ZINC dataset. The
evaluation results are detailed in Appendix B.7. We evaluated the improvement
of the BIO scores of newly generated molecules and compared them with those
obtained with the initial scaffolds. In the upper panel of Fig. 4, the five scaffolds,
A, B, C, D, and E, were employed as the initial scaffolds to generate molecules, as
they are known to be useful for the DRD2 ligands. The five scaffolds were deco-
rated with 2, 3, 2, 4, and 2 decoration points, which are indicated by the asterisks
in Fig. 4. The top five generated molecules and their BIO scores are shown in the
bottom panel of Fig. 4. The BIO scores of newly generated molecules are consid-
erably higher than those of the initial scaffolds, and this tendency was observed
for all five scaffolds. Interestingly, all the generated molecules with the five scaf-
folds satisfied Hückel’s rules [22], which are important for achieving the desired
chemical properties of drugs. These results suggest that SpotGAN successfully
generated new drug-like molecules with relatively high bioactivity.
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Fig. 4. Top-5 molecular structures on scaffolds A-E and their BIO scores using the
ZINC dataset.

5 Conclusion

Here, SpotGAN and SpotWGAN were proposed for generating molecules with
the desired chemical properties via a scaffold-constrained approach. The origi-
nality lies in the transformer-based GAN for generating molecules on constrained
scaffolds and the training recipes for stabilizing the GAN through various tech-
niques, including data augmentation with diversified SMILES, Wasserstein dis-
tance, and mini-batch discrimination. In the experiments, the usefulness of the
proposed methods on scaffold-constrained molecular-generation tasks was evalu-
ated in terms of the enhancement of the drug-likeness, solubility, synthesizability,
and bioactivity of the generated molecules.

This work has two main limitations. First, the proposed models can only
generate decorations sequentially according to the number of attachment points.
The first decoration is generated based on the attachment points and attached
to the scaffold before the next decoration is generated. The process repeats until
all attachment points are decorated. Second, performing MC search to generate
SMILES strings in the adversarial network requires significant computational
time, which reduces the efficiency of the generation. These two issues will be
considered in the future.
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Abstract. Traffic flow forecasting is an important part of smart city
construction. Accurate traffic flow forecasting helps traffic management
agencies to make timely adjustments, thus improving pedestrian travel
efficiency and road utilization. However, this work is challenging due to
the dynamic stochastic factors affecting the variation of traffic data and
the spatially hidden behavior. Existing approaches generally use atten-
tion mechanism or graph neural networks to model correlation in tem-
poral and spatial terms, and despite some progress in performance, they
still ignore a number of practical situations: (1) Anomalous data due
to traffic accidents or traffic congestion can affect the accuracy of mod-
eling in the current moment and further create potential optimization
problems for model training. (2) According to the directedness of the
road, the hiding behavior between nodes should also be unidirectional
and dynamic. In this paper, we propose a dynamic graph network with a
pyramid structure, named PYNet, and use it for traffic flow forecasting
tasks. Specifically, first we propose the Pyramid Constructor for trans-
forming multivariate time series into a pyramid network with a multilevel
structure, where the higher the level, the larger the range of time scales
represented. Second, we perform Trend-Aware Attention top-down in the
pyramid network, which gradually enables the lower-level time series to
learn their long-term dependence in multiples, and effectively reduces
the impact of outliers. Furthermore, to fully capture the hidden behav-
ior in the spatial dimension, we learn an adaptive unidirectional graph
and perform forward and backward diffusion convolution on the graph.
Experimental results on two types of datasets show that PYNet outper-
forms the state-of-the-art baseline.

Keywords: Traffic flow forecasting · Spatio-temporal data · Pyramid
structure

1 Introduction

In recent years, many countries are focusing on the development of Intelligent
Transportation Systems (ITS). Traffic flow forecasting, route planning and vehi-
cle scheduling are important components of ITS, and they work together to
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improve the transportation service system of cities. In these applications, route
planning and vehicle scheduling are based on the traffic conditions of roads, so
traffic flow forecasting is the cornerstone of ITS. In this paper, we use the his-
torical traffic data of roads to forecast the future traffic conditions. Traffic data
is a time series data, collected by sensors deployed in the traffic network at a
fixed continuous period of time. Early researchers applied the classical time series
models Vector Auto-Regression (VAR) [15], Autoregressive Integrated Moving
Average model (ARIMA) [8] to forecast future traffic conditions, they are lim-
ited by the assumption of linearity and smoothness of the data, and traffic data
are usually unsteady and nonlinear, so these methods perform poorly. Deep
learning methods based on Recurrent Neural Networks (RNN) [3,4,6] are not
subject to these limitations, therefore they are widely used to extract long and
short term dependencies in time series. A limitation of these methods is the
inability to model spatial correlations in traffic networks, and with the deeper
understanding of the problem and the development of graph neural networks
(GNN) [7], researchers have proposed a spatial-temporal forecasting framework
based on graph neural networks [14,23,26], which construct traffic graphs by
taking sensors deployed in traffic networks as nodes and road networks or node
distances as edges, updating node characteristics through information transfer
effects between nodes. The advantage of these GNN-based methods is that they
can handle data with a non Euclidean structure, which makes up for the fact
that CNN-based methods [27] can only handle data with a grid structure. While
having shown the effectiveness of introducing the graph structure of data into a
model, but there is still a lack of satisfactory progress in accurate and long term
traffic forecasting, which is mainly due to the following two challenges:

First, unexpected events in the road such as traffic accidents can cause tran-
sient anomalies in the traffic data, which may pose potential optimization prob-
lems in the training of the model if they are ignored. For instance, most current
studies use attention mechanism or CNN to model temporal correlation. The
attention mechanism obtains the similarity between node pairs in the form of
point-to-point, which will incorrectly update the node features if there exists
anomalous data and further cause error accumulation. CNN updates node fea-
tures by aggregating local contextual information, which can weaken the effect
brought by outliers. Considering the multi-scale nature of time series and the
design of convolution kernel size, it is difficult to solve this problem with a single
convolution layer.

Second, roads in the traffic network are unidirectional, which means that the
impacts from traffic conditions on upstream roads are transmitted to downstream
roads in the future and continue to spread dynamically over time. The distance-
based adjacency matrix defines this diffusion relationship based on the distance
of the road network, ignoring the hidden spatial correlation in the traffic network.
Therefore, we propose to learn a dynamic directed graph to maintain the hidden
property of state transfer between nodes, and in addition, if the dataset further
provides information on the structure and distance between nodes, we expect
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the dynamic directed graph to easily incorporate this information to generate a
more comprehensive representation of node embeddings and spatial matrices.

To solve the above challenges, we propose a new pyramid network for spatial-
temporal forecasting, which we call PYNet, which mainly consists of three parts:
Pyramid Constructor, Trend-Aware Attention and Diffusion Graph Convolution
Network. Pyramid Constructor is based on CNN and is used to transform the
input time series into a pyramid network with a multi-leveled structure, and
can customize the time range of trend blocks in different levels (It means that
the features of several consecutive time steps are aggregated). We then per-
form Trend-Aware Attention top-down, computing the similarity between trend
blocks with different time scales in a local context, which allows not only the
lower-level time series to receive several times the perceptual field, but also fur-
ther attenuates the impact of outliers. In addition, we learn a dynamic directed
graph that preserves the one way hidden relationship between nodes in the traffic
network, and further, we describe this hidden relationship as a diffusion process
of nodes over spatially and capture the potential spatial correlation by diffu-
sion convolution. In summary, we summarize the contributions of this paper as
follows:

• We propose a pyramid network for spatial-temporal forecasting tasks, named
PYNet, which initializes the input time series into a pyramid network with a
multi-leveled structure through the Pyramid Constructor. The trend blocks
in the bottom-up levels of the pyramid represent progressively larger time
ranges, and such time ranges are customizable.

• We perform Trend-Aware Attention and Diffusion Graph Convolution Net-
work top-down in a pyramid network. The former computes the similarity
between trend blocks in local context and gives several times the perceptual
field to the lower-level trend blocks, which reduces the impact of outliers. The
latter preserves the hidden spatial directed relations by performing diffusion
GCN on the adaptive directed graph.

• We evaluate the performance of PYNet on four real-world datasets, and the
experiments show that PYNet outperforms all the baseline.

2 Related Work

2.1 Traffic Forecasting

Traffic forecasting is an important component of intelligent transportation sys-
tems and has been widely studied in the last decades [10,14,23,26,27,29]. Earlier
studies mainly used statistical methods, such as VAR [15], ARIMA [8], which rely
on the assumption of linearity of the data and, without doubt, perform poorly
when dealing with nonlinear traffic data. With the development of deep learning,
recurrent neural networks [3,4,6], which ignore the smoothness assumption, have
been successfully applied to time series modeling. To capture spatial correlations,
[24,25,27,30] used CNNs to model spatial with regular grid structure, but were
powerless for traffic networks with non-Euclidean spatial structure. With the
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evolution of graph neural networks, it has become the best method to model
the spatial correlation of traffic data, for example, DCRNN [14] uses diffusion
GCN to capture the diffusion phenomenon of traffic flow in spatial terms and
applies GRU to capture the temporal correlation. Graph WaveNet [23] modeled
spatial and temporal correlations using GCNs and temporal convolution net-
works (TCNs), respectively, and [10,19,22,26] and other studies modeled spatial
correlations based on GCNs. With the birth of Transformer [21], GMAN [29],
ASTGCN [5], and ST-GRAT [17] introduced attention mechanisms into spatial-
temporal modeling and further improved the forecasting accuracy.

If the spatial correlation of traffic networks is modeled using graph neural
networks, then there is no doubt that the construction of the adjacency matrix is
extremely important. DCRNN [14] computes the road network distance between
sensors and uses it as a weight between nodes by means of a thresholded Gaussian
kernel function. To react to hidden correlations in spatial, some works [16,23]
proposed adaptive adjacency matrix to describe such potential spatial correla-
tions and can be learned by end-to-end. Further, DGCRN [10], MTGNN [22] set
the adaptive adjacency matrix as a directed graph, which means that a change in
the state of one node leads to a change in the state of other nodes, which brings
the learning of adjacency matrix to a new level. In addition, some studies have
proposed a data-driven spatial heterogeneity graph based on adding connections
between functionally similar regions, [9,12] proving its effectiveness, but it is
static and still requires parameters to support training in the training of the
model.

2.2 Graph Neural Network

The main idea of graph neural networks is to update node states through the
information transfer effect between nodes, which has been a great success in deal-
ing with spatial dependence between entities in a network and is now successfully
applied to various tasks such as node classification [18] and link forecasting [31].
Various types of variants of GNN have been developed, such as GCN, Graph
Attention Network (GAT), and there are two types of GCN, spatial GCN and
spectral GCN. Spatial GCN on the neighboring nodes of the target node directly
perform convolution filters, the spectral GCN defines the convolution in the spec-
tral domain [13], which is firstly introduced in [1]. GAT introduces the attention
mechanism into GNNs and uses node features to autonomously learn the weights
between node pairs. Recently, spatial-temporal graph neural networks [2,28] have
been introduced to traffic forecasting for capturing spatial-temporal correlations
in traffic data, such as the STGNN, DGCRN replacing the fully connected layer
in recurrent neural networks with GCNs, and STJGCN [28] constructing joint
graph convolution layers between any two time steps. In addition, some works
[29] learn the spatial embedding representation of each node by graph embed-
ding methods such as node2Vec and deepWalk to further improve the efficiency
of information transfer between node pairs in spatial.
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Fig. 1. The framework of PYNet.

3 Preliminary

We denote the traffic data recorded by N sensors at time t as traffic signals, C
is the number of signals and the signals can be traffic volume, traffic speed, etc.
The traffic forecasting problem aims to learn a function f that maps the traffic
conditions at time step P of history to the next time step Q:

[Xt−P+1,Xt−P+2, · · · ,Xt]
f(·)−−→ [Xt+1,Xt+2, · · · ,Xt+Q] (1)

4 Methodology

In this section, we will introduce our proposed model in detail. The overall
framework of our proposed model is shown in Fig. 1.

PYNet first takes multivariate time series and passes them through the Pyra-
mid Constructor to obtain a pyramid network with a multi-level structure (the
higher the level, the larger the range of time scales), and then adds learnable loca-
tion codes to each level to facilitate labeling level structures with different scale
information. Finally, the top-down stacked Spatial-Temporal Block (ST-Block),
which consists of Trend-Aware Attention and Diffusion GCN, in the pyramid
structure. Trend-Aware Attention uses both low level and high level features
as common inputs, with the aim of enabling each trend block at the low level
(aggregated by multiple time steps) to share the long term horizon represented
at the high level. Diffusion GCN describes the behavior on spatial as a diffu-
sion process of directed graphs and performs diffusion convolution operations on
adaptive directed graphs.

4.1 Pyramid Constructor

Patterns in time series may evolve with time significantly due to various events,
e.g. holidays and extreme weather, so whether an observed point is an anomaly,
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change point or part of the patterns is highly dependent on its surrounding
context. Hence, the independent time steps in the original time series cannot
reflect the anomalous information of the data. In order to make full use of the
contextual information and reduce the loss caused by data anomalies, we use
Pyramid Constructor to obtain a pyramid network with a multi-level structure,
which has two advantages: (1) Different levels of time scales can be customized,
such that, bottom-up each trend block (i.e., features aggregated over several
consecutive time steps) can be considered as hourly, daily and monthly features.
(2) There is better fault tolerance in the face of anomalies. The higher the level
of the hierarchy, the larger the range of time scales of the trend blocks, then the
impact caused by the anomalies is limited.

Given the length T multivariate time series and a set of convolution layers
FCNN (·), then each level of the pyramid structure can be defined as:

XL = FCNN
L (XL−1, ΘL) ∈ R

TL−1/CL×N×D (2)

We take the time series XL−1 ∈ R
TL−1×N×D at the L-1 level and pass it

through the standard convolution layer FCNN
L (·) to obtain the time series rep-

resentation XL ∈ R
TL−1/CL×N×D at the Lth level, where ΘL corresponds to

the parameters of the convolution layer and CL is the size and step size of the
convolution kernel.

4.2 Trend-Aware Attention

In the traditional attention mechanism, the similarities between queries and
keys are computed based on their point-wise values without fully leveraging
local context information. Query-key matching agnostic of local context may
confuse the self-attention module in terms of whether the observed value is an
anomaly, change point or part of patterns, and bring underlying optimization
issues. Thus, we perform top-down attention mechanisms between adjacent levels
of the pyramid, which has two advantages: (1) Compute the similarity between
query and key in a local context, which reduces the impact caused by anomalies.
(2) Key and value have longer time range information than query, and the top-
down attention mechanism will gradually make the lower-level time series learn
its own CL-fold long term dependence until the update of the original time series
is completed.

Given the time series of two adjacent levels XL ∈ R
TL×N×D and XL+1 ∈

R
TL+1×N×D, which TL+1 = TL/CL. The operation of Trend-Aware Attention

can be expressed as follows:

Q(h)
L = Softmax(

(X(h)
L W(h)

Q )(X(h)
L+1W

(h)
K )

T

√
dh

+ Wadp)(X
(h)
L+1W

(h)
V ) (3)

QL = MLP(Concat(Q(1)
L ,Q(2)

L , . . . ,Q(H)
L )) (4)

where W(h)
Q , W(h)

K , W(h)
V ∈ R

dh×dh are learnable parameters. H is the number
of attention heads. In addition, we adjust the inter level attention scores by a
trainable parameter Wadp ∈ R

TL×TL−1 .
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Trend-Aware Attention updates the lower level time series representation by
the higher level time series, which helps to make the lower level time series learn
longer time dependence. One drawback, however, is that time series at lower
levels lose their inherent characteristics, which can make short term forecasting
perform less well. To solve this problem, we compute Trend-Aware Attention
and the self-attention of the current hierarchical time series synchronously in
a parallel manner. The preference of self-attention for global information can
impair the performance of short term forecasting, so we control the proportion
of information flowing to the self-attention module at each time step by means
of a selection gate:

VL = sigmoid(MLP(Concat(XL,PEL))) (5)

XS
L = VL � XL (6)

We take the time series representation of layer L, XL and the spatial-temporal
position encoding PEL (see Sect. 4.4 for details) of the concatenation as the
input to the selection gate, and automatically learn the gate value of (0, 1)
VL ∈ R

TL×N×D by the sigmoid activation function. The symbol � denotes the
element-wise product, the attention module takes XS

L as input and its operation
can be expressed as:

S(h)
L = Softmax(

(XS,(h)
L U(h)

Q )(XS,(h)
L U(h)

K )
T

√
dh

)(XS,(h)
L U(h)

V ) (7)

SL = Concat(S(1)
L ,S(2)

L , . . . ,S(H)
L ) (8)

which U(h)
Q , U(h)

K , U(h)
V ∈ R

dh×dh denotes learnable parameters. Finally, we model
jointly the long-short-term temporal dependence by using the output of the Self-
Attention module as a complement to Trend-Aware Attention:

BL = MLP(Concat(QL,SL)) (9)

where the MLP is a two-layer fully connected layer that weights and aggregates
the feature representation of all attention heads. BL ∈ R

TL×N×D is the final
output representation of Trend-Aware Attention in the corresponding ST-Block.
In the process of forward calculation, in order to avoid high computational cost,
we can set the vector dimension of each of the two parts to D/2, and finally
recover to D by performing concat operation on the channel by Eq. (9).

4.3 Diffusion Graph Convolution Network

In multivariate time series forecasting, the relationships between node pairs are
not negligible, for example, traffic conditions on roads upstream of the traffic net-
work produce impacts that are transmitted to downstream roads in the future,
and weather conditions in adjacent regions are usually similar. Therefore, it is
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necessary to consider these hidden spatial relationships. Existing studies usu-
ally construct the hidden relationships between node pairs through graphs, for
instance, DCRNN computes the road network distance between pairs of nodes
in the adjacency matrix using a threshold Gaussian kernel function. DSTAGNN
calculates the similarity between different time series as the weights among node
pairs by Wasserstein Distance. However, these approaches construct static or
bi-directional graph-based structures, and we propose to learn a directed graph
to preserve the property of state transfer between nodes (that is, a change in
the state of one node leads to a change in the state of other nodes). It should be
noted that the spatial structure in the traffic network includes both static and
dynamic attributes, and for static attributes, it mainly refers to the inherent
apriori knowledge of different correlations due to different road distances.

For dynamic attributes, let’s take an example to help understand: due to the
different attributes of different areas (apartment, school or industrial park), at 7
a.m., the correlation (A,B) between apartment A and school B is much greater
than (B,A) due to students going to school, and at 6 p.m., (B,A) is much greater
than (A,B) due to students leaving school. Therefore, in real traffic networks,
there are hidden and uncertain relationships between different roads. If feature
information is used to participate in the construction of the graph structure,
the accuracy will be degraded during the testing process due to the different
data and the accuracy deviation will be greater with time. Hence, we propose to
learn the hidden graph structure in an adaptive manner and incorporate static
attributes in an efficient way. It does not depend on the feature information
at any moment and the graph structure is determined once the training of the
model is completed.

First, we use thresholded Gaussian kernel function to measuring the proxim-
ity between different road pairs:

Hi,j = exp(−dist(vi, vj)
2

σ2
) (10)

where dist(vi, vj) represents the road network distance from node vi to node vj ,
σ is the standard deviation of distances, Hi,j denotes the edge weight between
node vi and node vj .

Then, we obtain the embedding representation of each node by node2Vec:

N = node2Vec(H) (11)

N ∈ R
N×D is the embedding representation of the nodes in the spatial, tak-

ing the distance-based adjacency matrix H as input. The node2Vec algorithm
makes nodes within the same region or nodes that have similar structural fea-
tures represent similar. In particular, we randomly initialize two learnable node
embedding matrices E1,E2 ∈ R

N×D and concate them with N on the channel:

M1 = tanh(α(linear(Concat(E1,N)))) (12)

M2 = tanh(α(linear(Concat(E2,N)))) (13)
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M1 and M2 are the new node embedding representation containing learnable
and static spatial information. Then, we regularize the adjacency matrix by
subtraction terms and the ReLU activation function:

A = ReLU(tanh(α(M1MT
2 − M2MT

1 ))) (14)

which Θ1,Θ2 ∈ R
D×D are learnable parameters, α is a hyper-parameter for

controlling the saturation rate of the activation function, Eq. (14) implements
the asymmetric nature of the adjacency matrix.

We characterize the state transfer between nodes as a spatial diffusion process
of nodes, and this Markovian stochastic process converges to a smooth distri-
bution after K time steps by performing a random wander on the graph. Given
the graph signal XL ∈ R

TL×N×D and adjacency matrix A ∈ R
N×N at the Lth

level, we describe the diffusion graph convolution as:

ZL =
K∑

k=0

(D−1
O A)

k
XLWOk+(D−1

I AT)
k
XLWIk (15)

In the case of directed graphs, the diffusion process has two directions, outflow
and inflow, and the corresponding state transfer matrix for both are D−1

O A and
D−1

I AT, respectively. Where DO and DI are the degree matrix of the correspond-
ing matrix, WOk,WIk ∈ R

D×D are the learnable parameter, and ZL ∈ R
TL×N×D

is the output of the diffusion graph convolution layer in the ST-Block correspond-
ing to the Lth level.

Then, we aggregate the outputs of the Trend-Aware Attention and diffusion
graph convolution layer, either by summing or concatting over the channels. We
select SUM(·) as the aggregator function which is differentiable and maintains
high representational capacity:

YL = Agg(QL,ZL)=QL +ZL (16)

Finally, we add residual connectivity and BatchNorm to YL and obtain the
output of ST-Block by an MLP containing two layers of fully connected neural
networks:

Yout
L = MLP(BatchNorm(Agg(YL,XL))) (17)

Yout
L ∈ R

TL×N×D is the output of the ST-Block corresponding to the Lth level.

4.4 Position Encoding

Considering that the pyramid performs Trend-Aware Attention between adjacent
levels, and that the sequential relationships of adjacent levels lose their relevance
to each other. To solve this problem, we add location codes for the different levels,
which are aggregations of temporal and spatial codes (the aggregation function
uses SUM(·)). Temporal encoding is one-hot encoding and concat separately for
day-of-week and time-of-day of each time step. In spatial, we randomly initialize
a vector representation for each node, both of which have the same number of
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channels after passing through the fully connected neural network. For example,
for node vi on time step tj , its position encoding is defined as:

PEvi,tj = Agg(MLP(onehot(tj)), MLP(emb(vi))) (18)

For the Lth level in the pyramid, the position encoding is defined as:

PE
vi,Lj

L = Agg(MLP(
u=(j+1)×pL−1∑

u=j×pL

onehot(tu)), MLP(emb(vi))) (19)

In the Lth (L> 1) level, each trend block (aggregated by multiple consecutive
time steps) represents a time horizon, as exemplified by Eq. (12), Lj is the jth
trend block in the Lth hierarchy, pL is the length of time of each trend block
in the Lth level. We sum the one-hot encoding corresponding to successive time
steps and set the maximum value to 1.

The position encoding preserves the correlation between level, effectively
modeling long term dependence while better preserving similar information when
performing Trend-Aware Attention.

5 Experiment

5.1 Dataset

To evaluate the model performance, we conducted extensive experiments on four
traffic flow datasets [18], namely PEMS03, PEMS04, PEMS07 and PEMS08
datasets, which were collected on California freeways.

5.2 Baseline Methods

(1) VAR [15] which is a traditional time series model that captures the pair-
wise relationship of time series; (2) ARIMA [8] which is a classical time series
model; (3) STGCN that models spatial and temporal correlations using GCN
and CNN, respectively; (4) DCRNN [14] that captures spatial-temporal correla-
tion using GRU and diffusion graph convolution network, respectively; (5) Graph
WaveNet [23] that combines adaptive graph convolution and dilated casual con-
volution to capture spatial-temporal correlations; (6) ASTGCN [5] that is based
on spatial-temporal attention and model spatial and temporal correlations by
GCN and CNN; (7) STSGCN [19] that constructs a local spatio-temporal graph
and captures local spatio-temporal correlations by spatio-temporal synchronous
graph convolution; (8) AGCRN [20] that uses adaptive graphs to describe spatial
correlation and GRU to model temporal correlation; (9) Z-GCNETS [11] that
models spatial and temporal correlation using graph convolution and GRU; (10)
GMAN [29] that captures spatio-temporal correlations by attention and designs
a transformation layer to reduce error propagation; (11) DSTAGNN [9] that was
designed to describe regions with similar functions.
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5.3 Experimental Settings

The dataset is divided into training, validation and test sets in the ratio of
6:2:2, and they are normalized with Z-Score. Following the standard benchmark
setting for the domain, we use data from 12 consecutive historical time steps to
forecast traffic data from 12 consecutive future time steps, with an interval of
5min between two consecutive time steps. We use Adam optimizer as the models’
optimizer with initial learning rate set to 0.01, BathSize to 128, attention head
to 8, vector dimension to 64, and Pyramid Constructor with convolution kernel
and three convolution layers with step size [2, 2, 3]. We use mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage error
(MAPE) as the evaluation metric and MAE as the loss function.

Table 1. .

Model PEMS03 PEMS04 PEMS07 PEMS08
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAR 23.65 38.26 24.51% 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 13.10%
ARIMA 35.41 47.59 33.78% 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73%
FC-LSTM 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%
GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
ASTGCN 17.34 29.56 17.21% 22.93 35.22 16.56% 24.01 37.87 10.73% 18.25 28.06 11.64%
STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60%
Z-GCNETS 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01%
GMAN 15.52 26.53 15.19% 19.25 30.85 13.00% 20.68 33.56 9.31% 14.87 24.06 9.77%
DSTAGNN 15.57 27.21 14.68% 19.30 31.46 12.70% 21.42 34.51 9.01% 15.67 24.77 9.94%
PYNet 14.94 25.27 14.94% 18.46 30.36 12.46% 19.61 32.85 8.36% 14.03 23.84 9.39%
improve 3.73% 3.62% - 4.10% 1.59% 1.89% 5.17% 2.11% 7.21% 5.65% 0.91% 3.89%

5.4 Experiment Results

Table 1 shows the performance of PYNet and the thirteen baselines on the
four datasets, and we report the average error of the one-hour ahead fore-
casting. As can be seen, PYNet achieves state-of-the-art performance on four
datasets, and in terms of MAE, PYNet improves the state-of-the-art results by
2.51%, 4.16%, 5.08% and 5.51%, respectively. In addition, we observed that:
(1) The performance of VAR and ARIMA is poor; they rely on the assump-
tion of linearity in the data, while traffic data has dynamic non-linear feature.
(2) GNN-based deep learning methods (STGCN, DCRNN, AGCRN, Graph-
WaveNet, DSTAGNN) take spatial correlation into account and usually have
better forecasting performance. However, the semantic information contained in
the graph structure may be imperfect or even biased, which limits the expressive
power of the graph model. (3) The models based on the attention mechanism,
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Fig. 2. Forecasting performance comparison at each horizon on the PEMS04 dataset.

ASTGCN and GMAN, perform better in long-term forecasting, but the insen-
sitivity of attention to local information leads to poorer short-term forecasting
performance.

Compared with the above methods, PYNet introduces a pyramid structure
to learn the multi-scale representation of time series, which can effectively model
long and short term dependence. In moreover, we add corresponding scale posi-
tion encoding for each level in the pyramid to record the relative position rela-
tionship and retain the correlation between levels. We perform Trend-Aware
Attention and diffusion GCN top-down in a pyramid network, where the former
gradually causes the lower-level time series to learn several times their own long
term dependence until the update of the initial time series is completed. The lat-
ter performs diffusion convolution operations on directed graphs to preserve the
properties of state transfer between nodes. Considering these features, PYNet
consistently outperforms other methods.

To investigate the specific performance of PYNet on short-medium term and
medium-long term forecasting, we plot the error curves of the seven models
on one-hour ahead forecasting in Fig. 2. We observe that STGCN and Graph
WaveNet have the best short term (0min-10min) forecasting performance, and
PYNet performs best when there is a medium-long term (>10min) forecasting
demand, and the error curve of PYNet grows the slowest with increasing time
step, while the gap with other models gradually increases, which indicates that
PYNet has strong stability while maintaining high performance.

5.5 Ablation Study

To verify the effectiveness of the individual components in PYNet, we made the
following variants of PYNet: (1) PYNet-NC: We use the average pooling layer to
construct the pyramid network. (2) PYNet-NT: We removed the Trend-Aware
Attention from ST-Block. (3) PYNet-NS: We removed the self attention. (4)
PYNet-ND: We remove the diffusion GCN from the ST-Block.
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Fig. 3. Ablation study on PEMS04.

Figure 3 shows the average performance of PYNet and the four variants on the
PEMS04 dataset. We observe that (1) The pyramid network constructed by CNN
has better results compared to the average pooling layer because the convolution
layer can weigh the importance of each time step in the window better than the
pooling layer. (2) The performance of PYNet-NT decreases dramatically after
removing the Trend-Aware Attention. This is because the Trend-Aware Attenion
acts as a connection between two levels, and after removing it, the model cannot
learn the correlation between the pyramid levels. (3) The self attention module
complements the trend attention module with the aim of improving short term
forecasting performance. When self attention is removed, PYNet-NS has the
worst short term forecasting performance, which implies that self attention, as a
complement to Trend-Aware Attenion, can effectively improve the performance
of forecasting. (4) After removing the diffusion GCN, the model cannot capture
the spatial correlation in the traffic network, and therefore the performance of
PYNet-NS decreases.

5.6 Long Term Forecasting Performance

Long term (i.e., one hour or more) forecasting of traffic flow or traffic speed
in a traffic network is challenging. The number of sensors deployed in a traffic
network as nodes on a graph is usually huge, and if the model includes similarity
calculation of nodes, the time complexity grows quadratically with the number
of nodes, and secondly, the long term traffic conditions are difficult to forecast
accurately due to the non-stationarity factor in the time series.

PYNet is based on a pyramid structure, which can effectively model cor-
relations between time series with different time scales and has advantages in
modeling long term temporal dependence. Therefore, to evaluate the perfor-
mance of PYNet in long term forecasting, we forecast the future traffic data for
30, 60, 90 and 120min on the PEMS04, and the results are shown in Table 2. We
observe that PYNet improves the state-of-the-art baseline from 3.10% to 7.13%
in MAE on the PEMS04 dataset, and as the time step, the gap further increases,
which further demonstrates the performance of PYNet on long term traffic flow
forecasting.
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Table 2. Long term forecasting performance of different models on PEMS04.

Model Metrics 30min 60min 90min 120min Average

ASTGCN MAE 22.08± 0.28 25.51± 0.69 29.32± 1.17 34.04± 1.42 26.01± 0.75
RMSE 34.47± 0.42 39.35± 1.10 44.95± 1.87 51.60± 2.20 40.64± 1.28
MAPE (%) 14.70± 0.10 16.84± 0.19 19.28± 0.28 22.49± 0.31 17.22± 0.19

STSGCN MAE 21.66± 0.36 24.04± 0.41 26.70± 0.52 29.07± 0.64 24.35± 0.47
RMSE 34.56± 0.75 37.98± 0.72 41.91± 0.75 45.45± 0.90 38.46± 0.79
MAPE (%) 14.44± 0.13 15.76± 0.11 17.50± 0.18 18.92± 0.15 16.13± 0.20

GMAN MAE 20.50± 0.01 21.02± 0.04 21.55± 0.08 22.29± 0.05 21.08± 0.05
RMSE 33.21± 0.42 34.18± 0.48 35.09± 0.56 36.13± 0.54 34.24± 0.49
MAPE (%) 15.06± 0.52 15.37± 0.57 15.78± 0.66 16.54± 0.76 15.48± 0.60

DSTAGNN MAE 19.36± 0.04 20.69± 0.08 21.69± 0.03 22.91± 0.15 20.60± 0.02
RMSE 31.36± 0.17 33.65± 0.27 35.29± 0.22 36.81± 0.04 33.47± 0.15
MAPE (%) 12.88± 0.02 13.54± 0.03 14.22± 0.01 15.04± 0.05 13.58± 0.02

PYNet MAE 18.76±0.02 19.35±0.03 19.88±0.03 20.70±0.04 19.38±0.02
RMSE 30.72±0.08 31.86±0.07 32.79±0.08 33.91±0.07 31.84±0.07
MAPE (%) 12.46±0.24 12.79±0.29 13.15±0.26 13.82±0.31 12.86±0.25

Improve MAE 3.10% 6.48% 7.75% 7.13% 5.92%
RMSE 2.04% 5.32% 6.55% 6.14% 4.87%
MAPE 3.26% 5.54% 7.52% 8.11% 5.30%

6 Conclusion

In this paper, we propose a pyramid network for traffic forecasting tasks, namely
PYNet, where the Pyramid Constructor initialize a pyramid network with a
multi-level structure through a set of convolution layers. Then we perform Trend-
Aware Attention in the pyramid network top-down between adjacent levels to
compute the attention matrix in local context, which not only reduces the impact
of anomalies in the data, but also allows the trend blocks in the lower levels
of the time series to benefit from their own multiplicity of perceptual fields.
In spatial dimension, we learn an adaptive unidirection graph that maintains
the properties of state transfer between nodes by a random walk process over
spatially. Finally the effectiveness of PYNet was verified by experiments on four
traffic flow datasets.
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Abstract. Searching for online information is nowadays a critical task
in a scenario characterized by information overload and misinformation.
To address these issues, it is necessary to provide users with both top-
ically relevant and truthful information. Re-ranking is a strategy often
used in Information Retrieval (IR) to consider multiple dimensions of
relevance. However, re-rankers often analyze the full text of documents
to obtain an overall relevance score at the re-ranking stage, which can
lead to sub-optimal results. Some recent Transformer-based re-rankers
actually consider text passages rather than the entire document, but
focus only on topical relevance. Transformers are also being used in non-
IR solutions to identify information truthfulness, but just to perform a
binary classification task. Therefore, in this article, we propose an IR
model based on re-ranking that focuses on suitably identified text pas-
sages from documents for retrieving both topically relevant and truthful
information. This approach significantly reduces the noise introduced by
query-unrelated content in long documents and allows us to evaluate the
document’s truthfulness against it, enabling more effective retrieval. We
tested the effectiveness of the proposed solution in the context of the
Consumer Health Search task, considering publicly available datasets.
Our results show that the proposed approach statistically outperforms
full-text retrieval models in the context of multidimensional relevance,
such as those based on aggregation, and monodimensional relevance
Transformer-based re-rankers, such as BERT-based re-rankers.

1 Introduction

Retrieving online information that is useful to users concerning their informa-
tion needs is an increasingly complex task in the development of Information
Retrieval Systems (IRSs) [9,11]. This is due to numerous reasons, including:
(i) the exponential increase in the amount of content generated online, which
leads to a situation of information overload [31,49]; (ii) the dissemination of
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information whose level of truthfulness we cannot assess a priori, because of
the phenomenon known as disintermediation [18], which leads to the problem of
misinformation [15,38]; and (iii) the fact that the estimation of the relevance of
information (i.e., the usefulness of retrieved documents to a user’s information
needs) depends on multiple aspects that are necessarily related to the search
task and to the domain in which that search is carried out [12,22].

All these problems have an impact on the decision-making process of the user
searching for useful information. With respect to (i), when a person is exposed
to too much information, it can lead to feelings of stress, anxiety, confusion, and
difficulty in making decisions, as the individual may find it challenging to focus
on the most important information [48]. Problem (ii) also directly impacts per-
sonal choices; indeed, misinformation can have a significant impact on decision-
making, as it can lead people to make choices that are not in their best interest,
such as choosing to take a particular medication based on false information read
online. Very important in this area is the fact that misinformation can also
impact group decision-making processes [5,8]. This can be particularly problem-
atic in contexts such as public health, where decisions have far-reaching conse-
quences – just think of those related to the spread of misinformation during the
COVID-19 period [4,17]. Regarding problem (iii), i.e., the fact that relevance in
IR is a task- and domain-dependent concept, the IR solutions developed must
be tailored to these aspects so as not to compromise users’ decision-making.
For example, the task of retrieving information about a particular disease has
completely different characteristics than a task dedicated to identifying patients
who are candidates for clinical trials. Furthermore, each domain of interest has
its terminologies, concepts, and sources of information to account for. A medical
researcher who needs to retrieve information from medical journals, for example,
could need a solution able to synthesizing information from multiple sources; a
different solution may not be effective for making decisions.

To take into consideration the issues enunciated above, a variety of IR models
have been proposed in the literature, many of which are based on re-ranking to
account from time to time for the peculiarities of the dimensions of relevance,
task, and domain under consideration. An initial ranking phase is usually carried
out with a standard IR model, followed by a second re-ranking phase that can
further analyze the documents found in the first phase for the aspects listed
above. One of the disadvantages of these solutions is that, during re-ranking,
the full text of each document is considered for analysis, which may lead to sub-
optimal results as only certain parts of the document itself may be more relevant
to a specific dimension or relevance, or a particular task, or a specific domain.
Some recent solutions that have proposed the use of specific text passages to
perform re-ranking, often based on the use of Transformer-based architectures,
have only considered topical relevance. Such architectures have also been applied
to the study of online misinformation, but, in this case, the problem has been
addressed as a binary classification task aiming at identifying truthful documents
with respect to non-truthful ones, and not as an IR task.
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Therefore, in this article, we aim to overcome the limitations of current liter-
ature solutions by proposing a Passage Retrieval [30], Transformer-based model
when performing re-ranking. We are especially concerned with identifying the
most topically relevant text passages concerning a query to be used to assess the
level of truthfulness of documents in the considered document collection. This
model is applied in the health domain, and in particular for the task of Consumer
Health Search (CHS), i.e., the search for health information by people without
specific expertise in the medical field [57]. The results obtained show how the
proposed solution enables results that outperform current re-ranking-based solu-
tions that consider the entire document in scenarios involving multidimensional
relevance, such as those that rely on aggregation, and monodimensional relevance
Transformer-based re-rankers like BERT-based re-rankers.

2 Related Work

IR solutions accounting for information truthfulness, especially those based on
re-ranking, never consider this concept (or one of the related concepts employed
in the literature such as credibility, veracity, etc.),1 as a single dimension of rel-
evance. Instead, they act in a multidimensional context that takes into account
at least the topical relevance of the documents to the query beyond truthfulness.
Some approaches compute different relevance scores for the different dimensions
of relevance considered and, subsequently, carry out an aggregation of the topi-
cality score to other relevance dimension scores. For example, distinct solutions
consider credibility, correctness, and understandability beyond topicality [12,22].
They use different solutions to calculate each relevance score, usually on the full
text of documents, and employ either simple and compensative linear aggregation
strategies [1,7,19,43,47,50,56], or rank fusion methods [47,56].

With respect to using text passages – instead of the entire document – to
improve the effectiveness of IR models, there are some solutions that, however,
consider just topicality, and have explored the use of Transformer-based archi-
tectures. In [39], the authors introduce a re-ranking method based on BERT and
Passage Retrieval, specifically for truncated documents that exceed 512 tokens.
One of their models, called Contextualized Embeddings for Document Ranking
(CEDR), combines BERT with other neural IR models – such as Position-Aware
Convolutional Recurrent Relevance Matching (PACRR) [27], Kernelized Neural
Ranking Model (KNRM) [55], and Deep Relevance Matching Model (DRMM)
[25] – to demonstrate its effectiveness. The work presented in [13] proposes an
alternative approach by segmenting long documents into overlapping passages
and defining the document’s relevance score as the score of the first passage, of
the best passage, or as the sum of all passage scores. In [34], the method just

1 Credibility is a concept often identified with believability, and can be considered as a
perception of the information receiver [46]. In this article, we refer to the truthfulness
of health information as much as a factual concept. Hence, the proposed approach
aims to limit the spread of health misinformation understood as “a health-related
claim of fact that is currently false due to a lack of scientific evidence” [10].
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described is extended by incorporating PARADE, i.e., Passage Representation
Aggregation for Document Reranking, a hierarchical layer that uses max-pooling,
attention mechanism, or complete Transformers to aggregate the passage repre-
sentations for long documents. The model presented in [14] incorporates a left-
to-right recurrence window between Transformers to prevent information from
flowing in the opposite direction. Incorporating both Convolutional and Recur-
rent Neural Networks (CNNs and RNNs), the hierarchical model presented in
[40] extracts query-relevant blocks and generates a combined representation of
both queries and blocks. However, this method has a drawback in that it may
overlook pertinent blocks that do not include query terms. To address this issue,
the KeyBLD model described in [35] uses local query-block pre-ranking to select
key blocks, which are segments of a lengthy document containing a maximum
of 63 tokens. These selected blocks are then aggregated to create a condensed
document that can be processed by the IR model.

Transformer-based architectures have also been used extensively to address
the problem of spreading misinformation, but not necessarily in the context of
IR solutions or the health domain. The self-ensemble SCIBERT model proposed
in [32], and the FakeBERT model introduced in [28], combine BERT and CNNs
to process textual content in a bidirectional manner. Other studies, such as [3,
24], have evaluated various Deep Learning models, including Bidirectional Long
Short-Term Memory (BiLSTM) networks and CNNs, for detecting fake news
and rumors in text data. Additionally, [51] fine-tuned Transformer models such
as DistilBERT, COVID-BERT-Base, and COVID-Twitter-Base on a corpus of
COVID-19 tweets for fake news detection tasks, while also exploring other models
like parallel CNNs, single-layer LSTM, and hierarchical attention networks.

So as we can summarize, there are solutions in the health domain based on
IR models that address the problem of the multidimensional nature of relevance
but with approaches that focus on the analysis of the whole document. Other
works use Transformer-based approaches and Passage Retrieval techniques but
consider one single relevance dimension, i.e., topical relevance. Finally, there are
other solutions based on the use of Transformers that aim to tackle the problem
of (health) misinformation dissemination, but as a classification task and not
as an IR one, and thus not considering the relationship between topicality and
truthfulness of the information. The purpose of our model, as illustrated in the
next section, is, therefore, to overcome the limits of current literature solutions
by defining a re-ranking model based on Passage Retrieval and Transformers
to the Consumer Health Search task, to increase the effectiveness of retrieval
by identifying topically relevant textual passages, which will allow us to better
assess information truthfulness by exploiting Transformer attention mechanisms.

3 The Passage Retrieval Transformer-Based Re-Ranking
Model to Truthful Consumer Health Search

The proposed Passage Retrieval Transformer-based re-ranking model consists of
four primary stages: (i) first-stage retrieval using BM25, (ii) passage segmen-
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tation, (iii) Passage Retrieval, and (iv) Transformer-based re-ranking of docu-
ments. These stages are described in detail in the next sections and illustrated
visually in Fig. 1.

Fig. 1. The four stages of the Passage Retrieval Transformer-based re-ranking model.

3.1 First-Stage Retrieval: BM25

Our model’s first-stage retrieval utilizes the BM25 retrieval model [45]. BM25 is
particularly known for its effectiveness and efficiency, and is widely used as the
first-stage ranker in Information Retrieval Systems [2,21,29].

This model calculates a topicality score, namely BM25(q, d), based on word
frequency and distribution in both the query q and the document d, resulting in
a ranked list of the most relevant documents. Formally:

BM25(q, d) =
∑

t∈q,d

log
N − df(t) + 0.5

df(t) + 0.5
· tf(t, d) · (k1 + 1)
tf(t, d) + k1 · (1 − b + b ld

L )
(1)

In the equation, N represents the total number of documents in the collec-
tion, df(t) represents the document frequency for the term t, i.e., the number
of documents containing term t, tf(t, d) refers to the term frequency, i.e., the
number of times term t appears in document d.

To account for differences in document length, length normalization is
applied. ld refers to the length of document d, L represents the average length of
documents in the collection, and k1 and b are internal parameters used to adjust
the scaling of term frequency and document length respectively.
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3.2 Passage Segmentation

The second stage performed by the proposed model is passage segmentation,
which involves breaking down lengthy relevant documents into smaller segments
or passages. Unlike KeyBLD [35], which utilizes blocks, in this paper we opt
to divide documents into sentences by using the NLTK sentence tokenizer,2

as exemplified in Fig. 2. The tokenization process typically involves identifying
boundaries between tokens based on certain rules or patterns, such as whites-
paces, punctuation, or language-specific guidelines.

Fig. 2. An example of the subdivision of a document into sentences in the passage
segmentation stage.

The primary rationale behind this decision is the assumption that sentences
provide more punctual and interpretable information, especially concerning topi-
cal relevance and truthfulness. A block might contain details about several facts,
which would make it difficult to relate it to a query (potentially related to a sin-
gle fact); whereas individual sentences are more likely to talk about individual
facts that can then be easily associated with user queries and evaluated con-
cerning their truthfulness. To test this assumption, we performed a preliminary
evaluation on publicly accessible datasets concerning the truthful health IR task
using different passage segmentation, as explained in more detail in Sect. 4.3.

3.3 Passage Retrieval

Once the sentences have been extracted from the documents in the previous
stage, in the Passage Retrieval phase the most (topically) relevant sentences from
each document about a given query are retrieved. Both passage segmentation and
Passage Retrieval are performed on the top-k documents returned by first-stage
retrieval, discussed in Sect. 3.1, which were estimated to be “globally” relevant
to a query. We use BioBERT [33] to represent both queries and sentences and
cosine similarity to rank sentences. BioBERT is a leading-edge language model in
the biomedical field. It has proven to be particularly effective in various Natural
Language Processing (NLP) tasks related to medical texts, including Named
Entity Recognition (NER) [6,36].

2 https://www.nltk.org/api/nltk.tokenize.html.

https://www.nltk.org/api/nltk.tokenize.html


Passage-and Transformer-Based Truthful Consumer Health Search 361

NER is a process of identifying Named Entities, i.e., real-world entities, such
as people, organizations, places, dates, and more, in unstructured text. It can
enrich the sentences extracted in passage segmentation, discussed in Sect. 3.2, by
providing context in the form of medical entities. For this reason, we incorporated
NER to identify disease and medication entities in sentences before computing
the similarity between the query and the document. In this way, if a query is
about “vitamin D”, we do not obtain sentences that contain “vitamin C,” no
matter how similar the two vector representations may be, as illustrated in Fig. 3.

Fig. 3. Query-relevant Passage Retrieval with NER.

From a formal point of view, the similarity score σ(q, s) for each query-
sentence pair is computed as follows:

σ(q, s) =

{
cos(q, s), if NERq(μ, δ) = NERs(μ, δ)
wd · cos(q, s), otherwise

(2)

In the equation, μ denotes the medication entity, δ the disease entity, cos(q, s)
the cosine similarity, NERx(μ, δ) the Named Entities extracted from x (x ∈
{q, s}), and wd (wd ∈ [0, 1]) is a discount weight,3 employed to decrease the
value of σ(q, s) in the case of non-corresponding Named Entities in q and s.

3.4 Transformer-Based Re-Ranking

Once the similarity values have been computed for all query-sentence pairs, the
most relevant top-h sentences need to be selected, which will form a sentence-
based document on which the actual re-ranking phase will then be carried out.
As it will be illustrated later, the choice of an appropriate number of sentences
becomes critical to the effectiveness of the proposed model.

3 For finding the optimal wd value, we performed a grid search using 5 queries (ran-
domly selected) and a document related to those queries. The grid search involved
systematically testing different values of wd within a predefined range, and evalu-
ating the performance of the system for each value of wd using the NDCG metric.
This process identified the value of wd that yielded the best performance in terms of
the selected metric, and therefore the best overall performance for the system [54].
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Sentence-Based Documents. From a formal point of view, a sentence-based
document, denoted a d̃, is given by:

d̃ = s1 ⊕ s2 ⊕ · · · ⊕ sh (3)

where ⊕ denotes concatenation, and s1, s2, . . . , sh are the sentences ranked
in the first h positions based on σ(q, s) values.

Cross-Encoder Re-Ranking. At this point, we propose the use of a cross-
encoder re-ranker [16] to act on the newly obtained documents. This kind of
approach, utilized in IR, involves combining two sequences, namely a query
(referred to as q) and a document candidate (referred to as d), which are then
passed through a Transformer model, such as BERT. By utilizing Transformer
attention heads, the model can directly capture correlations between elements of
the two sequences, enabling the calculation of Retrieval Status Value RSV(q, d).
In formal terms:

RSV(q, d) = CE([CLS] q [SEP] d [SEP]) · W (4)

where CE is the cross-encoder, CLS and SEP are special tokens to represent the
classifier token and the separator token, and W is a learned weight matrix that
represents the relationship between the query and document representations.

For our purposes, we fed the cross-encoder for the computation of the RSV
not with the original full documents, but with the considered sentence-based
documents, as exemplified at a high level in Fig. 4 and as formally defined as
follows:

RSV(q, d̃) = CE([CLS] q [SEP] d̃ [SEP]) · W (5)

It is worth to be underlined that, since the labels used for fine-tuning the
BERT model are based on both topicality and truthfulness, the proposed model
is able to consider both relevance dimensions in the re-ranking phase. By reduc-
ing the document size by considering only query-relevant passages built as illus-
trated before, we provide the cross-encoder with a more focused and com-
pact representation of the document, potentially improving the multidimen-
sional retrieval scoring. This also reduces the computational complexity and
time required for the cross-encoder to process the document, as it only needs to
consider the relevant passages instead of the entire document.

4 Experimental Evaluation

We concentrated on the ad-hoc retrieval task of the TREC-2020 Health Mis-
information Track [12] and CLEF-2020 eHealth Track [23] for evaluation pur-
poses. Both tracks pertain to Consumer Health Search (CHS) and give weight
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Fig. 4. An example of the CE architecture adopted in the proposed model.

to credibility as an essential factor of relevance, in addition to topicality.4 We
utilized a subset of 1 million documents from each track, with the TREC-2020
Track encompassing 46 topics linked to Coronavirus and the CLEF-2020 Track
including 50 medical conditions. The TREC-2020 Health Misinformation Track
categorizes documents into binary labels, with those that meet the criteria of
being “topically relevant and credible” labeled as “1”, and the remaining labeled
as “0”. The same binary labeling procedure applies to both topicality and cred-
ibility for the CLEF-2020 eHealth Track.

4.1 Implementation Details

For indexing purposes and to implement the BM25 model, we used PyTerrier
[37]. We created two indexes: one for TREC-2020 and the other for CLEF-
2020. For re-ranking, we used the top 500 documents retrieved from first-stage
retrieval. Since the document set pertains to health-related topics, we utilized
BioBERT [33] for cross-encoder re-ranking training and inference, in particular
dmis-lab/biobert-v1.1.5 As there was no provided split for TREC-2020 and
CLEF-2020, we trained the cross-encoder on 80% of the queries from one dataset
(e.g., TREC-2020) and employed the other query set as the test set. We selected
all queries and documents from the other dataset (CLEF-2020) as the validation
4 Given the current lack of datasets in Consumer Health Search that are labeled

with respect to both topicality and truthfulness (understood as the factuality of
the information, as previously introduced), in the experiments we approximate this
concept with that of credibility used in datasets.

5 https://huggingface.co/dmis-lab/biobert-v1.1.

https://huggingface.co/dmis-lab/biobert-v1.1
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set and vice versa. The BioBERT model was fine-tuned using a batch size of
4 and a maximum sequence length of 512 tokens for 10 epochs with the Adam
optimizer and an initial learning rate of 2 × 10−5. For training and inference,
we used the HuggingFace library [53], the cross-encoder package of Sentence-
Transformers library [44], and PyTorch [41].

4.2 Baselines and Evaluation Metrics

The baseline models that were considered for comparative evaluation of the
proposed solution are:

– BM25: the BM25 model implemented by PyTerrier;
– WAM: the aggregation-based multidimensional relevance model presented in

[50], based on a simple weighted average of distinct relevance scores. Specifi-
cally, weights associated with topicality and credibility are set as in the best
model described in [50]. This model is tested with different percentages of
relevant sentences, i.e., 5%, 10%, 15%, 20%, 25%, and Full Document;

– KeyBLD: the model for key-block detection that selects the most informative
blocks from a document based on their topical relevance to the query;

– PARADE:6 the Passage Retrieval model for document ranking that uses
aggregation techniques to combine relevance signals from a document’s pas-
sages;

– CEfull (512 tokens relevant passages): the cross-encoder model for re-ranking
as proposed in [16], based on Equation (4), and with the maximum length
obtainable for a BERT document, i.e., 512 tokens.

In the proposed solution, the last cross-encoder for re-ranking is employed
in association with different percentages of relevant sentences constituting the
sentence-based document, according to Equation (5). In this case, the model is
denoted as CEp, where p indicates a given percentage of sentences, i.e., 5%, 10%,
15%, 20%, 25%. The evaluation metrics considered for experiments are Normal-
ized Discounted Cumulative Gain at 10 and 20 (NDCG@10, NDCG@20), Preci-
sion at 10 and 20 (P@10, P@20), Mean Reciprocal Rank at 10 (MRR@10), and
Mean Average Precision (MAP). All results are statistically significant accord-
ing to a paired t-test (p < 0.05) with Bonferroni correction for multiple testing,
as described in [52].

4.3 Results

In this section we provide the results of the evaluation of the proposed solution
against a couple of research questions, i.e., a preliminary research question that
we estimated to be useful with respect to giving an indication about the useful-
ness of the sentences as text passages, and the actual research question about
the effectiveness of the proposed solution. Specifically:

6 https://github.com/canjiali/PARADE/.

https://github.com/canjiali/PARADE/
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– R1. What is the impact of using sentence-level representations instead of
block-level representations for document re-ranking based on topicality and
truthfulness?

– R2. Is the use of Passage Retrieval and Transformer-based re-rankers actually
more effective than current literature approaches?

R1. Before testing our model against baselines, we actually wanted to verify
that the choice of a single sentence as the length of the text passage was indeed
the best one. To this aim, we tested the CEfull re-ranking model (the most
effective at present in the literature) filling the 512 tokens with top-h passages
constituted by 1 sentence, 2 sentences, and blocks. The results of this evaluation
are shown in Table 1.

Table 1. Comparison of the CEfull cross-encoder re-ranker performance using different
lengths of textual passages to fill the 512-token length of BERT documents on the CLEF
and TREC datasets. In bold the best results.

Passage Type CLEF

NDCG@10 NDCG@20 P@10 P@20 MRR@10 MAP

CEfull 1 sentence 0.2843 0.2848 0.2811 0.2818 0.4801 0.1474

2 sentences 0.2531 0.2511 0.2503 0.2495 0.4221 0.1023

blocks 0.2632 0.2612 0.2661 0.2615 0.4434 0.1231

Passage Type TREC

NDCG@10 NDCG@20 P@10 P@20 MRR@10 MAP

CEfull 1 sentence 0.6055 0.6023 0.6059 0.6011 0.6997 0.2986

2 sentences 0.5601 0.5578 0.5545 0.5396 0.6311 0.2589

blocks 0.5691 0.5671 0.5631 0.5403 0.6324 0.2677

According to the findings, using one sentence as the passage type provides
superior performance, as evidenced by its higher scores in all metrics for both
datasets. This is most probably because sentences are more succinct compared
to blocks or two-sentence passages, which can contain irrelevant or conflicting
information. The results imply that employing one sentence as the passage type
can enhance the cross-encoder model’s effectiveness in document retrieval tasks.
Nevertheless, determining the best approach may be contingent on the datasets
and the task considered, and additional experimentation may be required.

R2. The results of the different literature models considered as a baseline and
the proposed CEp re-ranking model are shown below in Table 2 concerning both
CLEF and TREC datasets.

Based on the results, the BM25 model, the baseline IR model, underperforms
compared to the other models. When using Deep-Learning-based models, the
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Table 2. Comparison of the performance of different models on CLEF and TREC
datasets, with various percentages of relevant passages and Full Document (512 tokens
in the cross-encoder model) as input. In bold the best results.

Model Rel. Passage CLEF

NDCG@10 NDCG@20 P@10 P@20 MRR@10 MAP

BM25 0.1054 0.1578 0.1081 0.1954 0.1578 0.0764

WAM Full Document 0.0865 0.1591 0.1002 0.2034 0.1232 0.0632

5% 0.0912 0.1699 0.1096 0.2156 0.1503 0.0694

10% 0.0993 0.1643 0.1195 0.2213 0.1596 0.0701

15% 0.1031 0.1694 0.1254 0.2284 0.1612 0.0744

20% 0.1342 0.1864 0.1495 0.2443 0.1965 0.0985

25% 0.1032 0.1703 0.1295 0.2294 0.1664 0.0792

KeyBLD 0.2635 0.261 0.2645 0.2645 0.4431 0.1233

PARADE 0.2512 0.2534 0.2551 0.2593 0.4342 0.1213

CEfull 512 tokens 0.2843 0.2848 0.2811 0.2818 0.4801 0.1474

CE5 5% 0.2956 0.2958 0.2899 0.2931 0.5083 0.1499

CE10 10% 0.3145 0.3058 0.3002 0.3012 0.5293 0.1552

CE15 15% 0.3215 0.3198 0.3112 0.3098 0.5453 0.1659

CE20 20% 0.3475 0.3446 0.3423 0.3445 0.5923 0.1878

CE25 25% 0.3398 0.3223 0.3301 0.3311 0.5545 0.1599

Model Relevant Passage TREC

NDCG@10 NDCG@20 P@10 P@20 MRR@10 MAP

BM25 0.4166 0.4231 0.4177 0.4266 0.5107 0.2142

WAM Full Document 0.5065 0.5164 0.4976 0.5001 0.5546 0.2453

5% 0.5112 0.5199 0.4999 0.5051 0.6012 0.2579

10% 0.5231 0.5221 0.5034 0.5093 0.6231 0.2734

15% 0.5225 0.5223 0.5087 0.5102 0.6333 0.2788

20% 0.5546 0.5533 0.5234 0.5212 0.6443 0.2945

25% 0.5264 0.5288 0.5097 0.5143 0.6332 0.2834

KeyBLD 0.5432 0.5443 0.5342 0.5403 0.6324 0.2677

PARADE 0.5693 0.5664 0.5634 0.5669 0.6589 0.2785

CEfull 512 tokens 0.6055 0.6023 0.6059 0.6011 0.6997 0.2986

CE5 5% 0.6194 0.6156 0.6012 0.6001 0.7211 0.3223

CE10 10% 0.6534 0.6429 0.6267 0.6144 0.7345 0.3414

CE15 15% 0.6623 0.6602 0.6322 0.6234 0.7541 0.3568

CE20 20% 0.6934 0.6801 0.6511 0.6311 0.7834 0.3784

CE25 25% 0.6634 0.6597 0.6374 0.6232 0.7431 0.3493

WAM model shows decent performance by utilizing query-relevant passages to
reduce the document to 20% of its original size. Nevertheless, the CE model (in
all its configurations) surpasses all other baseline models. This model utilizes
a cross-encoder to compute relevance scores between the query and document,
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and its performance improves considerably when using query-relevant passages,
as proposed in this work through the CEp model. In particular, CEp obtains the
best results when the document is reduced to 20% of its original size using query-
relevant passages. With higher percentages, performance begins to decline. This
can be identified as demonstrating that after a certain number of sentences are
taken into consideration, the effectiveness of identifying the truly most relevant
ones is lost and we move back toward the introduction of noise that characterizes
the scenario of taking full documents into consideration.

5 Conclusion

In the literature, various IR models have been proposed in the context of multidi-
mensional relevance. Re-ranking models are often used in a two-phase approach
where an initial ranking is performed with a standard IR model followed by a
re-ranking phase that further analyzes the documents for specific dimensions of
relevance, tasks, or domains. However, this approach has limitations as it con-
siders the full text of each document during re-ranking, which may not be opti-
mal for both effectiveness and efficiency. Many effective and efficient re-rankers
nowadays are based on the use of Transformers, but they focus only on topi-
cal relevance. Transformers are also used for many misinformation identification
solutions, but not in IR.

To overcome these issues, this paper proposed the usage of a Passage
Retrieval solution during Transformer-based re-ranking to identify the most rel-
evant portions of text for considering both topical relevance and information
truthfulness in the health domain, for the task of Consumer Health Search.
Results show that this proposed solution outperforms current re-ranking-based
solutions that consider the entire document in scenarios involving multidimen-
sional relevance, such as those that rely on aggregation, and monodimensional
relevance Transformer-based re-rankers like BERT-based re-rankers.

As a future research direction, we aim to add an explainability layer to
the model that details the contribution that individual text passages have with
respect to the consideration of distinct dimensions of relevance in the re-ranking
process. In addition, our aim is to employ and fine-tune this model in other
domains too. However, it is important to note that the availability of comprehen-
sive datasets with both topicality and truthfulness labels across other domains
is still hard to find in the field of Information Retrieval, also with respect to the
health domain itself. This is why it is important to continue the study and refine-
ment of evaluation initiatives in the IR domain that can make such resources
available [20,26,42].
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a subset of such datasets. Information and code for reconstructing this subset from
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Abstract. Health misinformation detection is a challenging but urgent
problem in the field of information governance. In recent years, some
studies have utilized long-form text detection models for this task, pro-
ducing some promising early results. However, we found that most health
information online is a short text, especially knowledge-based informa-
tion. Meanwhile, the explainability of detection results is as important
as the detection accuracy. There is no appropriate explainable short
health misinformation detection model currently. To address these issues,
we propose a novel Knowledge Enabled Short HEalth Misinformation
detection framework, called KESHEM. This method extracts abundant
knowledge from multiple, multi-form, and dynamically updated knowl-
edge graphs (KGs) as supplementary material and effectively represents
semantic features of the information contents and the external knowledge
by powerful language models. KG-attention is then applied to distinguish
the effects of each external knowledge for the information credibility rea-
soning and enhance the model’s explainability. We build a credible Chi-
nese short text dataset for better evaluation and future research. Exten-
sive experiments demonstrate that KESHEM significantly outperforms
competing methods and accurately identifies important knowledge that
explains the veracity of short health information.

Keywords: Short health misinformation · Knowledge graph ·
Explainable artificial intelligence · Attention mechanism

1 Introduction

With the popularity of various social media, the Internet has accumulated
a wealth of information, data, and knowledge. Health information, referred to
health-related statements, is an essential part of Internet information. According
to [6], 81.5% of Americans retrieve health information online. However, due to
the open nature of the Internet and ever-stronger text generators like GPT-4
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Fig. 1. An example of a piece of short health information and its related knowledge
from knowledge graphs (KGs)

[19], there exists a lot of unrecognizable health misinformation on the Internet.
Health misinformation can have serious implications for individuals and society,
as it can harm health and increase the pressure on the medical system. For
instance, a cancer patient mistakenly thought that a cancer treatment using
ginger was reliable health information, which led to the death of the patient [3].
Thus, it is of great significance to effectively detect health misinformation online
to deal with these problems.

Health misinformation has some unique characteristics that make its detec-
tion much more difficult than general information. First, health misinformation is
usually a short statement presented in a relatively streamlined “subject-relation-
object” form (see Fig. 1). Accordingly, health misinformation has fewer semantic
features, thus text-CNN [11] and LSTM [7], which are typical text classification
methods, are ineffective. Second, understanding health misinformation requires
a high level of professional knowledge, which may result in fewer or incorrect
comments and likes on social media. Thus, social context-based misinformation
detection methods like CSI [24] and dEFEND [26] that use information propaga-
tion features, user group features, or comment contents are not always working
out [2]. Third, most health misinformation is not hot news, that spreads without
obvious periods of explosion or reduction, making it more difficult to discover
and clarify [3]. However, there is no previous work to explore the detection of
short health misinformation with these specific characteristics.

In this light, our research goal is to detect single-sentence health misinforma-
tion, without any other social and visual information, named the Short Health
Misinformation Detection (SHMID) task. Considering external knowledge as a
crucial factor for SHMID, we innovatively propose a novel Knowledge Enabled
Short HEalth Misinformation detection framework, called KESHEM. We facil-
itate the model with external knowledge for better detection performance.

Knowledge graphs (KGs) are adopted as the sources of external knowledge
for our proposed KESHEM, which have stored a large amount of real-world
knowledge. Accordingly, the model first extracts all the relevant external knowl-
edge from multiple, multi-form, and dynamically updated KGs by the knowledge
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extraction layer. As seen in Fig. 1, given a piece of short health misinformation
“long-term dysmenorrhea can lead to infertility”, KESHEM obtains the knowl-
edge about the real cause of infertility from KG3 and various dysmenorrhea-
related diseases from KG1 and KG2. Then , the approach leverages the power
of pre-trained language models to capture deep semantic features of informa-
tion contents and external knowledge [4,18,22]. Finally , a KG-attention and
a prediction layer are exploited to infer the credibility of the healthinforma-
tion with the external knowledge. Meanwhile, according to attention weights
obtained by the KG-attention layer, KESHEM can present persuasive post-hoc
explanations consisting of important knowledge pieces to enhance the model
explainability, which significantly promotes public confidence in model results
and helps experts to fact-check health misinformation manually [28]. Addition-
ally, we use the focal loss to address dataset sample imbalances during training
and decouple the knowledge extraction layer with the latter knowledge repre-
sentation and classification layers for better adaptation to the dynamic update
of the KGs. The main contributions of the paper include:

– We study a novel problem of short health misinformation detection (SHMID),
and build a credible Chinese short health misinformation detection dataset,
Jiaozhen, for better evaluation and future research;

– We propose a novel method KESHEM (Knowledge Enabled Short HEalth
Misinformation detection framework) that incorporates external knowledge
from multiple KGs into information contents to boost SHMID accuracy per-
formance, as well as capture explainable knowledge pieces as post-hoc expla-
nations to enhance users’ confidence in model results;

– KESHEM significantly outperforms several baselines based on extensive exper-
iments. We further design a novel computable evaluation method named
Cumulative Loss (CL) to prove the explainability of KESHEM quantitatively.

2 Related Work

2.1 Health Misinformation Detection

HMID is one of the most urgent and challenging parts of misinformation detec-
tion (MID), aiming to screen health, disease, care, and other related informa-
tion. Most previous work just applies existing MID frameworks based on con-
tents for HMID, without capturing unique characteristics of HMID tasks [14,18].
There have also been studies of integrating user interaction characteristics for
HMID, but what they detected was misinformation about public health emer-
gencies(e.g., Zika Fever, Ebola, and COVID-19) [12,15,25]. This type of health
information is more similar to fake news, instead of knowledge-based information.
Besides, some studies incorporate web structures, contexts, and other external
information for better HMID performance [29,30]. However, health misinforma-
tion, as aforementioned, usually just contains short plain texts in many scenarios.
How to screen health misinformation with textual features only remains obscure.
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DETERRENT [2] firstly explores combining a medical KG for long-text HMID,
creating a new research perspective for HMID. Moreover, due to the difficulties
in obtaining credible HMID datasets, there is no benchmark HMID dataset in
Chinese yet, which seriously hinders the development of research on HMID [34].

Hence, this study aims to design a practical detection framework focused on
the characteristics of health misinformation, and construct a credible short-text
dataset in Chinese for future research on SHMID.

2.2 Misinformation Detection with Knowledge Graphs

MID methods with knowledge graphs can be divided into three categories: (1)
knowledge graph-based methods [5,9,20], which use scoring functions to
calculate the correlation between subject embeddings, relation embeddings, and
object embeddings; (2) multimodal methods, which applies multi-form fea-
tures for MID. KMAGCN [21] integrates image information, external knowl-
edge, and information contents together to represent the information, of which
the accuracy in public dataset exceeds 0.8; (3) Knowledge graph enabled
models, which integrates contents and KG information for MID.

DETERRENT [2] is the only one to apply the KG enabled architecture to
MID tasks yet. The model verified on two disease datasets outperforms sev-
eral baselines by a large margin, proving the effectiveness of the combination of
information contents and external knowledge for SHMID. But it also has some
limitations: first, the KG applied by it contains two kinds of relations, including
“positive relations” (e.g.,<A, cure, B>) and “negative relations” (e.g., <A, can’t
cure B>). These normative knowledge structures, especially the “negative rela-
tions” are extremely beneficial for HMID. However, most of the KGs contain few
“negative relations”. Second, it uses GCN to learn entity representations, which
cannot adapt to the dynamic updates of the KG, and it just integrates one single
external KG. Third, positive and negative samples on their evaluation datasets
are collected from different platforms. A classifier trained on such datasets is
likely to be a platform classifier instead of a misinformation detector [3].

Compared with it, our model can simultaneously support multiple, multi-
form, and dynamically updated public KGs to improve detection performance.
Meanwhile, we collect true and false health information from the same platform,
ensuring the consistency of information formats of positive and negative samples.

3 Preliminaries

3.1 Definitions and Notations

Definition 1. Short health information. Let S be a piece of short health
information, consisting of n words {wi}n

i=1. Each word in Chinese wci =
{t1, t2, ..., tm} further contains m Chinese characters. In the following descrip-
tion, we will keep using token to denote a Chinese character or an English word.
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Definition 2. External knowledge. Let G = {e, r} be a KG, consisting of triples
presented as {(ei, rl, ej) | ei, ej ∈ e, rl ∈ r}, where ei and ej are head entity and
tail entity, respectively, and rl is the relation between them. External knowledge
of each short health information S, is a set of k knowledge triples extracted from
multiple KGs Gs, denoted as E = {E1, E2, ..., Ek}.

Fig. 2. The proposed framework KESHEM consists of four components: (1) a knowl-
edge extraction layer, (2) an embedding layer, (3) a KG-attention layer, and (4) a
prediction layer.

3.2 Problem Formulation

With the above definitions and notations, we formulate the knowledge enabled
SHMID task as follows:

Knowledge Enabled SHMID: Given a piece of short health information S and
multiple KGs Gs, extract external knowledge E of S from Gs, and learn a
classification function f : f(S, E) → (α, ŷ), where α is a weight matrix indicating
each knowledge’s explainability for the information’s credibility classification ŷ.

4 The Proposed Framework: KESHEM

As shown in Fig. 2, our proposed framework consists of 4 parts: 1) a knowledge
extraction layer, which extracts relevant triples of an input short health infor-
mation from multiple KGs to form an external knowledge set; 2) an embed-
ding layer, representing deep semantic features of the short health informa-
tion and the external knowledge set; 3) a KG-attention layer, which distin-
guishes reference degrees of different triples in external knowledge set for the
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classification and obtains a renewed information-guided representation; and 4)
a prediction layer, which integrates the short health information representa-
tion and the renewed information-guided external knowledge set for the final
classification.

4.1 Knowledge Extraction Layer

To extract external knowledge from multiple, multi-form, and dynamically
updated KGs, we compile the general and decoupled knowledge extraction layer
with the query construction (Q-Con) and knowledge construction (K-Con) pro-
cesses. Specifically, given a dataset consisting of m pieces of short health infor-
mation Sall = {{woi}n

i=1}m
o=1 and g KGs Gs = {{(epi, rpl, epj)}}g

p=1, we first
construct a downward query and an upward query based on all the words W in
Sall in the Q-Con period. The downward query uses W to match all the head
entities Ehead in Gs to build a dictionary containing various key-value pairs
Dpairs = {(wi : {(ri, ei)}) | wi ∈ W ∩ Ehead}, where the keys are the common
entities between W and Ehead, and the values are the corresponding relations and
tail entities. Similarly, the upward query uses W to match all the tail entities Etail

in Gs to construct a dictionary as Upairs = {(wi : {(ri, ei)}) | wi ∈ W ∩ Etail}.
Q-Con can be formulated as (1),

Dpairs, Upairs = Q_Con(Sall, Gs). (1)

Then, in K-Con, for each information S in Sall, we retrieve up to k pieces of
related triples in Gs based on Dpairs and Upairs to form an external knowledge
set for S, denoted as E = {E1, E2, ..., Ek}. K-Con can be formulated as (2),

E = K_Con(S,Dpairs, Upairs). (2)

In real applications, when the KGs have changed, KESHEM only needs to update
Dpairs and Upairs of the knowledge extraction layer, while the later model layers
do not need to be retrained.

4.2 Embedding Layer

For the input short health information S = {t1, t2, ..., tn}, we initial the token
sequence as X = {x[CLS], x1, x2, ..., xn, x[SEP ]}, where X ∈ R(n+2)∗d, n repre-
sents the sequence length, and d represents the dimensionality of token vectors.
[CLS] and [SEP] are special tokens, which respectively refer to a classification
token and a sentence segmentation token. we denote the final hidden vector of the
special [CLS] token after fine-tuning as the information representation hS ∈ Rd.

As for the external knowledge set E = {E1, E2, ..., Ek}, we first embed each
external knowledge piece Ei following the above health information embedding
approach, and obtain the basic external knowledge set representation as hE′ ∈
Rk∗d. To further enhance the holistic nature of the representation of E, we
implement another Transformer encoder [31] to capture the correlation between
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knowledge pieces. Accordingly, the final representation of the external knowledge
set is denoted as hE ∈ Rk∗d. Given the fact that the Transformer encoder
has been widely used in previous studies, we omit the exhaustive background
descriptions of the model architectures and emphasize the KG-attention layer in
the following section.

4.3 KG-Attention Layer

We have filtered various related external knowledge from multiple KGs through
the former modules. However, the effects of different triples on the health mis-
information detection task could have subtle differences. Thus, we introduce a
novel KG-attention layer to capture external knowledge by assigning attention
weights to all knowledge pieces, boosting the model’s accuracy and explainability
performance. The formula to calculate general attention is as follows:

Att(Q,K, V ) = softmax(
QKT

√
dk

)V, (3)

where queries, keys, and values are packed together into matrices Q, K, and V ,
dk is the dimension of queries and keys.

Herein, queries come from the short health information representation hS as
seen in Fig. 2. Meanwhile, keys and values come from the external knowledge
set representation hE . By calculating the attention between health information
and its corresponding external knowledge set, each piece of external knowledge
in the knowledge set is assigned a weight αi to represent its importance:

Q = WQhS ,K = WKhE , V = WV hE , (4)

α = softmax(
QKT

√
d

), (5)

hE_S = α · V, (6)

where WQ, WK , and WV are parameter matrices, α ∈ Rk refers to attention dis-
tribution between short health information and its external knowledge set, and
hE_S ∈ Rd denotes the renewed information-guided knowledge representation.

4.4 Prediction Layer

The final representation of knowledge enabled short health information, i.e., H,
can be obtained by concatenating hS and hE_S . Afterward, H is fed into a fully
connected module followed by a softmax function to predict the credibility of
the short health information with the following objective:

ŷ = softmax(Wf ·H + bf ), (7)
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H = Concat(hS , hE_S), (8)

where ŷ is the predicted value which indicates the probability of the information
being false. y ∈ {0, 1} denotes the ground truth label. bf ∈ R1∗2 is bias term.

Additionally, we adopt the focal loss function [16] to alleviate the possible
sample imbalance of SHMID datasets in this work. An unbalanced dataset can
cause overfitting due to over-dependence on the smaller samples and lead to
unsatisfactory model results. For a given piece of information, the goal is to
minimize the focal loss as follows:

Loss(y, ŷ) = −[yγ · log(ŷ) + (1 − y)γ · log(1 − ŷ)]. (9)

Here, (1− ŷ) is a modulation factor. When a sample is misclassified, if ŷ is very
small, the modulation factor is close to 1, which does not affect the original loss.
In contrast, if ŷ approaches 1, the modulation factor is close to 0, which reduces
the weight of the loss of easy-to-classify samples. γ controls the rate of weight
reduction.

5 Experiment

In this section, we present the experiments to evaluate the effectiveness of
KESHEM. Specifically, we aim to answer the following evaluation questions:

Q1: Can KESHEM improve SHMID performance by coupling short health infor-
mation contents and multiple external knowledge?

Q2: How effective are introducing multiple external knowledge and different
model components in improving the SHMID performance of KESHEM?

Q3: Can KESHEM capture important external knowledge to provide reasonable
explanations about SHMID results?

5.1 Datasets

To better evaluate the performance of KESHEM, we use two datasets, respec-
tively, in Chinese and English.

Jiaozhen. Jiaozhen (“fact-checking” in Chinese) is one of the most influential
Chinese rumor-refuting platforms, founded in 2015 by Tencent News. We crawled
5,352 pieces of misinformation and 1,369 pieces of verified true health information
from the food safety and the medical health columns of its WeChat applet. Since
there is no HMID benchmark dataset in Chinese so far, the constructed dataset
and all our implement codes are publicly available for research purposes1.

Diabetes [2]. It gathered 1,661 pieces of true diabetes-related information
from seven reliable media outlets (e.g., Healthline and National Institutes of
Health), and 608 pieces of false diabetes-related information from Snopes.com.
We use all the titles which are short texts as our detection targets.

1 https://github.com/fenella0401/KESHEM.

https://github.com/fenella0401/KESHEM
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As the KGs, we employ three Chinese KGs, Cn-DBpedia [33], MedicalKG
[17], and Web health concept KG2, as well as three English KGs, ConceptNet
[27], HealthKG [23], and SemMedDB [10]. CN-DBpedia and ConceptNet are two
large-scale open-domain KGs, containing enormous entities and relations. To
reduce the calculation amount, we refine the official CN-DBpedia by eliminating
triples whose entity names are less than 2 in length or contain special charac-
ters, termed as CN-DBpedia\s. Since that ConceptNet is dynamically updated,
we directly use its official API to obtain the required external knowledge. The
other KGs are health domain KGs which contain more professional health-related
knowledge. The detailed statistics of all the applied KGs are shown in Table 1.

5.2 Baselines

We compare KESHEM with representative and state-of-the-art text classification
and MID algorithms, which are listed as follows:

Table 1. The statistics of KGs. ConceptNet is dynamically updated.

KG # Entities # Relations # Triples

Cn-DBpedia\s 5,709,027 62,278 5,168,865
MedicalKG 13,558 1 13,864
Web health concept KG 7,387 3 13,046
ConceptNet >8,000,000 36 >21,000,000
HealthKG 360 1 3,709
SemMedDB 214,572 1 214,590

(1) text-CNN: text-CNN [11] is a text classification model utilizing convo-
lutional neural networks to model sentences.
(2) BERT: BERT [4] is developed by Google for pre-training language rep-
resentation, which obtains state-of-the-art results on 11 NLP tasks when pro-
moted.
(3) CSI\c: CSI [24] is a hybrid fake news detection model whose content
representation is modeled via an LSTM model with the article embedding
via Doc2Vec [13]. Due to the lack of user response, the corresponding part of
the model is ignored, and termed as CSI\c.
(4) dEFEND\c: dEFEND [26] proposes a deep hierarchical co-attention
network to learn information contents and user comments features for fake
news detection. Due to the lack of user response, the corresponding part of
the model is ignored, and termed as dEFEND\c.

2 https://github.com/dagege/huadingkg.

https://github.com/dagege/huadingkg
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(5) TransE: TransE [1] is a classic KG embedding method, embedding enti-
ties and relations into latent vectors. We first learn representations of Cn-
DBpedia\s and diabetes-related KG. Then, we calculate the mean values of
entity embeddings and relation embeddings in each information as the final
health information embeddings for SHMID. Diabetes-related KG refers to a
partial KG composed of diabetes-related triples extracted from ConceptNet.
(6) DETERRENT: DETERRENT [2] is an HMID model, that utilizes
knowledge-guided information embeddings for detection. We employ DETER-
RENT with MedicalKG for Chinese SHMID and diabetes-related KG for
English SHMID.
(7) K-BERT: K-BERT [17] is an improved knowledge enabled language
representation model with KGs, in which triples are injected into the sentences
as domain knowledge. We train K-BERT with the same KGs as our model.
(8) KPL: KPL [8] is a state-of-the-art fake news detection framework that
leverages a pre-trained language model by prompt learning with external
knowledge.

We choose the above contrasting methods that use features from the four
aspects: (1) only information contents, such as text-CNN, BERT, CSI\c, and
dEFEND\c; (2) only KG, such as TransE; (3) contents with a single KG,
such as DETERRENT and (4) contents with multiple KGs, such as K-BERT
and KPL.

To evaluate the performance of KESHEM and these baseline models, we use
the following metrics, which are commonly used to evaluate classifiers in related
areas: Accuracy, Precision, Recall, and F1 score.

5.3 Accuracy Performance (Q1)

To evaluate the effectiveness of coupling short health information contents and
multiple external knowledge in improving SHMID performance (Q1), we com-
pare KESHEM with the representative text classification and MID algorithms
introduced in Sect. 5.2 when dealing with information in different languages. All
competing methods’ detection performance is summarized in Table 2. From the
table, we make the following observations:

(1) Content-based methods: previous studies have proved that informa-
tion content is the most important feature in MID tasks [2,26]. Similarly,
it can be seen clearly that the F1 scores of the content-based methods are
almost 10% higher than that of the knowledge graph-based method. For the
Chinese dataset, text-CNN> BERT> dEFEND\c> CSI\c in F1 score. For
the English dataset, BERT, CSI\c> text-CNN> dEFEND\c.
(2) Knowledge graph-based method: the performance of TransE is less
satisfactory. Although the knowledge graph-based methods can better learn
the feature representations of entities and relations of external knowledge,
they do not obtain critical semantic features of information contents.
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Table 2. Performance Comparison on Jiaozhen and Diabetes datasets. KESHEM out-
performs all state-of-the-art baselines including all four types of methods.

Models Jiaozhen Diabetes
Accuracy Precision Recall F1 Accuracy Precision Recall F1

Content-based Methods
text-CNN 0.8346 0.7563 0.6761 0.7013 0.8962 0.8709 0.8609 0.8657
BERT 0.8073 0.7016 0.6936 0.6974 0.8962 0.8647 0.8741 0.8692
CSI\c 0.7924 0.6304 0.5303 0.5143 0.8962 0.8647 0.8741 0.8692
dEFEND\c 0.8168 0.7384 0.5965 0.6136 0.8698 0.8341 0.8324 0.8332
Knowledge graph-based Method
TransE 0.7917 0.6172 0.5212 0.4969 0.8411 0.8936 0.7077 0.7439
Single Knowledge graph enabled Methods
DETERRENT 0.7989 0.6896 0.5225 0.4939 0.7395 0.7163 0.7495 0.7237
KESHEM\1 0.8566 0.8513 0.8566 0.8533 0.9029 0.9011 0.9029 0.9012
Multiple knowledge graphs enabled Methods
K-BERT 0.8543 0.7759 0.7729 0.7744 0.7417 0.6643 0.6505 0.6561
KPL 0.8545 0.8511 0.8545 0.8524 0.9146 0.9160 0.9146 0.9143
KESHEM 0.8673 0.8648 0.8673 0.8659 0.9338 0.9332 0.9338 0.9334

(3) Single knowledge graph enabled method: the performance of
DETERRENT on our datasets is not satisfactory. It mistakes “positive rela-
tions” as “negative relations” in the KG, which decreases the model detection
effect. Actually, all the triples contained in the applied KGs are “positive
relations”. For a fair comparison, we also apply a single KG on KESHEM
for an additional experiment, termed KESHEM\1. The result of KESHEM\1
surpasses DETERRENT and all the other baselines.
(4) Multiple knowledge graphs enabled methods: our model outper-
forms K-BERT and KPL when using the same three KGs for evaluation.
Although K-BERT performs well on the Jiaozhen dataset, its classification
performance is abysmal on the Diabetes dataset, indicating our model is more
robust. As for KPL, its performance is better than all the other baseline
models, proving the effectiveness and great potential of enriching prompt
template representations with entity knowledge when applying prompt learn-
ing. However, more trials are needed to further optimize the design of prompt
templates, which is relatively time-consuming.
(5) Generally, we see KESHEM with multiple KGs consistently outper-
forms all competing methods in all metrics. Specifically, it achieves a relative
improvement of 1.50%, 1.58% on the Jiaozhen dataset and 2.10%, 2.09% on
the Diabetes dataset, comparing against the best results of baselines in Accu-
racy and F1 score.
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5.4 Ablation Analysis (Q2)

To investigate the influence of the KG number and each component of KESHEM
for SHMID performance (Q2), we make extensive ablation analyses as follows.

Table 3. Effects of applying different numbers of KGs.

# of KGs Jiaozhen Diabetes
Accuracy Precision Recall F1 Accuracy Precision Recall F1

1 0.8566 0.8513 0.8566 0.8533 0.9029 0.9011 0.9029 0.9012
2 0.8578 0.8548 0.8578 0.8561 0.9316 0.9309 0.9316 0.9311
3 0.8673 0.8648 0.8673 0.8659 0.9338 0.9332 0.9338 0.9334

Fig. 3. Impact analysis of external knowledge, KG-attention, and focal loss function
for SHMID.

Effects of Multiple KGs. We vary the number of KGs for KESHEM to inves-
tigate the efficiency of using multiple KGs. In particular, we search the number
of KGs in the set of {1, 2, 3}. We select different KGs to conduct experiments and
take the best results for the comparative analysis. The results are summarized
in Table 3, from which we make the following observations:

– By analyzing Table 2 and 3, we can see that KESHEM with different num-
bers of KGs consistently outperforms all the content-based methods, which
indicates the effectiveness of introducing external knowledge in SHMID.

– Increasing the number of KGs significantly improves the performance of
KEHESM, demonstrating the effectiveness of modeling multiple KGs.

– Using a medical KG outperforms slightly than a general KG when only one
KG is obtained. Besides, using a medical KG and a general KG outperforms
using two medical KGs, proving that combining professional knowledge and
general knowledge is necessary for SHMID.
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Effects of Components of KESHEM. We investigate the effects of the main
components in KESHEM by defining three variants:

(1) KESHEM\K: a variant of KESHEM without integrating external knowl-
edge. It just embeds information contents with the information encoder and
then feeds them into a softmax layer for classification.

(2) KESHEM\A: a variant of KESHEM that eliminates the KG-attention layer.
Instead, it directly concatenates the short health information and external
knowledge set representations for classification.

(3) KESHEM\F: a variant of KESHEM, where a cross-entropy loss function
replaces the focal loss function for training.

The performances of all the variants are reported in Fig. 3, from which we make
the following observations:

– When we eliminate the effect of external knowledge, the performance reduces.
It further suggests the importance of introducing external knowledge from
KGs to enable SHMID, especially when the volume of the training dataset is
small (e.g., the Diabetes dataset). Besides, the quality and completeness of the
KGs have a direct impact on the model’s performance. Therefore, the impact
of introducing external knowledge from different KGs for the two datasets
varies significantly.

– When we eliminate the KG-attention layer, the performance is substantially
reduced. It suggests that capturing important knowledge can sincerely benefit
the performance of KESHEM. As the average number of external knowledge
introduced per information in the Jiaozhen dataset is higher compared to
the Diabetes dataset, the KG-attention layer is better equipped to perform
knowledge distillation on the Jiaozhen dataset.

– Modifying the loss calculation method during the training of KESHEM can
truly better adapt to the imbalanced SHMID task and improve the detection
performance.

5.5 Explainability Evaluation (Q3)

Herein, we conduct a quantitative analysis and a case study to evaluate whether
our model can capture important external knowledge to provide reasonable
explanations about SHMID results and boost the model’s explainability (Q3).

Firstly, to make a quantitative analysis, we propose a novel Cumulative Loss
(CL) metric for evaluation, inspired by Normalized Cumulative Gain (NDCG)
[32]. Given the short health information S and its external knowledge set E =
{E1, E2, ..., Ek}. The importance sequence of E for identifying S obtained by
KESHEM is c = {c1, c2, ..., ck}, and the ideal importance sequence of E for
identifying S labeled by an expert group is z = {z1, z2, ..., zk}. Thus, the ability
of the model to identify important knowledge can be calculated as follows:

CL =

√
√
√
√1

k

k∑

i=1

( ci − zi

log2(zi + 1)
)2

. (10)
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Fig. 4. Explainability analysis of KESHEM.

The smaller the CL, the better the explainability of the model.
We selected 408 pieces of information-external knowledge set pairs with

knowledge number of {3, 5, 10} in the training set and testing set of the Jiaozhen
dataset for evaluation. To get the ideal ranking, we first invited two postgrad-
uates of clinical medicine to label the pairs, and then asked two postgraduates
of food safety to conduct a second review of the labeling results. Finally, the
disagreement was decided through the four experts’ discussion. All annotators
were compensated 200 RMB/hour for however long it took them to complete
the task. We have provided the ratings by the annotators along with our public
codes. The evaluation results are shown in Fig. 4, where N denotes the number of
KGs for experiments. From the figure, we can make the following observations:

– In general, we can see KESHEM> Random for the performance of capturing
important knowledge for SHMID. It indicates that the KG-attention compo-
nent in KESHEM can help to select important knowledge enabling SHMID.

– With the increase in the size of the external knowledge set, capturing impor-
tant knowledge becomes more difficult for the model. This is consistent with
the selection process of important knowledge by experts. The more knowledge
the experts face, the greater the possibility of incorrect ranking.

– For the model, the difficulty of selecting important knowledge in the external
knowledge set of misinformation is similar to that of true information.

Furthermore, we use an example with knowledge attention rankings in Fig. 5
to explain the explainability of KESHEM more vividly. The numbers on the
brackets denote the knowledge rankings judged by models and experts. Given
the information, the model digs out important knowledge triples for information
credibility identification (the triples whose relation names are in red in Fig. 5),
which is similar to the judgment of experts. Based on the important knowledge,
we can reason that dysmenorrhea is usually a symptom of disease instead of the
cause, and the cause of infertility should be ovulation dysfunction. Thus, we can
judge the information as false. It should be noted that although our attention
architecture can indeed identify important knowledge among all the external
knowledge, its ability to distinguish the level of importance of the important
knowledge needs to be further improved.
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Fig. 5. The explainable knowledge captured by KESHEM.

6 Conclusion and Future Work

In this paper, we indicate a novel problem of short health misinformation detec-
tion (SHMID) and propose a knowledge enabled SHMID framework, named
KESHEM. KESHEM extracts abundant external knowledge from multiple,
multi-form, and dynamically updated KGs to enable the SHMID task. Moreover,
we design a KG-attention layer to distinguish the importance of different external
knowledge to boost the accuracy and explainability performance of KESHEM.
Extensive experiments demonstrate that our method provides superior accuracy
performance over state-of-the-art models. Meanwhile, the quantitative analysis
and the case study have proved that the model achieves a certain degree of
considerable explainability. For better evaluation and the promotion of SHMID
research, we build a credible Chinese SHMID dataset. Future work could explore
more high-quality KGs for SHMID, expand our collection of short health mis-
information datasets in Chinese with richer structures, and further compare the
explainability performance of our model with other baselines.

Ethical Considerations. The work is based solely on public data, with no privacy
implications. Our data came from Chinese rumor-refuting platforms, where data is
publicly available. Thus, we have no ethical violation in the collection data and experi-
ment in our study. In addition, the detection results of health misinformation can only
serve as a preliminary assessment and support, and for serious scenarios, experienced
experts are required to make further assessments.
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Abstract. To prevent damage caused by cracks, accurate segmentation
of cracks is necessary. Deep learning models are commonly employed
to achieve this goal, typically consisting of data-driven neural networks
that are trained to determine classification probability for each pixel.
However, these models often ignore the optimization of the binariza-
tion function, which maps the probability distribution of each pixel to a
specific class. Typically, a fixed threshold of 0.5 is used, disregarding the
sensitivity of crack data to the threshold. As a result, segmentation accu-
racy is compromised. To address this issue, we propose a multi-objective
optimization method that incorporates both the conventional segmen-
tation model’s objective function and a dynamic threshold-based bina-
rization objective function. By doing so, we aim to improve the accuracy
of the segmentation results. Specifically, we introduce a dynamic thresh-
olding branch (DTB) to our approach, which performs a regression task
to determine the optimal threshold for each crack image at the image
level. This optimal threshold is then utilized in the binarization function
to optimize the dynamic thresholding-based binarization objective func-
tion. We have conducted experiments to validate the effectiveness of our
multi-objective optimization approach with DTB on several well-known
crack segmentation models. Additionally, we have evaluated its perfor-
mance on various crack segmentation datasets. The results indicate that
our approach can improve the accuracy of crack segmentation.

Keywords: Crack segmentation · Multi-objective optimization ·
Dynamic threshold

1 Introduction

Cracks are potential indicators of structural defects that can affect the struc-
tural health monitoring (SHM) and damage detection of various artifacts
andstructures [13]. Surface cracks are prevalent in different materials, such as
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pavement [10,20,21], concrete [8,15,24], brick and stone [5,12]. Crack repair is a
crucial task to prevent hazard escalation and to ensure the safety of engineering
structures and infrastructure. Moreover, repairing cracks before they worsen can
substantially lower the maintenance costs [26]. Accurate assessment of cracks
requires the results of crack segmentation. Crack segmentation is usually subdi-
vided into semantic segmentation, which marks the pixels of a crack on a cracked
image, and instance segmentation, which goes further to distinguish instances of
cracks.

Fig. 1. Segmentation accuracy for different thresholds: (a) threshold 0.20 with mIoU
0.58, (b) threshold 0.50 with mIoU 0.62, (c) threshold 0.66 with mIoU 0.64 and (d)
threshold 0.80 with mIoU 0.52. The optimal threshold is (c) 0.66.

The aim of crack segmentation is to generate a probability mask (classifica-
tion probability for each pixel) of the crack image using the segmentation net-
work and then to separate the crack from the background by applying a threshold
(mapping the classification probability to a specific class). A common practice
for binary image segmentation is to set the threshold to 0.5, which works well for
common objects [7,16]. However, for crack segmentation with highly imbalanced
class distribution, the threshold used in binarization can greatly affect the seg-
mentation result due to its high sensitivity [13,17]. Figure 1 illustrates the impact
of varying thresholds on crack segmentation, and 0.66 is the optimal threshold
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for this particular image because it produces the highest mIoU value (a common
evaluation metric for image segmentation). We hypothesized that different crack
images may require different thresholds for optimal segmentation. To test this
hypothesis, we analyzed the distribution of optimal thresholds for U-Net [19] on
the Crack500 dataset [23] (Fig. 2). We found that the optimal threshold varied
widely across images, and that the commonly used fixed threshold of 0.5 was
not optimal.

Fig. 2. Optimal threshold distribution for crack semantic segmentation with U-Net on
the Crack500 dataset.

We propose a novel crack segmentation method that adapts the threshold
selection to each crack image. Our method consists of two branches: a con-
ventional segmentation network that predicts crack probability masks, and a
Dynamic Thresholding Branch (DTB) that predicts optimal thresholds for bina-
rization. We formulate the crack segmentation problem as a multi-objective opti-
mization problem that jointly optimizes both branches. This way, we can address
the sensitivity of crack segmentation to threshold selection and improve the per-
formance of our method.

By reusing the spatial features from the crack segmentation network and
performing an extra regression task, DTB binarizes the probability mask with
the optimal threshold and predict the optimal threshold on image-level. This
significantly improves the test accuracy of crack segmentation. We evaluate our
multi-objective optimization approach with DTB on various datasets for crack
semantic segmentation and demonstrate its effectiveness.

The main contributions of this paper are as follows:

– We reformulate the crack segmentation problem as a multi-objective opti-
mization problem that considers both the segmentation model’s objective
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function and the binarization process that follows. By optimizing both pro-
cesses simultaneously, we can achieve significant improvement in the model’s
inference performance than by optimizing only the segmentation model’s
objective function.

– To tackle the multi-objective optimization problem, we propose DTB to opti-
mize the binarization process. DTB reuses the spatial features from the seg-
mentation network to perform an extra regression task and predict the opti-
mal threshold on image-level.

– We conducted experiments on various datasets with different sources and dis-
tributions for crack semantic segmentation tasks to evaluate the effectiveness
of the multi-objective optimization approach. The experimental results show
that the multi-objective optimization approach can improve the accuracy of
crack segmentation.

The rest of this paper is structured as follows. We review the related work in
Sect. 2. We describe our multi-objective optimization approach and the details
of DTB in Sect. 3. We report and analyze the experimental results in Sect. 4. We
summarize the paper in Sect. 5.

2 Related Work

Crack Segmentation is a technique that aims to accurately identify the loca-
tion of cracks in images. This involves assigning a specific class label to each
pixel in the image, which can be achieved through either semantic or instance
segmentation. Semantic segmentation involves assigning all pixels in the image
to a class without distinguishing between instances. For instance, all cracks in
the image would be labeled as belonging to the “crack” class. On the other hand,
instance segmentation differentiates between each individual instance, such that
different cracks are assigned unique instance labels, but the same class label.
Various methods have been proposed for crack semantic segmentation, includ-
ing patch-based techniques [6,9], encoder-decoder methods [4,17,26], and hybrid
approaches that combine both [11,14]. Among these, encoder-decoder methods,
such as FCN [18], SegNet [2], and U-Net [19], have gained popularity. These
methods do not use fully connected layers in the last layers to generate the seg-
mentation output. An extension of U-Net is to incorporate an attention mecha-
nism at the skip connection between the encoder and decoder [1,14,22]. Recent
advancements in crack semantic segmentation have led to the development of
improved architectures, such as deepcrack [26], which introduced a redesigned
attention mechanism between the encoder-decoder.

3 Methodology

3.1 Problem Reformulation

We can use a model (CNN or transformer) f to solve the problem of crack
semantic segmentation or instance segmentation with only two classes (class 0
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and class 1). The model f takes an input image x with size (c, w, h) and net-
work weights W , and outputs a probability mask p of class 1 with size (1, w, h).
Mathematically, this can be written as

p = f(x;W ) (1)

To find the optimal network weights W ∗, we usually minimize the loss func-
tion L, which measures the difference between the probability mask p and the
true label y with size (1, w, h). The loss function L is often the cross-entropy
loss. The optimization problem can be expressed as

W ∗ = argmin
W

L(f(x;W ), y) (2)

To perform inference, we need to apply the function B to binarize the output
of Eq. 1, as follows:

B(pi,j) =
{
1, pi,j ≥ 0.5
0, pi,j < 0.5 (3)

where 0 ≤ i < w and 0 ≤ j < h. Here, B is a shorthand for a pixel-level
binarization function Bi,j that depends on the indices i, j (we omit them for
brevity, and use the same notation for Bd later. Similarly pi,j is equivalent to p).

We do not directly plug Eq. 3 into Eq. 2 and optimize them together, because
Eq. 3 is usually non-differentiable and the threshold 0.5 may change.

The results in Fig. 1 and Fig. 2 show that a fixed threshold may not be the
best option. Hence, we propose a new binarization function Bd,

Bd(pi,j) =
{
1, pi,j ≥ thropt(x)
0, pi,j < thropt(x)

(4)

where thropt(x) is the function that determines the optimal threshold from the
input image. That is, thropt(x) is an image-level threshold. Like Eq. 3, we do not
jointly optimize Eq. 4 and Eq. 2 because they are non-differentiable.

We now reformulate the crack segmentation problem S.

Ŷ = S(x;W ;Bd) (5)

Specifically, Eq. 5 includes the following two processes,

p = f(x;W )

Ŷ = Bd(p)
(6)

where Ŷ = Bd(p) is the mask containing the class labels by the binarization,
and p = f(x;W ) is the mask containing the class probabilities predicted by the
segmentation model.

To find S in Eq. 5, we need both W ∗ and Bd(p). But Bd(p) depends on W
(P depends on W ), so we have to optimize W ∗ before finding Bd(p).
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Moreover, to find Bd(p), we need the optimal threshold thropt(x). But
thropt(x) is an unknown distribution (as Fig. 2 shows, it is not a simple dis-
tribution) and a function of the input image x, so one possible way is to build
another neural network that shares some weights with W .

Therefore, we split S into two tasks S1 and S2,

p = S1(x,Wb +Wh) (7)

ˆthropt(x) = S2(x,Wb +Wt) (8)

where Wb denotes the weights of backbone (encoder), Wh denotes the weights of
output head (decoder), and Wt denotes the weights of the DTB (extra regression
task branch), ˆthropt(x) denotes the predicted optimal threshold. Note that W =
Wb +Wh.

Thus only the following two optimization problems Eq. 9 and Eq. 10 need to
be solved sequentially to solve S,

W ∗ = W ∗
b +W ∗

h = argmin
Wh,Wb

L(S1(x,Wb +Wh), y) (9)

W ∗
t = argmin

Wt

Lthr(S2(x,Wb +Wt), thropt(x)) (10)

where W ∗
b , W ∗

h and W ∗
t are the optimal weights for the backbone, output head

and DTB, respectively. In Eq. 10, only the parameter Wt is optimized, and the
parameter Wb is typically fixed during this process. The true optimal threshold
of problem S is denoted as thropt(x). For more information on how to obtain it,
please refer to Sect. 3.3. Lthr refers to the loss function used in DTB, which is
typically mean squared error (MSE).

In summary, we reformulate the crack segmentation problem in Eq. 5 by
define it as a multi-objective optimization problem with two functions to solve
(Eq. 6). To solve the new binarization function, we optimize the binarization
process using the optimal threshold (Eq. 4) based on the analysis of the crack
data (Fig. 1 and Fig. 2). To find the optimal threshold at the image level, we use
another neural network that shares some weights with the segmentation network
(Eq. 8), and its objective function is given by Eq. 10.

3.2 Dynamic Thresholding Branch

Figure 3 shows a schematic diagram of a DTB designed for semantic segmenta-
tion, which is marked with a gray background. The DTB consists of a global
pooling layer (Pooling), two convolutional layers (conv) and two fully connected
layers (fc). The input to the DTB is usually the spatial features of the convolu-
tional layer from the segmentation network before the output head. For example,
in the encoder-decoder structure of U-Net, the input to the DTB can be the spa-
tial features of the convolutional layer between the last upsampling layer and
the output probability mask. This allows the DTB to capture global informa-
tion about the network structure. Another possible deployment option based on
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Fig. 3. Schematic diagram of DTB in semantic segmentation of cracks (gray back-
ground).

this idea is to use the output probability mask as the input to the DTB. This
kind of input can also fit the structure of the DTB as described above, but it
may cause the problem of data sparsity. The probability mask produced by the
segmentation model is very sparse and thus needs a large amount of data for
training to overcome this issue.

Since semantic segmentation does not impose any restriction on the image
size, a global pooling layer is required in the DTB, whose parameters should
be determined by the size of the input image. A common method to set the
parameters of the global pooling layer is to make sure that the feature map
after global pooling has half the size of the input image on average. After the
global pooling layer, there are two convolutional layers. The reason for setting
convolutional layers here is twofold: one is to extract spatial features, and the
other is to reduce the number of DTB parameters. Therefore, the parameters
of the convolutional layer here can be directly set with the parameters of the
downsampling layer of U-Net. The function of adding the fully connected layers
is to perform the regression task, and using fully connected layers instead of
convolutional layers can achieve more accurate regression.

3.3 The Training of DTB

Obtaining Training Labels for DTB. The DTB is usually trained from
scratch after a segmentation network f(x;W ) has been trained. Once f(x;W ) is
ready, the next step is to get the training labels for the DTB that corresponds
to f(x;W ). Since our model takes into account the different thresholds, we can
express f(x;W ) as f(x, thr;W ). Suppose that f(x;W ) is trained using the train-
ing set D = (x0, y0), (x1, y1), ..., (xn, yn), and the evaluation metric M(y, ŷ) is
used in the test, where a higher value of M(y, ŷ) means a better segmentation
performance. Then, the training labels thropt of DTB can be obtained by the
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following equation.
thropt(x, y, f) = argmax

thr∈[0,1]

M(y, ŷ) (11)

ŷ = F (x, thr;W )

Note that since thr is a probability threshold, its range is [0, 1].
The approach for determining thropt is similar to a Monte Carlo method, by

iterating between 0 and 1 with a step size of 0.01, and then selecting the threshold
that maximizes the evaluation metric M as the training label. To simplify the
implementation, we use a breadth-first search (BFS) approach, and Algorithm
1 outlines the specific process.

Algorithm 1. Finding optimal thresholds using BFS
1: procedure BFS(x, y)
2: Q ← ∅
3: Q.push((1, 0.0))
4: while Q �= ∅ do
5: (i, current_m) ← Q.pop()
6: if i = |thrs| then
7: if (x, y, thrs[i]) /∈ best_m or current_m > best_m[(x, y, thrs[i])] then
8: best_m[(x, y, thrs[i])] ← current_m
9: end if

10: else
11: ŷ ← f(x, thrs[i])
12: m ← M(ŷ, y)
13: Q.push((i+ 1,max(current_m,m)))
14: Q.push((i+ 1, current_m))
15: end if
16: end while
17: end procedure

18: for each (x, y) ∈ D do
19: BFS(x, y)
20: end for
21: thropt ← best_m

By executing the first 20 lines of Algorithm 1, we get a dictionary best_m
that stores the best evaluation metric value and the optimal threshold that
achieved it for each image. To get the optimal threshold thropt for each image in
the training set, we look up the corresponding dictionary entry and extract the
threshold that has the highest evaluation metric. This process ensures that each
image in the training set has a unique optimal threshold, which can be used to
train the DTB model.
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Loss Function of DTB. Usually, the loss function of DTB is defined as the
Mean Square Error (MSE), which is expressed as Eq. 12.

Lthr =
1
n

n∑
i=0

( ˆthropt(x) − thropt(x))2 (12)

Here n denotes the number of images, ˆthropt(x) and thropt(x) denote the pre-
dicted threshold and the optimal threshold obtained from Algorithm 1, respec-
tively.

4 Experiments

4.1 Dataset

We conducted our experiments on datasets Crack500 [23] and DeepCrack [17],
which are shown in Table 1.

Table 1. Overview of datasets

Set Image size Train/test split Percentage of crack pixels

Crack500 2000 × 1500 247/148 0.523%
DeepCrack 544 × 384 300/237 3.54%

4.2 Comparison Methods

We compare our proposed method with the current mainstream crack semantic
segmentation methods.

(a) FCN [18]: a fully convolutional network that performs pixel-level prediction
in an end-to-end manner.

(b) U-Net [25]: a network with a U-shaped structure that fuses the features
from each downsampling stage with the corresponding features from the
upsampling stage.

(c) DeepLabV3 [3]: a deep learning model for image segmentation that uses
atrous convolution, spatial pyramid pooling, and a decoder module with
skip connections to achieve high accuracy.

(d) Deepcrack [17]: a deep hierarchical feature learning architecture that
employs residual connections and dilated convolutions to capture multi-scale
features for precise crack segmentation.
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4.3 Implementation Details

We implemented our models using PyTorch, a popular deep learning framework.
We conducted our experiments on an Nvidia A6000 GPU with 48 GB of mem-
ory. For optimization, we employed stochastic gradient descent (SGD) with a
momentum of 0.9 and a weight decay of 1e−4. We set the initial learning rate
to 0.01 and applied a piecewise linear learning rate schedule with warmup and
decay phases, as proposed by DeepLabV3. During the warmup phase, the learn-
ing rate increased linearly from 0.001 to 1 in the first epoch. During the decay
phase, the learning rate decreased according to a polynomial function of degree
0.9 until the end of training. We trained our models for 200 epochs or until
convergence, whichever came first. We adjusted the batch size according to the
resolution of the images in each dataset: for Deepcrack, which contains images
with a resolution of 544 × 384 pixels, we used a batch size of 128; for Crack500,
which contains images with a resolution of 2000 × 1500 pixels, we used a batch
size of 16.

4.4 Experimental Results and Analysis

Table 2. Quantitative evaluation of various semantic segmentation methods on dataset
Crack500.

Method mIoU mAcc gAcc

FCN 73.2 94.8 81.4
FCN+DTB 75.1 95.3 83.2
U-Net 77.4 98.4 86.8
U-Net+DTB 78.3 98.5 87.6
DeepLabV3 74.2 95.1 81.1
DeepLabV3+DTB 76.8 96.5 83.3
Deepcrack 78.1 98.3 86.7
Deepcrack+DTB 79.3 98.5 86.6

As shown in Table 2 and Table 3, DTB improves the semantic segmentation
performance of various models on Crack500 and Deepcrack datasets. However,
UNet benefits the least from DTB. This is because UNet already produces a
probability distribution that is suitable for binary crack segmentation. In other
words, pixels that belong to class 1 have a high output probability, leading to
low entropy [13,26]. Thus, it is harder for DTB to enhance the segmentation
performance by learning the optimal threshold and correcting misclassifications
with high entropy for UNet. Figure 4 displays sample results of various semantic
segmentation models on two datasets. As shown in (d) U-Net, DTB has limited
improvement on the segmentation results, which is consistent with the findings in
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Table 3. Quantitative evaluation of various semantic segmentation methods on dataset
Deepcrack.

Method mIoU nmAcc gAcc

FCN 81.2 88.6 93.3
FCN+DTB 83.4 90.1 94.5
U-Net 85.5 91.1 98.6
U-Net+DTB 86.4 92.0 98.4
DeepLabV3 78.5 82.3 95.8
DeepLabV3+DTB 80.1 83.5 96.3
Deepcrack 85.4 90.3 98.6
Deepcrack+DTB 86.7 91.5 98.9

Fig. 4. Semantic segmentation samples for several models: (a) Deepcrack, (b)
DeepLabV3, (c) FCN and (d) U-Net.

Table 2 and Table 3. However, DTB improves the segmentation results to varying
degrees for all other models. Notably, DTB can introduce errors, as seen in (c)
FCN, where image-level thresholds lead to misclassification of the background in
the upper left corner. The use of pixel-level thresholds can significantly reduce
such errors, and this is an area of future research.
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Fig. 5. MSE Loss curve of DTB on Crack500 dataset.

Fig. 6. Comparison of true and predicted optimal threshold distributions by DTB.

4.5 Validation of DTB

This section focuses on verifying the accuracy of the DTB. Since DTB involves
a regression task, mean squared error (MSE) is used as an objective function
during training and as an evaluation metric during testing. The plots in Fig. 5
depict the MSE loss of DTB on the Crack500 dataset, which indicates that
the model effectively learns the knowledge of the optimal threshold distribution.
In addition, Fig. 6 shows a comparison of the optimal thresholds predicted by
DTB with the true optimal thresholds obtained by Algorithm 1 on the Crack500
dataset which shows that the difference between the two is acceptable.



Multi-objective Optimization for Crack Segmentation 401

Taken together, these two points serve as evidence that our proposed multi-
objective approach with DTB is capable of successfully learning the optimal
threshold distribution using the spatial features extracted from the crack images.

4.6 Time Consumption Analysis

Table 4. Inference Time Comparison

Set Crack500 (FPS) Deepcrack (FPS)

FCN 16.1 33.4
FCN+DTB 15.6 31.5
DeepLabV3 12.4 30.2
DeepLabV3+DTB 11.8 29.6
U-Net 16.7 33.8
U-Net+DTB 16.1 32.7
Deepcrack 14.4 31.5
Deepcrack+DTB 14.2 29.4

In crack segmentation, efficient computation is a crucial factor. In this paper,
we evaluate the inference time of various segmentation models after integrating
DTB and present the results in Table 4. The experiment was conducted using
an AMD EPYC 7282 16-core processor on two crack segmentation datasets.
The results show that all models with DTB achieve over 10 FPS at 2K reso-
lution (Crack500 dataset) and 30 FPS on average at 512 resolution (Deepcrack
dataset), meeting the practical implementation requirement for vehicles with
specialized image acquisition equipment.

The integration of DTB leads to improved accuracy of crack segmentation
without sacrificing computational efficiency. Based on both quantitative and
qualitative analyses, we conclude that our proposed multi-objective approach
with DTB can serve as an optional, pluggable module for most crack segmenta-
tion tasks, enhancing the accuracy of the results.

5 Conclusion

Crack segmentation is a crucial task in structural health monitoring, but the
visual characteristics of cracks have posed challenges for accurate segmentation.
This paper proposes the Dynamic Thresholding Branch (DTB) for crack seg-
mentation, which predicts an optimal threshold value for each crack image to
improve segmentation accuracy. To achieve this, we adopt a multi-objective opti-
mization approach and formulate the crack segmentation problem by combining
crack probability mask prediction and threshold-based binarization into a com-
plete optimization problem. We optimize the segmentation network to generate
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the crack probability mask, and DTB then determines the optimal threshold
for binarization to optimize the overall segmentation process. DTB leverages
the spatial features of crack images and can be easily integrated as a pluggable
component for practical deployment. Our experiments, using various datasets
with different distributions and sources, demonstrate the effectiveness of DTB
in crack semantic and instance segmentation. Moreover, the multi-objective app-
roach with DTB has potential for improving accuracy in similar binary classifi-
cation image segmentation problems. Overall, our proposed method represents
a significant advancement in the field of crack segmentation.
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Abstract. Can we inject the pocket-ligand complementarity knowledge
into the pre-trained model and jointly learn their chemical space? Pre-
training molecules and proteins have attracted considerable attention
in recent years, while most of these approaches focus on learning one
of the chemical spaces and lack the consideration of their complemen-
tarity. We propose a co-supervised pre-training (CoSP) framework to
learn 3D pocket and ligand representations simultaneously. We use a
gated geometric message passing layer to model 3D pockets and ligands,
where each node’s chemical features, geometric position, and direction
are considered. To learn meaningful biological embeddings, we inject the
pocket-ligand complementarity into the pre-training model via Chem-
InfoNCE loss, cooperating with a chemical similarity-enhanced nega-
tive sampling strategy to improve the representation learning. Through
extensive experiments, we conclude that CoSP can achieve competitive
results in pocket matching, molecule property prediction, and virtual
screening.

Keywords: AI for Science · Bioinformatics · Molecular
Representation Learning · Graph Neural Networks

1 Introduction

Is there a pre-trained model that explores the chemical space of pockets and
ligands while considering their complementarity? Recently, many deep learning
methods have been proposed to understand the chemical space of protein pockets
or drug molecules (or called ligands) and facilitate drug design in many aspects,
e.g., finding hits for a novel target [59], repurposing ancient drugs for new targets
[25,57,67], and searching for similar pockets and molecules [35,46]. While these
models have shown promising potential in learning separate pocket space or
molecular space for specific tasks [17,21,31,47,71], jointly pre-training pockets
and ligands considering their complementarity remains to be explored.

We propose co-supervised pretraining (CoSP) framework for understanding
the joint chemical space of pockets and ligands. Taking the ligand as an example,
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contrastive self-supervised pre-training [17,49,56] has yielded significant achieve-
ments in recent years. By identifying well-defined positive and negative ligand
pairs via contrastive loss, the model can learn the underlying knowledge to facil-
itate downstream tasks. However, these self-supervised methods only capture
data dependencies in the ”self” domain while ignoring additional information
from other complementary fields, such as bindable pockets. Meanwhile, previ-
ous studies [1,5,11,37] have shown that pocket-ligand complementarity play a
crucial role in determining molecular properties, since chemically similar ligands
tend to bind to similar pockets. Inspired by this, we introduce cross-domain
dependencies between pockets and ligands to improve molecular representation
learning.

We propose gated geometric massage passing (GGMP) layer to extract
expressive bio-representations for 3D pockets and ligands. All bio-objects are
treated as 3D graphs [20,24] in that each node contains invariant chemical
features (atomic number, etc.) and equivalent geometric features (position and
direction). For each bio-object, we optimize the pairwise energy function [22],
which considers both chemical features and geometric features via the gated
operation. By minimizing the energy function, we derive the updating rules of
position and direction vectors. Finally, we combine these rules with classical
message passing, resulting in GGMP.

We introduce ChemInfoNCE loss to reduce the negative sampling bias [9,39].
When applying contrastive learning, the false negative pairs that are actually
positive will lead to performance degradation, called negative sampling bias.
Chuang [9] assumes that the label distribution of the classification task is uni-
form and propose DebiasedInfoNCE to alleviate this problem. Considering the
specificity of the molecules and extending the situation to continuous properties
prediction (regression task), we introduce chemical similarity-enhanced negative
ligand sampling. Interestingly, improving the sampling strategy is equivalent to
modifying sample weights; thus, we provide a systematic understanding from
the view of loss functions and propose ChemInfoNCE.

We evaluates our model on several downstream tasks, from pocket matching,
molecule property prediction to virtual screening. Numerous experiments show
that our approach can achieve competitive results on these tasks, suggesting that
the pocket-ligand complementarity could improve biorepresentation learning.

2 Related Work

Motivation. Protein and molecule achieve their biological functions by binding
to each other [7], thus exploring the protein-ligand complex help to improve the
understanding of both proteins, molecules, and their interactions. To improve
generalization and reduce complexity, we further consider local patterns about
the protein pocket x and the bindable ligand x̂. Taking (x, x̂) as the positive
pair, while (x, x̂−) as the negative pair, where x̂− cannot bind to x, we aims to
pre-train a pocket model f : x �→ h and a ligand model f̂ : x̂ �→ ĥ, such that the
mutual information between h and ĥ are maximized.
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Table 1. Protein and molecule pre-training methods

Protein Molecule

Method Data Code Year Method Data Code Year

CPCProt [33] sequence PyTorch 2020 FragNet [44] SMILEs – 2021

Profile Prediction [48] sequence – 2020 MoCL [49] graph PyTorch 2021

ONTOPROTEIN [70] sequence PyTorch 2022 MPG [29] graph PyTorch 2021

CARP sequence – 2022 Grover [40] graph PyTorch 2020

GearNet 3D – 2022 MICRO-Graph [71] graph – 2020

CKGNN [17] graph – 2021

MGSSL [73] graph PyTorch 2021

MolCLR [56] graph PyTorch 2022

3DInfomax [47] graph+3D PyTorch 2021

GraphMVP [31] graph+3D – 2022

GEM [16] graph+3D Paddle 2022

Equivalent 3D GNN. Extensive works have shown that 3D structural conforma-
tion can improve the quality of bio-representations with the help of equivalent
massage passing layer [4,6,10,19,41,50]. Inspired by the energy analysis [20,22],
we propose a new gated geometric massage passing (GGMP) layer that consider
not only the node position but also its direction, where the latter could indicate
the location of pocket cavities and the angle of molecular bonds.

InfoNCE. The original InfoNCE is proposed by [36] to contrast semantically
similar (positive) and dissimilar (negative) pairs of data points, such that the
representations of similar pairs (x, x̂) to be close, and those of dissimilar pairs
(x, x̂−) to be more orthogonal. By default, the negative pairs are uniformly sam-
pled from the data distribution. Therefore, false negative pairs will lead to signif-
icant performance drop. To address this issue, DebaisedInfoNCE [9] is proposed,
which assumes that the label distribution of the classification task is uniform.
Although DebaisedInfoNCE has achieved good results on image classification,
it is not suitable for direct transfer to regression tasks, as the uniform distribu-
tion assumption is too strict. For bio-objects, we discard the above assumption,
extend the situation to continuous attribute prediction, use fingerprint similarity
to measure the probability of negative ligands, and propose ChemInfoNCE.

Self Bio Pre-training. Many pre-training methods have been proposed for a sin-
gle protein or ligand domain, which can be classified as sequence-based, graph-
based or structure-based. We summarize the protein pre-training models in
Table.1. As for sequential models, CPCPort [33] maximizes the mutual infor-
mation between predicted residues and context. Profile Prediction [48] suggests
predicting MSA profile as a new pre-training task. OntoProtein [70] integrates
GO (Gene Ontology) knowledge graphs into protein pre-training. While most
of the sequence models rely on the transformer architecture, CARP [66] finds
that CNNs can achieve competitive results with much fewer parameters and
runtime costs. Recently, GearNet [74] explores the potential of 3D structural

https://github.com/amyxlu/CPCProt.git
https://github.com/illidanlab/MoCL-DK.git
https://github.com/zjunlp/OntoProtein
https://github.com/pyli0628/MPG.git
https://github.com/tencent-ailab/grover.git
https://github.com/zaixizhang/MGSSL
https://github.com/yuyangw/MolCLR
https://github.com/HannesStark/3DInfomax.git
https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pre-trained_compound/ChemRL/GEM
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pre-training from the perspective of masked prediction and contrastive learn-
ing. We also summarize the molecule pre-training models in Table.1. As for
sequential models, FragNet [44] combines masked language model and multi-
view contrastive learning to maximize the inner mutual information of the same
SMILEs and the agreement across augmented SMILEs. Beyond SMILEs, more
approaches [17,29,40,49,56,71,73] tend to choose graph representation that can
better model structural information. For example, Grover [40] integrates message
passing and transformer architectures and pre-trains a super-large GNN using 10
million molecules. MICRO-Graph [71] and MGSSL [73] use motifs for contrastive
learning. Considering the domain knowledge, MoCL [49] uses substructure sub-
stitution as a new data augmentation operation and predicts pairwise fingerprint
similarities. Although these pre-training methods show promising results, they
do not consider the 3D molecular conformations. To fill this gap, GraphMVP
[31] and 3DInfomax [47] explore to maximize the mutual information between
3D and 2D views of the same molecule and achieve further performance improve-
ments. Besides, GEM [16] proposes a geometry-enhanced graph neural network
and pre-trains it via geometric tasks. For the pre-training of individual proteins
or molecules, these methods demonstrate promising potential on various down-
stream tasks but ignore their complementarity.

Cross Bio Pre-training. In parallel with our study, Uni-Mol [76], probably the
first pre-trained model that can handle both protein pockets and molecules,
released the preprinted version. However, they pre-train the pockets and ligands
separately without considering their interactions, whereas our approach differs in
pre-training data, pre-training strategy, model structure and downstream tasks.

3 Methodology

3.1 Co-Supervised Pre-training Framework

We propose the co-supervised pretraining (CoSP) framework, as shown in
Figure.1, to explore the joint chemical space of protein pockets and ligands,
where the methodological innovations include:

1. We propose the gated geometric message passing layer to model 3D pockets
and ligands.

2. We establish a co-supervised pre-training framework to learn pocket and lig-
and representations.

3. We introduce ChemInfoNCE with improved negative sampling guided by
chemical similarity.

4. We evaluate the model on pocket matching, molecule property prediction,
and virtual-screening tasks.
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3.2 Geometric Representation

We introduce the unified data representation and neural network for modeling
3D pockets and ligands. We use structures collected from the BioLip dataset [64]
as pretraining data for developing CoSPbase model. Further, we use augmente the
pretraining data with CrossDock dataset [18], resulting in the CoSPlarge model.
In downstream tasks where ligand conformations are not provided, we generate
3D conformations using MMFF [52] (if successful) or their 2D conformations (if
failed).

(d) Complex preprocessing (e) Pocket-ligand pairs

Pair 1

An
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N

ei
gh

bo
rs

False negative

Pair 2

Pair N

True negative
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(a) Pretrain models (b) Finetune (c) Downstream tasks

(f) Knowledge-aware sampling

Fig. 1. Overview of CoSP. We contrast bound pocket-ligand pairs with unbound ones
to learn the complementarity-aware chemical embeddings. We extract positive pocket-
ligand pairs (e) from the protein-ligand complexes (d), and augment pos/neg relations
of complexes via ligand similarity (f). We pretrain the model on BioLip dataset (a),
followed by finetuning (b) and evaluation (c) on different tasks.

Pocket and Ligand Graph. We represent bio-object as graph G(X,V, E) , con-
sisting of coordinate matrix X ∈ R

n,3, node features V ∈ R
n,df , and edge

features E ∈ R
n,de , where n, df and de represent the number of node, node
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features dimension and edge features dimension. For pockets, the graph nodes
include amino acids within 10 Å to the ligand, X contrains the position of Cα of
residues, on which we construct E via k-nn algorithm. For molecules, the graph
nodes include all ligand atoms except Hs, X contrains the atom positions, and
we use the molecular bonds as E .

Gated Geometric Massage Passing. From layer t to t + 1, we use the gated
geometric massage passing (GGMP) layer to update 3D graph representations,
i.e., [vt+1

i ,xt+1
i ,nt+1

i ] = GGMP(vt
i ,x

t
i,n

t
i), where ni is the direction vector. For

molecules, ni points to the negative neighborhood center of node i; for pockets,
ni indicates the position of protein caves. Given 3D conformations, we minimize
the pairwise energy function E:

E(X,F, E) =
∑

(i,j)∈E
u(vi,vj ,eij)g(〈ni,nj〉, d2ij) (1)

where d2ij = ||xi − xj ||2, both chemical energy u(·) and geometric energy
g(·) are considered. By calculating the gradients of xi and ni, we obtain their
updating rules:

−∂E(X,F, E)
∂xi

= −
∑

j∈Ni

2uij
∂gij

∂d2ij
(xi − xj)

≈
∑

j∈Ni

u(vi,vj ,eij)φx(d2ij , 〈ni,nj〉)(xi − xj)
(2)

−∂E(X,F, E)
∂ni

= −
∑

j∈Ni

uij
∂gij

∂〈ni,nj〉nj

≈
∑

j∈Ni

u(vi,vj ,eij)φn(d2ij , 〈ni,nj〉)nj

(3)

Note that φx and φn are the approximation of ∂gij

∂d2
ij

and ∂gij

∂〈ni,nj〉 . Combining
graph message passing, we propose the GGMP layer:

mij = φm(vt
i ,v

t
j , eij) (4)

gij = φg(d2ij , 〈nt
i,n

t
j〉) (5)

ht+1
i = φh(ht

i,
∑

j∈Ni

mijgij) (6)

xt+1
i = xt

i + λ
∑

j∈Ni

u(mij)φx(gij)(xt
i − xt

j) (7)

nt+1
i = nt

j + λ
∑

j∈Ni

u(mij)φn(gij)nt
j (8)

where φ∗ and u are approximated by neural networks, λ is a hyperparameter,
and n0

i = −∑
j∈N (i) x

0
j/||∑j∈N (i) x

0
j ||.



Co-supervised Pre-training of Pocket and Ligand 411

3.3 Contrastive Loss

In contrastive learning, the biased negative sampling impairs model performance
by sampling false negative data during training. Previous methods [9,39] address
this problem with the assumption that false-negative samples are uniformly dis-
tributed under the classification setting. We propose chemical knowledge-based
sampling to better address this issue, where fingerprint similarity is used to
measure the probability of negative ligands. Interestingly, the change in sam-
pling distribution is equivalent to the design of a weighted loss, and we provide
a comprehensive understanding from the perspective of contrastive loss.

Uni-contrastive Loss. Given the pocket x ∼ p, we draw positive ligands x̂+

from the distribution p̂+x of bindable molecules and negative ligands {x̂−
i }N

i=1

from the distribution q̂ of non-bindable ones. By default, the positive ligands are
determined by the pocket-ligand complexes, while negative ones are uniformly
sampled from the ligand sets. We use pocket model f and ligand model f̂ to
learn the latent representations h, ĥ+ and {ĥ−

i }N
i=1, where the proxy task is

to maximize the positive similarity s+(h, ĥ+) against the negative similarities
s−

i (h, ĥ−
i ), i = 1, 2, · · · , resulting in:

LUni = E x∼p,x̂+∼p̂
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

Q

N

N∑

i=1

s−
i (h, ĥ−

i )

s+(h, ĥ+)
)

]
(9)

where Q and N are constants. For each data sample x, the gradients con-
tributed to s+ and s−

i are:

∂L

∂s+
=

1

1 +
∑N

i=1 s−
i /s+

N∑

i=1

∂s−
i /s+

∂s+
(10)

∂L

∂s−
i

=
1

1 +
∑N

i=1 s−
i /s+

∂s−
i /s+

∂s−
i

(11)

The LUni provides balanced gradient to positive and negative samples, i.e.,
∂L
∂s+ =

∑
i

∂L
∂s−

i

. One can verify that InfoNCE is the special case of LUni by setting

s+(h, ĥ+) = eγhTh+
and s−

i (h, ĥ−
i ) = eγhTh−

i .

DebiasedInfoNCE. Uniformly sampling negative ligands from the data distri-
bution q̂ could mistaken positive samples as negative ones. Denote h(·) as the
labeling function, [9] suggests to draw negative samples from the real negative
distribution q̂−

x (x̂−) = p(x̂−|h(x̂−) 	= h(x)). To handle the {h(x̂−) 	= h(x)}
event, the joint distribution p(x̂, c) = p(x̂|c)p(c) over data x̂ and label c is con-
sidered. Assume the class probability p(c) = τ+ is uniform, and let τ− = 1 − τ+

be the probability of observing any different class, q̂ could be decomposed as
τ−q̂−

x (x̂−) + τ+q̂+x (x̂−). Therefore, q̂−
x = (q̂ − τ+q̂+x )/τ−, and the DebiasedIn-

foNCE is:
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LDebiased = E x∼p,x̂+∼p̂
+
x ,

{x̂
−
i

}N
i=1∼q̂

−
x

[
log (1 +

Q

N

N∑

i=1

s−
i (h, ĥ−

i )

s+(h, ĥ+)
)

]
(12)

where s+(h, ĥ+) = eh
T ĥ+

, s−
i (h, ĥ−

i ) = eh
T ĥ−

i . With mild assumptions, the
approximated debaised InfoNCE can be written as:

E x∼p,x̂+∼p
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

Q

τ−

N∑

i=1

(eh
Th−

i −hTh+ − τ+))

]
(13)

ChemInfoNCE. Although DebiasedInfoNCE solves the problem of sampling bias
to some extent, it suffers from some shortcomings. Firstly, for classification with
discrete labels, the assumption of uniform class probabilities may be too strong,
especially for the unbalanced dataset. Secondly, when it comes to regression,
molecules have continuous chemical properties and the event {h(x̂) 	= h(x̂−)} can
not describe the validity of negative data. To address these issues, we introduce
a new event {sim(x̂, x̂−) < τ} to measure the validity of negative samples, where
sim(·, ·) is the function of chemical similarity. The underlying assumption is that
molecules with lower chemical similarity to the reference ligand are more likely
to be negative samples.

q−
x (x̂−) := q(x̂−|sim(x, x̂−) < τ)

∝ max(1 − sim(x, x̂−) − τ, 0) · p(x̂−)
(14)

By denoting wi = max(1− sim(x, x̂−)− τ, 0), the final ChemInfoNCE can be
simplfied as:

LChem ≈ E x∼p,x̂+∼p
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

N∑

i=1

(ρie
hT ĥ−

i −hT ĥ+
))

]
(15)

where ρi = wi∑N
i=1 wi

.

4 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of
the proposed method from three perspectives:

1. Ligand: Could the ligand model provide competitive results in predicting
molecular properties?

2. Pocket: How does the pre-trained pocket model perform on the pocket
matching tasks?

3. Pocket-ligand: Could the joint model find potential binding pocket-ligand
pairs, i.e., virtual screening?



Co-supervised Pre-training of Pocket and Ligand 413

Table 2. Molecule property prediction. We compare different methods across 9 bench-
marks. The best and sub-optimum results are highlighted in bold and underline.

Methods Classification (AUC-ROC % ↑ ) Regression (RMSE ↓)

Dataset BBBP BACE ClinTox Tox21 ToxCast SIDER ESOL FreeSolv Lipo

#Molecules 2039 1513 1478 7831 8575 1427 1128 642 4200

#Tasks 1 1 2 12 617 27 1 1 1

D-MPNN 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 1.050(0.008) 2.082(0.082) 0.683(0.016)

Attentive FP 64.3(1.8) 78.4(0.02) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 0.877(0.029) 2.073(0.183) 0.721(0.001)

N-GramRF 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) – 66.8(0.7) 1.074(0.107) 2.688(0.085) 0.812(0.028)

N-GramXGB 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) – 65.5(0.7) 1.083(0.082) 5.061(0.744) 2.072(0.030)

MolCLR 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) – 58.9(1.4) 1.271(0.040) 2.594(0.249) 0.691(0.004)

PretrainGNN 68.7(1.3) 84.2(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 1.100(0.006) 2.764(0.002) 0.739(0.003)

GraphMVP-G 70.8(0.5) 79.3(1.5) 79.1(2.8) 75.9(0.5) 63.1(0.2) 60.2(1.1) – – –

GraphMVP-C 72.4(1.6) 81.2(0.9) 76.3(1.9) 74.4(0.2) 63.1(0.4) 63.9(1.2) – – –

3DInfomax 69.1(1.1) 79.4(1.9) 59.4(3.2) 74.5(0.7) 64.4(0.9) 53.4(3.3) 0.894(0.028) 2.34(0.227) 0.695(0.012)

MICRO-graph 77.2(2.0) 84.4(1.1) 77.0(2.0) 77.0(0.8) 65.2(0.8) 56.7(1.1) – – –

GROVERbase 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 0.983(0.090) 2.176(0.052) 0.817(0.008)

GROVERlarge 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 0.895(0.017) 2.272(0.051) 0.823(0.010)

GEM 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 0.798(0.029) 1.877(0.094) 0.660(0.008)

Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 0.788(0.029) 1.620(0.035) 0.603(0.010)

CoSPbase(w/o pre-train) 71.1(0.5) 82.2(1.4) 89.3(1.5) 73.8(0.4) 62.6(0.7) 61.7(1.2) 1.243(0.045) 2.135(0.045) 0.864(0.023)

CoSPbase(DebaisedInfoNCE) 72.3(0.4) 83.5(1.2) 90.2(1.3) 75.4(0.6) 64.7(0.4) 62.9(1.3) 0.843(0.038) 1.857(0.043) 0.748(0.029)

CoSPbase(ChemInfoNCE) 73.1(0.3) 84.3(1.1) 91.3(1.5) 78.5(0.1) 69.3(0.2) 64.7(1.5) 0.785(0.029) 1.752(0.042) 0.621(0.012)

CoSPlarge 73.6(0.4) 85.9(0.9) 91.2(1.2) 79.3(0.1) 70.0(0.2) 66.4(1.2) 0.783(0.023) 1.715(0.017) 0.598(0.011)

4.1 Pre-training Setup

Pre-training Dataset. We adopt BioLip [64] dataset for pre-training CoSPbase,
where the original BioLip contains 573,225 entries up to 2022.04.01. Compared
to PDBBind [54] with 23,496 complexes, BioLip contains more complexes that
lack binding affinity, thus could provide a more comprehensive view of binding
mode analysis. To focus on the drug-like molecules and their binding pockets, we
filtered out other unrelated complexes that contain peptides, DNA, RNA, single
ions, etc. In addition, we augment the pretraining data with the CrossDock
dataset [18] to develop CoSPlarge.

Experimental Setting. We pre-train CoSPbase with 6 layer GGMPs via ChemIn-
foNCE loss, where the hidden feature dimension is 128. We train the model for 50
epochs using Adam optimizer on NVIDIA A100s, where the initial learning rate
is 0.01 and the batch size is 100. The chemical ligand similarity is calculated by
RDKit [28]. To achieve better performance, CoSPlarge extends the 6-layer GNN
to 12 layers, with hidden dimensions from 128 to 1024, and uses augmentated
dataset (BioLip+CrossDock).

4.2 Downstream Task 1: Molecule Property Prediction

Experimental Setup. Could the model learn expressive features for molecule
classification and regression tasks? We evaluate CoSP on 9 benchmarks collected
by MoleculeNet [61]. Following previous researches, we use scaffold splitting to
generate train/validation/test set with a ratio of 8:1:1. We report AUC-ROC and
RMSE metrics for classification and regression tasks, respectively. The mean and
standard deviations of results over three random seeds are provided by default.
We finetune the model using the similar code of MGSSL [73].
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Baselines. We evaluate CoSP against a broad of baselines, including D-
MPNN [65], Attentive FP [63], N-GramRF, N-GramXGB [30], MolCLR [56],
PretrainGNN [23], GraphMVP-G, GraphMVP-C [32], 3DInfomax [47], MICRO-
graph [71], GROVERbase, GROVERlarge [40], GEM [16], and Uni-Mol [76]. Most
these baselines are pre-training methods, except for N-GramRF and N-GramXGB.
Some of the methods mentioned in the related works are not included because
the experimental setup, e.g., data spliting, may be different.

Results and Analysis. We show results in Table.2. The main observations are:
(1) CoSPlarge could achieve the best results on 4/9 downstream tasks, and top-3
results on 9/9 downstream tasks. (2) Pre-training techniques help improve the
model’s generalization ability, and the model could learn expressive molecular
features via co-supervised pre-training. By extending the model size and pre-
training data volumn, CoSPlarge achieves non-trivial performance gains com-
pared to CoSPbase. (3) Through ablation studies, we further identified the supe-
riority of ChemInfoNCE over DebaisedInfoNCE by achieving consistent perfor-
mance gains on various datasets.

Table 3. Pocket matching results. We compare different methods across 10 bench-
marks.

Category Methods Classification (AUC-ROC ↑ )

D1 D1.2 D2 D3 D4 D5 D5.2 D6 D6.2 D7

Classical baselines Cavbase 0.98 0.91 0.87 0.65 0.64 0.60 0.57 0.55 0.55 0.82

FuzCav 0.94 0.99 0.99 0.69 0.58 0.55 0.54 0.67 0.73 0.77

FuzCav (PDB) 0.94 0.99 0.98 0.69 0.58 0.56 0.54 0.65 0.72 0.77

grim 0.69 0.97 0.92 0.55 0.56 0.69 0.61 0.45 0.65 0.70

grim (PDB) 0.62 0.83 0.85 0.57 0.56 0.61 0.58 0.45 0.50 0.64

IsoMIF 0.77 0.97 0.70 0.59 0.59 0.75 0.81 0.62 0.62 0.87

KRIPO 0.91 1.00 0.96 0.60 0.61 0.76 0.77 0.73 0.74 0.85

PocketMatch 0.82 0.98 0.96 0.59 0.57 0.66 0.60 0.51 0.51 0.82

ProBiS 1.00 1.00 1.00 0.47 0.46 0.54 0.55 0.50 0.50 0.85

RAPMAD 0.85 0.83 0.82 0.61 0.63 0.55 0.52 0.60 0.60 0.74

shaper 0.96 0.93 0.93 0.71 0.76 0.65 0.65 0.54 0.65 0.75

shaper (PDB) 0.96 0.93 0.93 0.71 0.76 0.66 0.64 0.54 0.65 0.75

VolSite/shaper 0.93 0.99 0.78 0.68 0.76 0.56 0.58 0.71 0.76 0.77

VolSite/shaper (PDB) 0.94 1.00 0.76 0.68 0.76 0.57 0.56 0.50 0.57 0.72

SiteAlign 0.97 1.00 1.00 0.85 0.80 0.59 0.57 0.44 0.56 0.87

SiteEngine 0.96 1.00 1.00 0.82 0.79 0.64 0.57 0.55 0.55 0.86

SiteHopper 0.98 0.94 1.00 0.75 0.75 0.72 0.81 0.56 0.54 0.77

SMAP 1.00 1.00 1.00 0.76 0.65 0.62 0.54 0.68 0.68 0.86

TIFP 0.66 0.90 0.91 0.66 0.66 0.71 0.63 0.55 0.60 0.71

TIFP (PDB) 0.55 0.74 0.78 0.56 0.57 0.54 0.53 0.56 0.61 0.66

TM-align 1.00 1.00 1.00 0.49 0.49 0.66 0.62 0.59 0.59 0.88

Deeplearning baseline DeeplyTough 0.95 0.98 0.90 0.76 0.75 0.67 0.63 0.54 0.54 0.83

Our methods CoSPbase (w/o direction) 0.95 0.95 0.92 0.55 0.58 0.56 0.56 0.53 0.54 0.76

CoSPbase 1.00 1.00 0.99 0.79 0.81 0.62 0.63 0.61 0.62 0.81

CoSPlarge 1.00 1.00 1.00 0.87 0.85 0.75 0.74 0.72 0.74 0.90



Co-supervised Pre-training of Pocket and Ligand 415

4.3 Downstream Task 2: Pocket Matching

Experimental Setup. Could the pre-trained model identify chemically similar
pockets? We explore the discriminative ability of the pocket model with the
pocket matching tasks. To comprehensively understand the potential of the
proposed method, we evaluated it on 10 benchmarks recently collected in the
ProSPECCTs dataset [15]. For each sub-dataset, the positive and negative pairs
of pockets are defined differently according to the research objectives. We sum-
marize five research objectives as O1: Whether the model is robust to the pocket
definition? O2: Whether the model is robust to the pocket flexibility? O3: Can
the model distinguish between pockets with different properties? O4: Whether
the model can distinguish dissimilar proteins binding to identical ligands and
cofactors? O5: How about the performance on real applications? We report the
AUC-ROC scores on all benchmarks.

Baselines. We compare CoSP with both classical and deeplearning baselines.
The classical methods can be divided into profile-based, graph-based and grid-
based ones. The profile-based methods encode topological, physicochemical
and statistical properties in a unified way for comparing various pockets, e.g.,
SiteAlign [42], RAPMAD [27], TIFP [13], FuzCav [58], PocketMatch [69], SMAP
[62], TM-align [72], KRIPO [60] and Grim [13]. The graph-based methods
adopt isomorphism detection algorithm to find common motifs, e.g., Cavbase
[43], IsoMIF [8], ProBiS [26]. Grid-based methods represent pockets by regu-
larly spaced pharmacophoric grid points, e.g.,VolSite/Shaper [12]. Another tools
include SiteEngines [45] and SiteHopper [3]. We also compare with the recent
deeplearning model–DeeplyTough [46].

Results and Analysis. We present the pocket matching results in Table. 3, where
the pre-trained model achieves competitive results in most cases. Specifically,
CoSP is robust to pocket definition (O1) and achieves the highest AUC scores
in D1 and D1.2. The robustness also remains when considering conformational
variability (O2), where CoSPlarge achieves 1.00 AUC score in D2. It should be
noted that robustness to homogeneous pockets does not mean that the model
has poor discrimination; on the contrary, the model could identify pockets with
different physicochemical and shape properties (O3) in D3 and D4. Compared
with previous deep learning methods (DeeplyTough), CoSPlarge provides better
performance in distinguishing different pockets bound to the same ligands and
cofactors (Q4), refer to the results of D5, D5.2, D6 and D6.2. Last but not least,
CoSPlarge showed good potential for practical applications (O5) with 0.90 AUC
score. In addition, we found that pocket direction plays a key role in extracting
pocket features, which is helpful to indicate the location of the pocket cavity. As
shown in Table. 3, the performance of pocket matching will be degraded if the
directional feature n is removed.
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Table 4. Virtual screening results on DUD-E.

DUD-E

AUC-ROC ↑ 0.5% RE ↑ 1.0% RE ↑ 2.0% RE ↑ 5.0% RE ↑
Vina 0.716 9.139 7.321 5.881 4.444

RF-score 0.622 5.628 4.274 3.499 2.678

NNScore 0.584 4.166 2.980 2.460 1.891

Graph CNN 0.886 44.406 29.748 19.408 10.735

3DCNN 0.868 42.559 29. 654 19.363 10.710

DrugVQA 0.972 88.17 58.71 35.06 17.39

GanDTi 0.997 71.13 68.78 49.40 19.79

AttentionSiteDTI 0.971 101.74 59.92 35.07 16.74

CoSPlarge 0.996 111.764 78.426 55.535 22.318

4.4 Downstream Task 3: Virtual Screening

Experimental Setup. Could the model distinguish molecules most likely to bind
to the given pocket? We evaluate CoSP on the DUD-E [34] dataset which consists
of 102 targets across different protein families. For each target, DUD-E provides
224 actives (positive examples) and 10,000 decoy ligands (negative examples) in
average. The decoys were calculated by choosing them to be physically similar
but topologically different from the actives. During finetuning, we use the same
data splitting as GraphCNN [51], and report the AUC-ROC and ROC enrich-
ment (RE) scores. Note that x%RE indicates the ratio of the true positive rate
(TPR) to the false positive rate (FPR) at x% FPR value.

Baselines. We compare CoSPlarge with AutoDock Vina [53], RF-score [2],
NNScore [14], 3DCNN [38], GraphCNN [51], DrugVQA [75], GanDTi [55], and
AttentionSiteDTI [68]. AutoDock Vina is an commonly used open-source pro-
gram for doing molecular docking. RF-score use random forest capture protein-
ligand binding effects. Other methods use deeplearning models to learn the
protein-ligand binding.

Results and Analysis. We present results in Table.4, and observe that: (1) Ran-
dom forest and MLP-based RF-score and NNScore achieve competitive results
to Vina, indicating the potential of machine learning in virtual screening. (2)
Deeplearning-based Graph CNN, 3DCNN, DrugVQA, GanDTi, and Attention-
SiteDTI significantly outperforms both RF-score and NNScore. (3) CoSPlarge

achieves competitive AUC score and outperforms all baselines in RE scores. The
improvement of CoSPlarge suggests that the model can effectively learn protein-
ligand interactions from the pre-training data. (4) In addition, we select Top 1%
ligands identified by the model as actives for the given pocket and use AutoDock
Vina to validate the docking results. In Fig. 2, the visual results show that our
model can identify high-affinity ligands, which is helpful for drug discovery.
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Fig. 2. Two examples of virtual screening. For each pocket, we choose two ligands that
are Top 1% active molecules as identified by the model. We use AutoDock Vina to
generate molecular binding pose and compute the affinity score.

5 Conclusion

This paper proposes a co-supervised pre-training framework to learn the joint
pocket and ligand spaces via chemically inspired contrastive loss. The pre-trained
model could achieve competitive results on molecule property predictions, pocket
matching, and virtual screening. We hope the unified modeling framework could
further advance the development of AI-guided drug discovery.
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Abstract. Feature interaction networks are crucial for click-through
rate (CTR) prediction in many applications. Extensive studies have been
conducted to boost CTR accuracy by constructing effective structures
of models. However, the performance of feature interaction networks is
greatly influenced by the prior assumptions made by the model designer
regarding its structure. Furthermore, the structures of models are highly
interdependent, and launching models in different scenarios can be ardu-
ous and time-consuming. To address these limitations, we introduce a
novel framework called DTR, which redefines the CTR feature interac-
tion paradigm from a new perspective, allowing for the decoupling of its
structure. Specifically, DTR first decomposes these models into individ-
ual structures and then reconstructs them within a unified model struc-
ture space, consisting of three stages: Mask, Kernel, and Compression.
Each stage of DTR’s exploration of a range of structures is guided by
the characteristics of the dataset or the scenario. Theoretically, we prove
that the structure space of DTR not only incorporates a wide range
of state-of-the-art models but also provides potentials to identify better
models. Experiments on two public real-world datasets demonstrate the
superiority of DTR, which outperforms state-of-the-art models.

Keywords: Recommendation · CTR prediction · Feature interaction

1 Introduction

Click-through rate (CTR) prediction is critical for various applications, includ-
ing recommender systems, online advertising, and product search. Mainstream
CTR prediction models utilize an embedding table to map high-dimensional cat-
egorical features (e.g. user id and item id) to low-dimensional dense real-valued
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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vectors, and a feature interaction network to model interactions and make pre-
dictions. Research has focused on optimizing the feature interaction network to
capture beneficial interactions and improve accuracy in CTR prediction.

Existing methods for capturing feature interactions can be divided into two
categories: inner product and outer product. The inner product or Hadamard
product refers to interact on the same elements of pairwise feature embedding
vectors [4,6,10,12,14,16,23], relying on a prior assumption that the embedding
of different features is in the same vector space. The outer product refer to
interact all elements of pairwise feature embedding vectors [14,22] without any
prior assumption. AOANet [7] unifies feature interaction operations by designing
generalized interaction network (GIN).

However, the performance of feature interaction networks is heavily impacted
by the model designer’s prior assumptions, resulting in potential bias in different
scenarios. If a scenario arises that contradicts the prior assumptions, the model’s
performance will deteriorate significantly. For instance, if the embedding vectors
of different features are not located in the same vector space, the inner product
or Hadamard product will perform poorly. It is recommended to let the scenario
or dataset guide the selection of appropriate structures, rather than relying solely
on prior assumptions. Furthermore, the highly interdependent nature of existing
model structures makes it difficult to identify specific components responsible for
observed performance and the process of launching models in different scenarios
can be arduous and time-consuming. One example of such challenges is when
comparing the performance of models such as DCN [21] and FwFM [12], as it is
unclear which aspect of the model contributes to the difference in performance.
Additionally, it is typically necessary to implement DCN and FwFM separately
for different scenarios due to the high coupling.

To effectively tackle these challenges, it is imperative to redefine the CTR
feature interaction paradigm from a new perspective that enables decoupling
of its structure. Therefore, we propose DTR, a novel framework that not only
accommodates the knowledge of prior model structures but also allows better
models to be explored and identified from it. Specifically, DTR first decomposes
these models into individual structures and then reconstructs them within a
unified model structure space, consisting of three stages: Mask, Kernel, and
Compression. The mask stage masks feature interaction information to indicate
which parts of the information model pay attention to. The kernel stage extracts
masked feature interaction information to determine the model’s capacity and
degrees of freedom, such as which dimensions should share information. The
compression stage aims to compress extracted feature interaction information
to balance effectiveness and efficiency. Each stage of DTR’s exploration of a
range of structures, including existing and additional structures, is guided by
the characteristics of the dataset or scenario. Theoretically, we prove that the
structure space of DTR not only incorporates a wide range of state-of-the-art
models but also provides potentials to identify better models. Furthermore, to
inherit benefits from the mixture of experts (MOE) [3,15,17] and Transformer [5,
19], we extend DTR from single channel to multiple channels to explore better



424 J. Li et al.

models in multiple channels. Overall, DTR represents a unified model structure
space that enables efficient exploration and identification of superior models.
The main contributions are summarized as follows.

– We propose a novel framework called DTR, which redefines the CTR feature
interaction paradigm from a new perspective, consisting of three stages: Mask,
Kernel, and Compression. DTR can accommodate knowledge from existing
approaches and provide potential for discovering better models.

– Theoretically, we prove that the structure space of DTR not only incorporates
a wide range of state-of-the-art models but also provides potentials to identify
better models.

– Experiments on two public real-world datasets for CTR prediction tasks
demonstrate the superiority of DTR over state-of-the-art algorithms in terms
of CTR prediction performance. In addition, ablation studies provide a deeper
insight into the workings of different stages of the model and their impact on
performance and other stages.

2 Related Work

In this section, we provide an overview of the related work in the literature. Exist-
ing methods for capturing feature interactions can be divided into two categories:
inner product and outer product. The inner product or Hadamard product refers
to the interaction of pairwise feature embedding vectors on the same elements.
FM [16] is an early work in the field of recommendation, which introduces second-
order feature interaction to solve the problem that logistic regression [13] cannot
automatically extract the feature interaction information. Since FM only con-
siders the second-order feature interaction, a series of improved methods based
on FM specify operations have been proposed to extract the feature interaction
information, such as AFM [23], FwFM [12], NFM [6], DeepFM [4] and IPNN [14].
Some of these works, such as AFM and FwFM, focus on the importance of dis-
tinguishing feature interactions. On the other hand, the outer product refers to
the interaction of all elements of pairwise feature embedding vectors without
any prior assumption, as in OPNN [14], DCN-V2 [22]. DCN-V2 represents a
remarkable improvement over the DCN, as it eschews prior assumptions regard-
ing both feature interaction and weight learning, resulting in a significant perfor-
mance boost. AOANet [7] proposed a generalized interaction network (GIN) to
overcome the limitations of artificially specified operations in feature interaction.
However, as discussed in Sect. 1, existing models are designed by model designers
based on prior assumptions. For instance, DCN-V2 and AOANet remove certain
hypotheses from the model structure based on prior assumptions, rather than
specific scenarios or datasets. This means that models may introduce biases in
different scenarios and adversely impact performance.
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Fig. 1. Framework of DTR architecture. The left figure (a) shows the pipeline of
DTR. Raw features are first fed into an embedding layer to compress them into low-
dimensional feature vectors. Then, they are input in parallel to DNN and DTR to
extract feature interaction information, which is finally used for prediction. The right
figure (b) shows the structure of a single layer of DTR, consisting of the Mask, Ker-
nel, and Compression stages. In the mask stage, the feature interaction matrix is
first masked to retain only the relevant information. Next, the kernel stage interacts
the masked feature interaction matrix with the weight matrix to extract feature inter-
action information. This is followed by the Compression stage which compresses the
extracted feature information using pooling, for use as input to the next layer or for
prediction.

3 Methodology

3.1 Framework of DTR Architecture

Overview. To establish a framework of existing model structures, we decom-
pose the model architecture into three distinct stages, i.e., Mask, Kernel, and
Compression, with an integrated DNN in parallel for extracting feature inter-
action information, as illustrated in Fig. 1(a). Specifically, as shown in Fig. 1(b),
the mask stage first masks the matrix of the feature interaction information, and
then the kernel stage extracts information from the masked feature interaction
matrix, which is followed by the compression stage compressing the extracted
feature information.

Embedding. Features of candidate items are usually sparse, discrete, and
highly dimensional in industrial online recommendation scenarios, causing that
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the feature interaction information is hard to extract. To handle this challenge,
existing model architectures usually adopt an embedding function E(·) to trans-
form the input features xi into continuous and low-dimensional vectors ai ∈ R

d:

ai = E(xi) = Vi · xi, ∀i = 1, 2, . . . , n, (1)

where Vi denotes the embedding matrix. For clarity, we denote X =
{x1, x2, ..., xn} by the integrated input features, and A = {a1, a2, ..., an} by
the matrix of embedding vectors of all input features. For simplicity, we use
A = E(X) to denote the embedding operation (1) in the following.

Mask. After obtaining the embedding vectors A = {a1, a2, ..., an}, the outer
product is applied to any two vectors ai, aj ∈ A to extract the feature interaction
information Z ∈ R

nd×nd, as Z(i−1)d+1:id,(j−1)d+1:jd = ai ⊗ aj , where ⊗ denotes
the outer product and Z(i−1)d+1:id,(j−1)d+1:jd ∈ R

d×d denotes the block in the
i-th row and j-th column of Z. For clarity, we denote Z(i−1)d+1:id,(j−1)d+1:jd

by Bij . Considering that inappropriate interaction may even bring interventions
between features, each block B of feature interaction matrix Z is further masked
as

BM = B � M, (2)

where BM denotes the masked result, and � denotes the element-wise product
of two matrixes. After the mask stage, Z is transformed into masked feature
interaction matrix ZM ∈ R

nd×nd.

Kernel. The kernel stage extracts information from the masked feature inter-
action matrix ZM , indicating the capacity and degrees of freedom of the model.
Inspired by the mixture of experts (MOE) [3,15,17] and Transformer [5,19], we
build the framework of DTR with multiple channels to learn the extracted infor-
mation in parallel. Specifically, we consider that there is C channels with kernel
parameters matrix W c ∈ R

nd×nd to learn from the masked feature interaction
matrix ZM as

Zc
k = ZM � W c, ∀c = 1, 2, · · · , C. (3)

where Zc
k ∈ R

nd×nd denotes the result obtained from the c-th channel. Similarly,
we use ZK = {Z1

k , Z2
k , . . . , ZC

k } to denote the result set consisting of Zc
k from all

channels.

Compression. Considering that the feature information obtained from the
multi-channels kernel are highly-dimensional, we adopt the compression tech-
nology to reduce the size of the features for improving the efficiency of the
model. Specifically, we leverage the pooling operation Pool(·) with the matrix P
to make compression, as:

ZC = Pool(ZK , P ), (4)

where ZC denotes the obtained matrix after the compression stage P denotes
the shape of the submatrix of ZK which is aggregated to one scalar element
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in ZC . It is worthwhile to note that the size of P is adaptively determined in
the learning process. Finally, the feature interaction compression matrix ZC is
flattened and delivered to the fully connected layer for CTR prediction.

Deep Network. Like previous studies, we adopt fully connected network to
extract implicit interaction information:

Hl = σ(WlHl−1 + bl), (5)

where Hl is output of lth layer, σ(·) is activation function which is RELU in our
model, Wl and bl are weights and bias of lth respectively.

Table 1. Connection between DTR and related models. n denotes the number of
features, d denotes the size of the embedding vector. Mask matrix M ∈ R

d×d is a zero-
one matrix, where mi,j denotes the element in i-th row and j-th column, ∀i∀j ∈ [d]. All
models using

∑
(sum compression) in CM . Note: Kernel weight sharing description

can be seen in Appendix.

Model Mask matrix Kernel weight sharing Compression matrix

IPNN M = {mij = 1|∀i∀j, i = j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

OPNN M = {mij = 1|∀i∀j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

FwFM M = {mij = 1|∀i∀j, i = j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

AFM M = {mij = 1|∀i∀j, i = j} Non-linear Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

DCN M = {mij = 1|∀i∀j, i = j} Row Sharing P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

DCN-V2 M = {mij = 1|∀i∀j} No Sharing P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

xDeepFM M = {mij = 1|∀i∀j} Intra-block Sharing P ∈ R
n×n, ZCi,j =

n∑

p=1

n∑

q=1

ZKi+pd,j+pd , ∀i∀j ∈ [d]

AOANet M = {mij = 1|∀i∀j} Intra-block Sharing & Block Element Sharing P ∈ R
nn×d, ZCi =

n∑

p=1

nd∑

q=1

ZKi+pd,q , ∀i ∈ [d]

3.2 Model Analysis

We dive into connections between DTR and related models, as shown in Table 1.
Theoretically, we show that DTR can be equal to extensive known CTR fea-
ture interaction networks. Due to space constraints, we analyze xDeepFM,
IPNN&OPNN here, and defer other model analyses to the Appendix1. For
Pool(·), all of the CTR feature interaction networks use

∑
(sum compression).

Since multi-layer CTR feature interaction networks are constructed recursively
with the same structure, for simplicity we propose analysis on the first layer.

1 https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-
Network-Structures-for-Click-Through-Rate-Prediction.

https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-Network-Structures-for-Click-Through-Rate-Prediction
https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-Network-Structures-for-Click-Through-Rate-Prediction
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xDeepFM. The first layer of xDeepFM is given by:

X1 =
∑

i,j

ws
i,j(X

j,∗
0 � Xi,∗

0 ) =
∑

i,j

ws
i,j(e

i � ej), (6)

where X1 denotes the first layer output, s is a hyper-parameter that represents
the number of feature vectors. ws is the weight matrix for s-th feature vector.
The main connection lies in the number of feature vectors, where one feature
vector corresponds to one channel of DTR.

Theorem 1. The structure of DTR is equivalent to xDeepFM when its
mask matrix M = {mij = 1|∀i∀j, i = j}, kernel weight matrix W =
{wij |∀i∀j, wi,j = w�i/d�,�j/d�}, and compression matrix P ∈ R

n×n, ZCi,j
=

n∑

p=1

n∑

q=1
ZKi+pd,j+pd

,∀i, j ∈ [d].

Proof. Interaction of p-th and q-th feature vector in the first layer of DTR is
given by Bp,q = ep ⊗ eq. Give mask matrix M = {mij = 1|∀i∀j, i = j}, we have

Bp,q
M = Bp,q � M = diag(ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (7)

Denote W [p, q] ∈ R
d×d by a submatrix of W which equals to Bp,q

M . Considering
that ∀i, ∀j, wi,j = w�i/d�,�j/d�, we conclude that each element in W [p, q] shares
the same value denoted as wp,q. Thereby, we have

ZK =W [p, q]�Bp,q
M =[W [p, q]]d×d�Bp,q

M =wp,qB
p,q
M . (8)

Given P ∈ R
n×n, ZCi,j

=
n∑

p=1

n∑

q=1
ZKi+pd,j+pd

,∀i, j ∈ [d], combining with (7) and

(8), we have
Z1
C =

∑

p,q

wp,qdiag(ep1e
q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (9)

Noting that
ep � eq = [ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d], (10)

we can derive that
X1 = Z1

C [1, . . . , 1]T , (11)

which completes the proof.

IPNN & OPNN. The first layer of IPNN is given by:

X1 = W n
p � p =

n∑

i=1

n∑

j=1

〈
θi
n,θj

n

〉 〈
f i,f j

〉
=

n∑

i=1

n∑

j=1

(θni � θnj )(ei � ej), (12)

where n denotes the number of field feature, θin, θjn ∈ R
n, fi, fj ∈ R

d.
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Theorem 2. The structure of DTR is equivalent to IPNN when its mask matrix
M = {mij = 1|∀i∀j, i = j}, kernel weight matrix W = {wij |∀i∀j, wi,j =

w�i/d�,�j/d�}, and compression matrix P ∈ R
d×d, ZCi,j

=
i+d∑

p=i

j+d∑

q=j

ZKp,q
,∀i∀j ∈

[n].

Proof. For the first layer of IPNN, denote θin, θjn ∈ R
n as wij ∈ R

n×n, we can
derive that

X1 =
n∑

i=1

n∑

j=1

wij(ei � ej), (13)

Interaction of p-th and q-th feature vector in the first layer of DTR is given by
Bp,q = ep ⊗ eq. Give mask matrix M = {mij = 1|∀i∀j, i = j}, we have

Bp,q
M = Bp,q � M = diag(ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (14)

Denote W [p, q] ∈ R
d×d by a submatrix of W which equals to Bp,q

M . Considering
that ∀i, ∀j, wi,j = w�i/d�,�j/d�, we conclude that each element in W [p, q] shares
the same value denoted as wp,q. Thereby, we have

ZK =W [p, q]�Bp,q
M =[W [p, q]]d×d�Bp,q

M =wp,qB
p,q
M . (15)

Given P ∈ R
d×d, ZCi,j

=
i+d∑

p=i

j+d∑

q=j

ZKp,q
,∀i∀j ∈ [n], combining with (14) and (15),

we have
Z1
C =

∑

p,q

wp,qdiag(ep1e
q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (16)

Noting that
ep � eq = [ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d], (17)

we can derive that
X1 = Z1

C [1, . . . , 1]T , (18)

which completes the proof.

OPNN has the same kernel and compression structure as IPNN except that the
mask structure is different from IPNN.

4 Evaluations

In this section, we conduct experiments on two public datasets to verify the
effectiveness of the model in a real-world application environment. We aim to
answer the following questions:

– RQ1: How does our proposed model perform as compared to the state-of-the-
art methods?

– RQ2: How do different structures and settings influence the performance?
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4.1 Evaluation Setup

Datasets. We conduct offline experiments on two real-world dataset: Criteo2

and Avazu3.

– Criteo dataset consists of user click data for displayed ads over a period of
7 d, which contains 13 numeric fields and 26 categorical fields. To process the
numeric features, we apply a discretization function, which maps each value
x to �log2(x)� if x > 2, and x = 1 otherwise. For the categorical features, we
replace any feature that appears less than 10 times with a default “OOV”
token.

– Avazu dataset contains mobile advertising data that spans a period of 10 d,
and includes 22 feature fields that describe both user characteristics and
advertisement attributes. We extract three new fields from the timestamp
field: hour, weekday, and is weekend. In addition, we handle categorical fea-
tures that appear less than twice by replacing them with a default “OOV”
token.

We randomly split each dataset into 80/10/10% train-test-validation splits.
Criteo x4 and Avazu x4 dataset are used in experiments, and data preprocessing
refers to FuxiCTR [25].

Table 2. Mask structure w.r.t. mask matrix. d denotes the size of the embedding
vector. Mask M ∈ R

d×d is a zero-one matrix, where mi,j denotes the element in i-
th row and j-th column, ∀i∀j ∈ [d]. M5 denotes random mask according to r, which
indicates the random mask ratio (RMR). r=0 indicates all-one matrix, r=1 indicates
all-zero matrix.

Mask Structure Mask Matrix Mask Structure Mask Matrix

M0 {mij = 1} M1 {mij = 1|i ≤ j}
M2 {mij = 1|i ≥ j} M3 {mij = 1|i �= j}
M4 {mij = 1|i + j − 1 �= d} M6 {mij = 1|i = j}

Baselines. We compared our model with eight feature interaction networks
commonly used in the industry, including IPNN [14], OPNN [14], FwFM [12],
AFM [23], DCN [21], DCN-V2 [22], xDeepFM [10], and AOANet [7]. Results of
some models such as FmFM [18], AFN+ [2] and InterHAT [9] are not presented
in this paper, because more recent models like xDeepFM [10] and DCN-V2 [22]
have outperformed these methods significantly as experiments in BARS [24]
shows.

Metrics. We use two widely-used metrics, Logloss and AUC, to evaluate the
performance of all models. Notably, for CTR prediction task, a 0.001-level

2 https://www.kaggle.com/competitions/criteo-display-ad-challenge.
3 https://www.kaggle.com/c/avazu-ctr-prediction.

https://www.kaggle.com/competitions/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction


Decompose, Then Reconstruct 431

Table 3. Kernel structure w.r.t. kernel weight sharing. Their constraints can be found
in Appendix.

Kernel Struc Sharing Type of Kernel Weight Kernel Struc Sharing Type of Kernel Weight

K0 Full K1 No

K2 Row K3 Intra-block

K4 Block Row K5 Intra-block Element

K6 Intra-block Dimension K7 Non-linear

K8 Intra-block & Intra-block Element

Table 4. Compression structure w.r.t. matrix. n denotes the number of features. d
denotes the size of embedding vector.

Compression Struc Compression Matrix

P0 P ∈ R
1×1, ZC =

nd∑

p=1

nd∑

p=1

ZKp,q

P1 P ∈ R
nd×nd, ZCi,j = ZKi,j , ∀i∀j ∈ [nd]

P2 P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

P3 P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

P4 P ∈ R
nd×d, ZCi =

nd∑

p=1

d∑

q=1

ZKp,q , ∀i ∈ [n]

P5 P ∈ R
1×d, ZCi =

d∑

j=1

ZKi,j , ∀i ∈ [nd], ∀j ∈ [n]

P6 P ∈ R
n×n, ZCi,j =

n∑

p=1

n∑

q=1

ZKi+pd,j+pd , ∀i∀j ∈ [d]

P7 P ∈ R
nn×d, ZCi =

n∑

p=1

nd∑

q=1

ZKi+pd,q , ∀i ∈ [d]

improvement is considered significant, as has been pointed out in existing
literature [4,21,22].

Model Settings. The structures of DTR are shown in Table 2, Table 3, Table 4.
In addition, the compression method includes three types: S0, S1, and S2. S0 cor-
responds to the operation of maximum compression, S1 corresponds to average
compression, and S2 adopts accumulation compression. It is worth noting that,
in order to better explore the space of model architectures, we have developed
novel structures that have not been previously identified by existing models.
This approach enables us to more thoroughly investigate the design space and
potentially discover more effective models that were previously undiscovered.

Parameter Setting. For fair comparison, we set the same embedding size,
batch size, and optimizer for all models, which are 8, 8192, and Adam Optimizer
respectively. Specifically, for each dataset of different scenarios, such as Criteo
and Avazu, we utilize the Block Coordinate Descent (BCD) [1,20] method in
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Table 5. Model structure settings. r denotes the random mask ratio. C denotes the
number of channels.

Model Mask structure Kernel structure Compression structure

IPNN M6 K3 P3, S2

OPNN M0 K3 P3, S2

FwFM M6 K3 P3, S2

AFM M6 K7 P3, S2

DCN M6 K2 P2, S2

DCN-V2 M0 K1 P2, S2

xDeepFM M6 K3 P6, S2

AOANet M0 K8 P7, S2

DTRCriteo M5, r = 0.1 K1, C = 1 P3, S2

DTRAvazu M5, r = 0.4 K1, C = 2 P3, S2

combination with Beam Search [8,11] to search for the optimal structure of
DTR in the scenario. Moreover, we use the DTR framework to reproduce each
model, as Table 5 shows. The deep component also keeps the same for all models.
The numbers of hidden units for each layer are [400, 400, 400] from bottom to
top respectively. For other models, we take the optimal settings from original
papers. We conducted three rounds of repeated experiments for each model, and
then recorded the average of metrics as the final results.

4.2 Performance Comparison (RQ1)

Table 6. Overall performance on Criteo and Avazu dataset. (Logloss ×10−2)

Dataset Metrics Model Improv.

IPNN OPNN FwFM AFM DCN DCN-V2 xDeepFM AOANet DTR

Criteo LogLoss 44.59 45.09 44.60 44,59 44.69 44.31 44.51 44.45 44.13 −0.18

AUC(%) 80.57 80.02 80.56 80.56 80.46 80.83 80.65 80.73 81.07 +0.24

Avazu LogLoss 37.79 38.14 37.76 37.79 37.80 37.68 37.77 37.73 37.54 −0.14

AUC(%) 78.33 77.73 78.38 78.32 78.30 78.51 78.35 78.41 78.75 +0.24

In this section, we discuss the experimental results demonstrated in Table 6. The
results demonstrate that DTR outperforms all baselines on Criteo and Avazu
two datasets. In particular, compared to the current SOTA model DCN-V2,
DTR achieves a Logloss reduction of 0.18×10−2 and AUC improvement of 0.24%
on the Criteo dataset, as well as a Logloss reduction of 0.14×10−2 and AUC
improvement of 0.24% on the Avazu dataset. This demonstrates that DTR can
not only implement extensive known CTR feature interaction networks, but also
discover the optimal structure for different stages, which identifies some novel
models that have not been proposed yet.
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In addition, there are also some other interesting observations. We find that
the mask, kernel, and compression structures are not independent, but rather
exhibit a degree of coupling, and that a local optimal structure at any stage
may not be optimal for the entire framework. OPNN has the worst performance
among all models, and the mask structure uses M0, but DCN-V2 and AOANet
have good performance, which also use M0. Another observation is that the per-
formance of AFM ties with FwFM in both datasets. From the perspective of the
DTR framework, the difference between FwFM and AFM lies in the difference
in the kernel structure. FwFM adopts an intra-block weight sharing structure,
while AFM learns the block importance through a shared MLP called atten-
tion network on this basis. It is not critical to establish the connection kennel
between feature interaction terms and their significant coefficients. Furthermore,
The model performance is closely related to the setting of the kernel structure.
The sharing type of kernel weight greatly affects the performance of the model,
such as DTR (r = 0) and OPNN. The biggest difference lies in the kernel struc-
ture. There is a huge gap in its performance, with an improvement of 1.05% on
Criteo dataset and 1.02% on the Avazu dataset in terms of AUC.

4.3 Ablation Study (RQ2)

We conducted several ablation experiments to investigate the effectiveness of
each stage in the DTR framework. During the ablation experiments, we set
other parameters as initial settings to reduce interference and better explore the
performance of each structure of DTR.

(e) Stru. of Mask (f) Stru. of Kernel (g) Stru. of Comp. (h) Method of Comp.

(i) Number of RMR (j) Number of Layers (k) Number of Channels

Fig. 2. Ablation study of model setting on the performance of AUC.
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Structure of Mask. Table 2 presents the mask structures used in our exper-
iments, and the results are shown in Fig. 2(e). For the random mask structure
M5, we experiment with different ratios and selected the final optimal result
for M5. The experimental results for various random mask ratios are shown in
Fig. 2(i). The results indicate that, except M0 and M5 without any assump-
tions, have relatively good and stable performance on both datasets, while other
mask structures vary significantly. Specifically, M6 performs poorly in the Criteo
dataset but performs well in Avazu. This reinforces our previous statement that
prior assumptions regarding the model structure can significantly impact perfor-
mance in different scenarios. Additionally, this further highlights the importance
of the DTR framework, which can optimize the mask structure for each CTR
prediction task to achieve optimal performance. Among all mask structures, M5

performs the optimal in both datasets. Moreover, Fig. 2(i) indicates that the opti-
mal random mask ratios are 10% and 40% for the Criteo and Avazu datasets,
respectively. These results suggest that there exists some redundancy in the fea-
ture interaction information and that appropriate random mask can improve the
performance. However, excessive masking can significantly affect the expression
of feature interaction information, resulting in performance degradation.

Structure of Kernel. The descriptions of kernel structures are shown in
Table 3, and the experimental results are presented in Fig. 2(f). Among all kernel
structures, the optimal kernel structure is K1, indicating that the interaction
between any dimension of any feature embedding vector in the feature inter-
action matrix is different, and that the kernel structure achieves optimal per-
formance without any assumptions. Furthermore, the size of the kernel weight
matrix may also affect the performance. For K0, the entire feature interaction
matrix shares the same weight, resulting in the worst performance. On the other
hand, K1 does not share the weight of the feature interaction matrix, which
leads to the most weight learned and optimal performance achieved. It is worth
noting that different kernel weight sharing structures have a significant impact
on performance. For instance, even though K3 learns much more weight than
K5 and K6, its performance is far worse than K5 and K6 due to the different
weight sharing of structures. Specifically, K3 uses the same weight for each block,
while K5 and K6 adopt the same weight for all blocks of the same element and
dimension, respectively. Consequently, different feature interaction information
between different dimensions of feature embedding vectors and small interac-
tion difference between different feature embedding vectors result. Overall, this
experiment highlights the importance of selecting the appropriate kernel weight
sharing structure for achieving optimal performance.

Structure of Compression. Table 4 describes the compression structures used
in the experiment, while the experimental results are presented in Fig. 2(g).

The results demonstrate that P3, which uses intra-block compression,
achieves the optimal performance in both datasets. This suggests that informa-
tion of the same feature interaction block can more effectively express the entire
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feature interaction matrix information. Furthermore, P1 adopts full compression
and has the worst performance, followed by P0 which does not compress to any
level and retains the entire matrix. Therefore, it is crucial to use an appropriate
compression structure when compressing the feature interaction matrix.

Moreover, we explored a novel question that previous research has not
addressed: which compression method works better. Figure 2(h) presents the
experimental results. Interestingly, the sum compression method, which is com-
monly used, achieves the optimal performance. It is noteworthy that the sum
compression method is a scalar multiple of the average compression method,
with the scalar value equal to the length of the pairwise feature embedding vec-
tors product. However, the average compression method performs much worse
than the sum compression method, which may be due to the fact that it reduces
the amount of feature interaction term information and the difference between
different feature interaction terms, thus affecting the expression of the original
feature interaction term information.

Number of Channels. Figure 2(k) shows that the optimal setting for C is 1
and 3 for Criteo and Avazu dataset, respectively. We can know that the large
dataset contains more feature information, so the number of channels is relatively
less important and does not necessarily boost performance. When working with
a small dataset, increasing parallelism can lead to performance improvements.

Number of Layers. Figure 2(j) shows that the model performance promotes
when L increases from 1 to 2. However, as L continues to increase, the perfor-
mance improves slightly and even starts to decay. In addition, Table 5 shows the
optimal setting of L does not exceed 3, which implies that feature interactions
above third order may provide very little information for the sake that they are
extremely sparse.

5 Conclusions

In this paper, we propose a unified framework called DTR that explores and
optimizes the model structure for CTR prediction tasks. DTR decomposes these
models into individual structures and then reconstructs them within a unified
model structure space, consisting of three stages: Mask, Kernel, and Compres-
sion. Theoretically, we have demonstrated that the structure space of DTR not
only incorporates a wide range of state-of-the-art models but also provides poten-
tials to identify better models. Experimental results on two public real-world
datasets confirm the superiority of DTR over state-of-the-art algorithms.
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Abstract. Previous work on learning physical systems from data has
focused on high-resolution grid-structured measurements. However, real-
world knowledge of such systems (e.g. weather data) relies on sparsely
scattered measuring stations. In this paper, we introduce a novel sim-
ulated benchmark dataset, DynaBench, for learning dynamical systems
directly from sparsely scattered data without prior knowledge of the
equations. The dataset focuses on predicting the evolution of a dynami-
cal system from low-resolution, unstructured measurements. We simulate
six different partial differential equations covering a variety of physical
systems commonly used in the literature and evaluate several machine
learning models, including traditional graph neural networks and point
cloud processing models, with the task of predicting the evolution of
the system. The proposed benchmark dataset is expected to advance the
state of art as an out-of-the-box easy-to-use tool for evaluating models in
a setting where only unstructured low-resolution observations are avail-
able. The benchmark is available at https://professor-x.de/dynabench.

Keywords: neuralPDE · dynamical systems · benchmark · dataset

1 Introduction

Dynamical systems, which are systems described by partial differential equations
(PDEs), are ubiquitous in the natural world and play a crucial role in many areas
of science and engineering. They are used in a variety of applications, including
weather prediction [5], climate modeling [7], fluid dynamics [22], electromagnetic
field simulations [33] and many more. Traditionally, these systems are simulated
by numerically solving a set of PDEs that are theorized to describe the behavior
of the system based on physical knowledge. An accurate modelling technique is
crucial for ensuring accurate predictions and simulations in these applications.
However, the equations used are often just an approximation of a much more
complex reality, either due to the sheer complexity of a more accurate model
which would be computationally infeasible or because the true equations are not
known [27].
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In recent years, several models have been proposed in the deep learning com-
munity, which address the problem of simulating physical systems by learning to
predict dynamical systems directly from data, without knowing the equations a
priori [6,11,18,25,31]. These types of approaches have a distinct advantage over
classical numerical simulations, as they do not require estimating the parame-
ters of the equations, such as the permeability of a medium or the propagation
speed of a wave. To ensure that the proposed models and architectures perform
and generalize well and to be able to draw a fair comparison between them,
it is necessary to compare them in a common experimental setting. As there
are very few real-world datasets readily available for this purpose, it is common
practice to employ simulated data as a simplified but easy-to-use and available
alternative to evaluate novel machine learning methods [1,4,11,19,35].

While some progress has been made towards creating a standardized bench-
mark [17,29,35] dataset of physical simulations, the previous work in this area
mainly focuses on the task of reconstructing the forward operator of the numer-
ical solver, for which the full computed solution on a high-resolution grid of the
differential equation is needed as training data. This makes it difficult to assess
the applicability of any approach evaluated this way on real data, where mea-
surements are typically neither high resolution nor grid-based, but instead rely
on a sparse network of measuring stations (cf. Figure 1).

To achieve greater fidelity to real-world conditions, we propose a novel bench-
mark dataset, DynaBench, that focuses on the challenging task of predicting
the evolution of a dynamical system using a limited number of measurements
that are arbitrarily distributed within the simulation domain. This more closely
resembles a real-world setting and allows for a more accurate assessment of the
applicability of different models to real-world data. The benchmark consists of
simulations of six physical systems with different properties that are commonly

Fig. 1. Map of weather stations within the European Climate Assessment and Datasets
(ECA&D) monitoring network for temperature and precipitation data [15]. Monitoring
stations are not located on a grid but instead strategically placed based on a variety
of factors such as topography, accessibility, and weather patterns.
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used as synthetic data for learning dynamical systems. The simulations have
been generated using a numerical solver. Our aim is not to cover all possible
physical systems, parameters, and equations but rather to provide a good start-
ing point to develop and compare machine learning models suited for this task.
The selection we propose is a combination of typical equations used to evaluate
deep learning models and equations with different properties (such as order of
derivatives and number of variables) that complement them.

In addition, we present a detailed evaluation of various comparison models
capable of learning functions on arbitrary geometries, including graph neural
networks [14,18,21,37], point cloud neural networks [32,34,40], and continuous
convolution models [36,39]. Our objective is to provide a set of strong baselines
for further research, and thus facilitate the development and testing of new
machine learning methods for predicting physical systems from unstructured
low-resolution data. Our results show that the selected models are capable of
providing accurate short-term predictions, but long-term forecasting remains an
open challenge.

With the release of DynaBench, we hope to provide a valuable resource for
the machine learning community, which will facilitate research and thus advance
the state-of-the-art in learning dynamical systems from data on unstructured
low-resolution observations.

The main contributions of our work can be summarized as follows.

1. We propose a new benchmark dataset for learning dynamical systems from
data under the assumption that measurements are sparse and not structured
on a grid.

2. We generate the dataset by simulating several differential equation systems
typically used for the task of learning dynamical systems.

3. We thoroughly evaluate several models capable of learning functions on arbi-
trary geometries on the DynaBench dataset, including both graph neural
networks and point-cloud processing models.

4. We release both the dataset and the code for evaluating all models, to facili-
tate further research in this field1.

2 Related Work

Several approaches for learning dynamical systems from grid data have been
proposed in recent years, but they lack comparability as different sets of equa-
tions and simulation parameters are used. Ayed et al. [4] propose a hidden-
state neural solver-based model and use a system of shallow water equations
and an Euler fluid simulation to evaluate it. Long et al. [26] evaluate their
numeric-symbolic hybrid model on the Burgers’ equation, diffusion equation
and convection-diffusion equation with a reactive source. Dulny et al. [11] eval-
uate their neuralPDE Model based on neural solvers on several PDE systems,
including advection-diffusion, Burgers’ and wave equations. Li et al. [25] propose

1 The benchmark is available at https://professor-x.de/dynabench.

https://professor-x.de/dynabench
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a resolution invariant method based on the fourier transformation and test it on
Burgers’ equation, simplified Navier-Stokes system and steady-state darcy flow.

Similarly, authors proposing models for unstructured data (i.e. measurements
not on a grid) also do not evaluate their models on a common set of systems.
Karlbauer et al. [19] propose a graph-based recurrent model (Distana) to learn
spatio-temporal processes and evaluate it on the wave propagation equation.
Iakovlev et al. [18] use an advection-diffusion problem, as well as the heat equa-
tion and Burger’s equation, to evaluate their graph message passing approach.
Another approach proposed by Li et al. [24], the multipole graph neural opera-
tor, is evaluated on the steady state darcy flow, as well as the viscous variant of
the Burgers’ equation.

Recently, some progress has been made towards creating a standardized
benchmark for learning PDEs from data. Huang et al. [17] proposed a dataset
containing simulations of incompresible Navier-Stokes equations for fluid dynam-
ics. While the main audience of the dataset is not the machine learning com-
munity, as its central purpose is to compare different discretization and solving
schemes, the data could in theory still be used to train different models for learn-
ing the solutions from data. However, it remains limited in the choice of equa-
tions, as it only uses the Navier-Stokes equations, and furthermore is not suited
for evaluating models in a low-resolution regime. Otness et al. [29] propose a
benchmark specifically aimed at learning to simulate physical systems from data.
However, the simulations are discrete systems (spring systems) rather than con-
tinuous spatiotemporal processes defined by partial differential equations. For
this reason they cannot be used for the intended purpose of learning continuous
systems from low-resolution measurements.

Takamoto et al. [35] propose a very extensive benchmark of eleven differ-
ent equation systems called PDEBench, including fluid simulations, advection
and diffusion equations, Burgers’ equation and more. The authors also provide
extensive experiments and evaluations for a variety of models. The benchmark
is well suited for learning in a high-resolution framework, where the whole dis-
cretized grid used during numerical solving is also used for training the mod-
els. However, the selection of equations consisting mainly of fluid simulations is
unsuitable for low-resolution predictions, as such systems show turbulent and
chaotic behavior [9,13] and therefore require a high-resolution discretization. As
such PDEBench is neither suited nor easily usable in a low-resolution regime,
where only limited number of scattered observation are available.

3 Dataset

In this section we describe the overall structure of the datasets, which equations
were included in the benchmark, how the simulations were executed, and what
postprocessing steps were performed.
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3.1 Setting

A PDE is a equation in which an unknown function is to be found, based on the
relations between itself and its partial derivatives in time and space. It can be
summarized in the form:

F (u,
∂u

∂t
,
∂u

∂x
,
∂u

∂y
, ...) = 0 (1)

As mentioned in Sect. 1 such equations can be used to model a variety of physical
systems, by solving a previously known equation system using a measured initial
state. In the context of scientific machine learning, a typically researched task
is to reconstruct the parameters of the equation (i.e. the function F ) from data
obtained from a mixture of exact measurements and simulations. Reconstructing
the differential equations requires high-resolution data (both in time and space),
which is unavailable in a real world setting [11]. Our benchmark is focused on a
different task, namely learning to predict the evolution of a dynamical system
from data, under the assumption that only low-resolution measurements are
available. Formally, a PDE solver seeks to approximate the true solution

u : Ω × T −→ R

by some approximate
ûh : Ω̂h × T̂h −→ R,

where Ω̂h is a high-resolution discretization of the solution domain Ω ⊆ R
n (typ-

ically a grid) and T̂h is a high-resolution time discretization of T ⊆ R (typically
T̂h = {t

(h)
k , k ∈ N} for t

(h)
k := t0 + kΔht and some small Δht > 0).

For our task we assume that only low-resolution observations ûl at measure-
ment locations Ω̂l of the physical process u are available (i.e. |Ω̂l| � |Ω̂h|), and
the temporal resolution T̂l = {t

(l)
k , k ∈ N} for t

(l)
k := t0 + kΔlt of the measure-

ments is also low (|Δlt| � Δht). The task is then to predict the evolution of
the system ûl(Ω̂l, t

(l)
k+1), ûl(Ω̂l, t

(l)
k+2), . . . , ûl(Ω̂l, t

(l)
k+R), from the past observations

ûl(Ω̂l, t
(l)
k−H), . . . , ûl(Ω̂l, t

(l)
k−1), ûl(Ω̂l, t

(l)
k ).

3.2 Equations

Overall we curated a set of six different PDE equation systems, typically used
in the context of learning dynamical systems from data, with various properties
as summarized in Table 1. In the following we shortly describe each equation in
more detail.

Advection. The advection equation

∂u

∂t
= −∇ · (cu) (2)

describes the displacement of a quantity described by a scalar field u in a medium
moving with the constant velocity c. It is a widely used benchmark equation due
to its simplicity and straightforward dynamics [11,26]
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Table 1. Summary of the PDE systems used in our benchmark dataset

Equation Components Time Order Spatial Order

Advection 1 1 1

Burgers 2 1 2

Gas Dynamics 4 1 2

Kuramoto-Sivashinsky 1 1 4

Reaction-Diffusion 2 1 2

Wave 1 2 2

Burgers’ Equation. The Burgers’ equation

∂u
∂t

= R(ν∇2u − u · ∇u) (3)

is a non-linear second order PDE with respect to spatial derivatives
The equation describes the speed u of a fluid in space and time with ν

representing the fluid’s viscosity and R describing the rate of the simulation.
It is one of the most often used equations in the context of deep learning for
dynamical systems [11,18,24,35].

Gas Dynamics. In gas dynamics, the system of coupled non-linear PDEs

∂ρ

∂t
= −v · ∇ρ − ρ∇ · v

∂T

∂t
= −v · ∇T − γT∇ · v + γ

Mk

ρ
∇2 T

∂v
∂t

= −v · ∇v − ∇P

ρ
+

μ

ρ
∇(∇v)

(4)

describes the evolution of temperature T , density ρ, pressure P and velocity v
in a gaseous medium. The equations are derived from the physical laws of mass
conservation, conservation of energy, and Newton’s second law [3]. The param-
eters specify the physical properties of the system, γ being the heat capacity
ratio, M the mass of a molecule of gas, and μ the coefficient of viscosity. This
equation can be seen as a simplified weather system.

Kuramoto-Sivashinsky. The Kuramoto-Sivashinsky equation

∂u

∂t
= −1

2
|∇u|2 − ∇2u − ∇4u (5)

describes a model of the diffusive-thermal instabilities in a laminar flame front.
Solutions of the Kuramoto-Sivashinsky equation possess rich dynamical char-
acteristics [8] with solutions potentially including equilibria, relative equilibria,
chaotic oscillations and travelling waves.
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Table 2. Equation parameters used for the simulations

Equation Parameters

Advection cx = 1, cy = 1

Burgers ν = 0.5, R = 25

Gas Dynamics μ = 0.01, k = 0.1, γ = 1, M = 1

Kuramoto-Sivashinsky -

Reaction-Diffusion Du = 0.1, Dv = 0.001, k = 0.005, au = 1, av = 1

Wave ω = 1

Reaction-Diffusion. The Reaction-Diffusion system

∂u

∂t
= Du∇2u + au(u − u3 − k − v)

∂v

∂t
= Dv∇2v + av(u − v)

(6)

describes the joint concentration distribution of a two component chemical reac-
tion, where one of the components stimulates the reaction and the other inhibits
it. The parameters Du and Dv describe the diffusion speed of the activator and
inhibitor respectively, k is the activation threshold, while au and av describe the
reaction speed of the two components. The equation has applicability in describ-
ing biological pattern formation and forms rich and chaotic systems [12,35].

Wave. The wave equation
∂2u

∂t2
= ω2∇2u (7)

describes the propagation of a wave in a homogeneous medium (e.g. water sur-
face) where u describes the distance from equilibrium and ω represents the
material-dependent speed of propagation. It is a linear, second-order PDE that
has been widely used in scientific machine learning [11,19,20,28,30].

3.3 Simulation Parameters

The machine learning task for which our benchmark has been designed, is to learn
predictions from observations of a physical system. The system is assumed to
evolve according to a set of fixed physical laws that are have constant parameters
such as thermal conductivity, diffusion coefficients etc. To create simulations
of such systems, we specify the constant parameters with which the selected
equations are solved, as shown Table 2. The parameters have been chosen to
ensure a good balance between the complexity of the system and the numerical
stability of the simulations.

The spatial domain of the simulation is set to Ω = [0, 1]× [0, 1] and the tem-
poral domain to T = [0, 200]. We initialize the state of each system using zeros,
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uniform (u) or normally (n) distributed noise, or a sum of Gaussian curves, indi-
vidually for each field, similar to what has been used in related work [11,19,35].
The exact specification of which initial condition is used for each individual vari-
able is summarized in Table 3. The sum of Gaussian curves has been calculated
in the following manner:

I(x, y) =
K∑

i=1

Aie
− (x−μix)2+(y−μiy)2

σ2 (8)

The positions (μix, μiy) of each component i are sampled uniformly from
the simulation domain Ω, while their contributions Ai are sampled uniformly
from the interval [−1, 1]. The fixed parameters K and σ are set to 5 and 0.15
respectively (Fig. 2).

Table 3. Initial conditions used for each system

Equation Field Initial Cond

Advection u gaussian

Burgers u gaussian

v gaussian

Gas Dynamics ρ gaussian

T gaussian

vx zero

vy zero

Kuramoto-Sivashinsky u noise (u)

Reaction-Diffusion u noise (n)

v noise (n)

Wave u gaussian
∂u
∂t

zero
Fig. 2. Example of a gaussian ini-
tial condition as defined in Eq. (8)

To run the simulations, the domain Ω is discretized as a 64 × 64 grid, which
yields a cell size of Δx = Δy = 0.0156. The equations are solved using the
method of lines as numerical scheme [11]. We use the Explicit Runge-Kutta
method of order 5(4) [10] as the numerical integrator.

3.4 Postprocessing

The simulation is saved with a temporal resolution of Δt = 1, producing
exactly 201 observations per simulation. As some of the equations produce non-
stationary physical processes, we normalize the data to ensure that range of
values remains similar across different equations, simulations and times. Finally,
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we sample measurements to form the non-grid observation domain, by selecting
uniformly K points from the simulation domain Ω and bilinearily interpolate
the values from the grid measurements.

3.5 Data Availability

In total we generate 7000 different simulations for each equation, divided into
5000 training simulations and 1000 validation and test simulations each. For
each simulation, we use a different initial seed to sample the initial condition.
The benchmark is available in three different resolutions, where either K = 225,
K = 484, or K = 900 measurements are recorded. Additionally we provide a low-
resolution variant of the simulation measured on a grid with the same number
of points in total - 15 × 15, 22 × 22, 30 × 30.

The full dataset (including the original high-resolution simulations) can be
downloaded at https://professor-x.de/dynabench. Alternatively the same data
can be generated from scratch using the provided source code and predefined
seeds. Additionally more data can be generated

4 Experiments

In this section we describe a selection of experiments that we performed on the
DynaBench dataset.

4.1 Models

In the following, we briefly describe the models used during the experiments.
We select several graph neural network and point cloud network baselines as
a comparison for available state-of-the-art architectures proposed for learning
dynamical systems from scattered measurements - graph kernel networks and
graph PDE networks. We do not include Distana [19] and Multipole Graph
Operator [24] (cf. Section 2) as there is no code available for the former and
the latter requires measurements obtained at different resolution levels and is
unsuitable for our setting.

Additionally, to better understand how the change of structure affects the
accuracy of the predictions, we evaluate three models that work on grid data
trained on a version of the dataset using the same number of measurements but
aligned on a grid, as described in Sect. 3.5. These include two variants of a simple
convolutional neural network [23] - with and without residual connections [16]
and neuralPDE, a model specifically designed to learn dynamical systems from
gridded data [11].

Finally, we use the persistence baseline as a reference point for all deep learn-
ing models.

PointGNN is a graph neural network proposed by [34] to solve the task of object
detection in a LiDAR point cloud. It uses MLP-based feature aggregation within
a local neighborhood with an additional perturbation mechanism to offset the

https://professor-x.de/dynabench
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coordinates of the neighboring points. This increases the translation invariance
of the calculated filters with respect to the center vertex coordinates.

Point Transformer (Point TF) is a model originally proposed by Zhao
et al. [40] for object classification and segmentation on 3D point clouds. It uses
self-attention, similar to transformer networks, to process features within a spa-
tially local neighborhood. We modify the original segmentation architecture to
use 2D point coordinates where the physical system has been measured.

Feature-Steered Graph Convolutions (FeaStNet) is a graph convolution
operator developed by Verma at al. [38] for 3D object analysis. It uses the node
features from the preceding layer to determine the correspondence between filter
weights and nodes in a local neighborhood. Thus it is able to adjust the filters
dynamically based on the final prediction task.

Graph Convolution Network (GCN) proposed by Kipf et al. [21] is a simple
generalization of convolutions to graph structures where no ordering of the neigh-
bors exists. It uses a first-order approximation of spectral graph convolutions to
aggregate features from neighboring nodes.

Graph Attention Network (GAT) proposed by Veličković et al. [37] incor-
porates an attention mechanism into convolutions on graphs used as weights for
aggregating the features from neighboring nodes in each layer. The attention
mechanism is able to (implicitly) assign different weights to different nodes in a
neighborhood.

Graph Kernel Network (KernelNN) is a deep learning approach proposed by
Anandkumar et al. [2] for learning a mapping between two infinite-dimensional
spaces. It uses kernel integration with a learnable Nyström kernel as an approx-
imation of the true neural operator. In the original experiments Anandkumar
et al. use a high-resolution grid on which the simulation is computed, but the
model itself can be applied to non-grid measurements.

Graph PDE Networks (GraphPDE) proposed by Iakovlev et al. [18] use the
neural network to parameterize the dynamics (rate of change) of the system
rather than making predictions directly. Similar approaches have been proposed
for grid data [4,11], outperforming classical architectures for this type of task. All
of these approaches, including graph PDE networks, use the parameterization
learned by message passing graph neural networks together with an differentiable
ODE solver to obtain predictions.

CNN originally developed by LeCun et al. [23] uses learnable convolutional
filters to enforce translation invariance of the learned mapping with respect to
the input position. While it was originally proposed for computer vision tasks it
has since been used in the context of learning to predict dynamical systems from
data. In our experiments we include a simple architecture with several stacked
CNN layers, as well as ResNet variant with residual connections [16].

NeuralPDE is a model proposed by Dulny et al. [11] combing a convolutional
neural network used to parametrize the dynamics (rate of change) of a physical
system with differentiable ODE solvers to calculate predictions. The authors use
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convolutional layers to approximate partial differential operators, as they directly
translate into a discretization using finite differences. This type of architecture
has been shown to perform exceptionally well on a variety of physical data.

Persistence describes the baseline obtained by applying the rule “today’s
weath-er is tomorrow’s weather”. It suggests the last known input as the predic-
tion of the next state. Any forecasting model should be able to outperform this
baseline, to be counted as useful. The persistence baseline is a common method
used in machine learning for time series forecasting tasks.

4.2 Setup

We trained and evaluated all selected models on the DynaBench dataset using
7000 simulations for each equation as training data, and 1000 for validation
and testing each. The input for the models is a H-step lookback of the system
state (the previous H states) measured at K locations that we merge along the
feature dimension. Specifically, for an physical system describing D variables,
the resulting input has the dimension H × D.

We train all models on predicting the next step of the simulation by mini-
mizing the mean squared error (MSE):

min
φ

E
[
mφ(Xt ‖ Xt−1 ‖ . . . ‖ Xt−H+1) − Xt+1

]2 (9)

where Xt+1,Xt,Xt−1, . . . describes the state of the physical system at times
t + 1, t, t − 1, . . .; mφ is the neural network model with learnable parameters φ;
H is the lookback history; and ‖ denotes the concatenation operator.

For evaluating the models we rollout R predictions steps in a closed-loop
setting where the predictions of previous states are used as input for predicting
the new state. Specifically:

X̂t+1 =mφ(Xt ‖ Xt−1 ‖ . . . ‖ Xt−H+1)

X̂t+2 =mφ(X̂t+1 ‖ Xt ‖ . . . ‖ Xt−H+2)

X̂t+3 =mφ(X̂t+2 ‖ X̂t+1 ‖ . . . ‖ Xt−H+3)
...

X̂t+R =mφ(X̂t+R−1 ‖ X̂t+R−2 ‖ . . . ‖ X̂t−H+R)

(10)

In our experiments we use H = 8, K = 900 and R = 16.

4.3 Results

Table 4 shows the results of our experiments for single-step predictions on the
test simulations. Our results show that non-grid models, such as kernel-based
neural networks and graph-based neural networks, can perform similarly to grid-
based models for short-term (1-step) predictions. Among the models trained
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Table 4. MSE after 1 prediction step. The best perfoming model for each equation
has been underlined. Additionally, the best non-grid model has been

����������
underwaved. A =

Advection, B = Burgers’, GD = Gas Dynamics, KS = Kuramoto-Sivashinsky, RD =
Reaction-Diffusion, W = Wave

model A B GD KS RD W

FeaSt 1.30 · 10−4 1.16 · 10−2 1.62 · 10−2 1.18 · 10−2 4.89 · 10−4 5.23 · 10−3

GAT 9.60 · 10−3 4.40 · 10−2 3.75 · 10−2 6.67 · 10−2 9.15 · 10−3 1.51 · 10−2

GCN 2.64 · 10−2 1.39 · 10−1 8.43 · 10−2 4.37 · 10−1 1.65 · 10−1 3.82 · 10−2

GraphPDE 1.37 · 10−4 1.07 · 10−2 1.95 · 10−2 7.20 · 10−3 1.42 · 10−4 2.07 · 10−3

KernelNN 6.31 · 10−5 1.06 · 10−2 1.34 · 10−2 6.69 · 10−3 1.87 · 10−4 5.43 · 10−3

Point TF 4.42 · 10−5 1.03 · 10−2 7.25 · 10−3
��������

4.90 · 10−3
��������

1.41 · 10−4 2.38 · 10−3

PointGNN 2.82 · 10−5
��������

8.83 · 10−3

��������
9.02 · 10−3 6.73 · 10−3 1.36 · 10−4

��������
1.39 · 10−3

��������

CNN 5.31 · 10−5 1.11 · 10−2 4.20 · 10−3 6.70 · 10−4 3.69 · 10−4 1.43 · 10−3

NeuralPDE 8.24 · 10−7 1.12 · 10−2 3.73 · 10−3 5.37 · 10−4 3.03 · 10−4 1.70 · 10−3

ResNet 2.16 · 10−6 1.48 · 10−2 3.21 · 10−3 4.90 · 10−4 1.57 · 10−4 1.46 · 10−3

Persistence 8.12 · 10−2 3.68 · 10−2 1.87 · 10−1 1.42 · 10−1 1.47 · 10−1 1.14 · 10−1

on unstructured data, the PointGNN and Point Transformer show the best
performance.

However, for longer-term predictions, the grid-based models outperform the
non-grid models as shown in Table 5. For the grid-based models the underlying
spatial structure is fixed and they do not need to additionally learn the depen-
dencies between neighboring measurements. We hypothesize that because of the
simpler spatial dependencies, grid-based models are able to generalize better and
thus capture the long term evolution of the system more accurately.

Interestingly, we found that the models specifically designed to learn solving
PDEs, such as KernelNN and GraphPDE, were not as good as the other models
when the data was low-resolution as opposed to high-resolution data on which
they were originally evaluated. This suggests that their underlying assumptions
may be too strong to handle such data effectively.

Additionally, our study brings to light that long-term predictions are still
an unsolved challenge for all models. The divergence in predictions, as illus-
trated in Fig. 3, occurs rapidly and is particularly prominent in systems such as
Gas Dynamics and Kuramoto-Sivashinsky equations, where the prediction error
exceeds 0.5 after only 16 prediction steps. This level of error, which is half of the
standard deviation of the data (as explained in Sect. 3.4), renders it impossible
to make use of these long-term predictions. Thus, our findings emphasize the
need for further research and development in this field to address this issue.
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Fig. 3. Visualization of the accumulation of errors for 16 step predictions for all equa-
tions in DynaBench. For better readability, MSEs for diverging predictions are not fully
displayed.
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Table 5. MSE after 16 prediction steps, * - denotes that the system diverges (MSE >
10). The best perfoming model for each equation has been underlined. Additionally,
the best non-grid model has been

����������
underwaved. A = Advection, B = Burgers’, GD =

Gas Dynamics, KS = Kuramoto-Sivashinsky, RD = Reaction-Diffusion, W = Wave

model A B GD KS RD W

FeaSt 1.48 · 100 5.61 · 10−1 8.20 · 10−1 3.74 · 100 1.30 · 10−1 1.61 · 100

GAT * 8.33 · 10−1 1.21 · 100 5.69 · 100 3.86 · 100 2.38 · 100

GCN * 1.31 · 101 7.21 · 100 * * 7.89 · 100

GraphPDE 1.08 · 100 7.30 · 10−1 9.69 · 10−1 2.10 · 100 8.00 · 10−2 1.03 · 100
�������

KernelNN 8.97 · 10−1 7.27 · 10−1 8.54 · 10−1 2.00 · 100
�������

6.35 · 10−2 1.58 · 100

Point TF 6.17 · 10−1
��������

5.04 · 10−1

��������
6.43 · 10−1
��������

2.10 · 100 5.64 · 10−2
��������

1.27 · 100

PointGNN 6.61 · 10−1 1.04 · 100 7.59 · 10−1 2.82 · 100 5.82 · 10−2 1.31 · 100

CNN 1.61 · 10−3 5.55 · 10−1 9.95 · 10−1 1.26 · 100 1.83 · 10−2 5.61 · 10−1

NeuralPDE 2.70 · 10−4 6.60 · 10−1 4.43 · 10−1 1.06 · 100 2.24 · 10−2 2.48 · 10−1

ResNet 8.65 · 10−5 1.86 · 100 4.80 · 10−1 1.07 · 100 7.05 · 10−3 2.99 · 10−1

Persistence 2.39 · 100 6.79 · 10−1 1.46 · 100 1.90 · 100 2.76 · 10−1 2.61 · 100

5 Conclusion

We have proposed a new benchmark dataset for learning dynamical systems from
data under the assumption that measurements are sparse and not structured
on a grid. This is closer to real-world data than other resources available, as
typically measurements are obtained from monitoring stations scattered withing
the observation domain.

The DynaBench dataset covers a wide range of physical systems with different
properties such as number of connected variables, degree of the differential oper-
ators etc. We have thoroughly evaluated several models capable of learning func-
tions on arbitrary geometries on the DynaBench dataset, including graph neural
networks, point-cloud processing models and several state-of-the-art approaches.
Our results show that the selected models are on par with state-of-the-art grid
models in providing accurate short-term predictions, but long-term forecasting
remains an open challenge.

We hope that the release of DynaBench will facilitate and encourage research
in this area, leading to advancements in the state-of-the-art and as a consequence
more accurate models for real-world data, which our benchmark is mirroring.

Ethical statement. This research paper proposes a benchmark dataset and evaluates

several machine learning models for learning dynamical systems from data. The use of

benchmarking is a common practice in the machine learning community to compare

different models in a standardized setting. Synthetic datasets are used because they

allow for a controlled environment and can be generated easily. However, it should be
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noted that synthetic data can never perfectly represent real-world data, and as such,

every model should also be evaluated on real-world data before being used in critical

applications.

Potential risks associated with incorrect predictions of important systems such as

weather and climate simulations or electromagnetic field simulations for safety assess-

ment should be discussed thoroughly. Synthetic datasets can provide a useful starting

point for model evaluation and the development of new approaches, but they need to

be assessed on domain-specific data for real-world deployment. Particularly for safety-

critical applications. While our proposed benchmark dataset and evaluated machine

learning models provide useful insights into learning dynamical systems, they should

not be used as the sole basis for making important political decisions, particularly con-

cerning weather or climate data.

While data-driven approaches have again and again shown their superiority over

classical methods in a variety of applications, they are also prone to overfitting and

adversarial attacks, if not carefully designed and validated. The risks and benefits

of replacing existing numerical simulations or expert knowledge with deep learning

approaches should always be taken into account and thoroughly discussed when devel-

oping and applying new models. Any decision based on machine learning models should

be made after considering the potential sources of errors the models introduce, as well

as the lack of explainability of black-box approaches.
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Abstract. Bayesian inference in deep neural networks is challenging
due to the high-dimensional, strongly multi-modal parameter posterior
density landscape. Markov chain Monte Carlo approaches asymptotically
recover the true posterior but are considered prohibitively expensive for
large modern architectures. Local methods, which have emerged as a pop-
ular alternative, focus on specific parameter regions that can be approx-
imated by functions with tractable integrals. While these often yield
satisfactory empirical results, they fail, by definition, to account for the
multi-modality of the parameter posterior. Such coarse approximations
can be detrimental in practical applications, notably safety-critical ones.
In this work, we argue that the dilemma between exact-but-unaffordable
and cheap-but-inexact approaches can be mitigated by exploiting sym-
metries in the posterior landscape. These symmetries, induced by neuron
interchangeability and certain activation functions, manifest in different
parameter values leading to the same functional output value. We show
theoretically that the posterior predictive density in Bayesian neural net-
works can be restricted to a symmetry-free parameter reference set. By
further deriving an upper bound on the number of Monte Carlo chains
required to capture the functional diversity, we propose a straightfor-
ward approach for feasible Bayesian inference. Our experiments suggest
that efficient sampling is indeed possible, opening up a promising path
to accurate uncertainty quantification in deep learning.

Keywords: Uncertainty quantification · Predictive uncertainty ·
Bayesian inference · Monte Carlo sampling · Posterior symmetry

1 Introduction

Despite big data being the dominant paradigm in deep learning, the lack of
infinitely many observations makes uncertainty quantification (UQ) an impor-
tant problem in the field. Bayesian neural networks (BNNs) are a probabilistic
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formulation of deep learning models and as such provide UQ in a principled
manner. A key component of Bayesian learning is the parameter posterior den-
sity that assigns a posterior probability to each parameter value1 [17]. Between
the extreme cases of all posterior probability mass concentrating on a single
value, indicating complete certainty about the model parameters, and being dis-
tributed uniformly over all possible values in a reflection of total ignorance, the
shape of the parameter posterior density is central to the quantification of predic-
tive uncertainty. However, the parameter posterior for BNNs is typically highly
multi-modal and rarely available in closed form. The classical Markov chain
Monte Carlo (MCMC) approach asymptotically recovers the true posterior but
is considered prohibitively expensive for BNNs, as the large number of posterior
modes prevents a reasonable mixing of chains [18]. Popular approximation tech-
niques, such as Laplace approximation (LA; [7,22]) or deep ensembles (DE; [21]),
therefore focus on local regions of the posterior landscape. While these methods
are faster than traditional MCMC and perform well in many applications, they
systematically omit regions of the parameter space that might be decisive for
meaningful UQ [18] (also shown in Sect. 5.3).

In this work, we challenge the presumed infeasibility of MCMC for NNs and
propose to exploit the – in this context, rarely considered – unidentifiability
property of NNs, i.e., the existence of two or more equivalent parameter values
that describe the same input-output mapping. We refer to these equivalent val-
ues as equioutput parameter states. Equioutput parameter states emerge from
certain activation functions [6,20,29], as well as the free permutability of neuron
parameters in hidden layers [15], and can be transformed into one another.

The functional redundancy arising from this phenomenon grows rapidly with
the depth and width of a network (cf. Fig. 1) and induces symmetries in the pos-
terior density. For exact inference (up to a Monte Carlo error), we need to incor-
porate all non-equioutput parameter states that lead to distinct input-output
mappings. Considering only these functionally diverse mappings means, in turn,
that our effective parameter space makes up a comparatively small fraction of
the network’s original parameter space. Since their numerous equioutput coun-
terparts do not contribute any new information to predictive uncertainty, we
need much fewer MCMC samples when approximating the posterior predictive
density (PPD) via Monte Carlo integration. By explicitly removing symmetries
from samples post-hoc, we can even expose the functionally relevant part of the
posterior and provide an opportunity for interpretation and analytical approxi-
mation in the reduced effective parameter space.

Our Contributions. We analyze the role of posterior space redundancies in
quantifying BNN uncertainty, making the following contributions: 1) We show
that the full PPD can be obtained from a substantially smaller reference set
containing uniquely identified parameter states in function space. 2) We pro-
pose an estimation procedure for the number of Monte Carlo chains required
1 We assume the likelihood to be parameterized by a single parameter vector. In the

case of neural networks (NNs), the parameter contains all weights and biases.
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to discover functionally diverse modes, providing a practical guideline for sam-
pling from the parameter space of multi-layer perceptrons (MLPs). 3) We supply
experimental evidence that our approach yields superior predictive performance
compared to standard MCMC and local approximation methods. 4) Lastly, we
demonstrate the posterior interpretability and analytic approximation that can
be obtained from explicitly removing symmetries post-hoc, for which we propose
an algorithmic proof-of-concept.

2 Related Work

Existence of Parameter State Symmetries. Non-unique network parameter
states have been considered in the literature before. [15] were among the first to
note that equioutput states induce symmetries in the parameter space of MLPs.
Focusing, within the general linear group of the parameter space, on the sub-
group of transformations that leave the input-output mapping unchanged, they
derived equivalence classes of equioutput parameter states and showed that, for
every MLP, there exists a minimal and complete set of representatives cover-
ing all functionally different parameter states. [20,34] continued along this line
of work to study single-hidden-layer MLPs with specific activation functions,
advancing from tanh to more general self-affine activations. An extension to
MLPs of arbitrary depth was studied by [6] in the context of tanh activations.
More recently, [29] characterized equioutput parameter states for ReLU acti-
vations, again focusing on the case of a single hidden layer, and [1] classified
all G-invariant single-hidden-layer MLPs with ReLU activation for any finite
orthogonal group G. Lastly, [36] generalized much of the above in a framework
addressing the identifiability of affine symmetries in arbitrary architectures.

Symmetry Removal. Symmetries in the parameter posterior density of
Bayesian models can produce adverse effects that have been addressed in several
research areas of statistics and machine learning. A prominent example is label
switching in finite mixture models, where the permutability of label assignments
to the mixture components induces symmetries similar to those in BNNs. To
make mixture models identifiable, [3] introduced an adaptive Metropolis algo-
rithm with online relabeling, effectively removing permutation symmetries by
optimizing over discrete sets of permutation matrices. Such exhaustive-search
approaches, however, scale poorly to modern NNs with many parameters, as the
amount of equioutput states rises exponentially with the number of parameters.

In BNNs, symmetries have been known to slow down MCMC convergence
to the stationary parameter posterior density due to budget wasted on visiting
symmetric modes [24,27]. [18], reporting results from extensive and large-scale
experiments, indeed find that MCMC chains tend to mix better in function
space than in parameter space. Consequently, reducing the effect of symmetries
by imposing parameter constraints and defining anchoring points for subsets
of the latent variables has been shown to improve mixing [33]. A proposal for
constrained sampling can be found, for example, in [31], with application to
ReLU-activated MLPs.
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Utilizing Symmetries. Symmetries in the parameter posterior density are
not, however, necessarily a nuisance. Quite on the contrary, they can be useful
to enhance generalization and make inference affordable. An increasing body of
work has been exploring the use of symmetry removal in the context of mode con-
nectivity, an approach to find more robust NN solutions by retrieving connected
areas of near-constant loss rather than isolated local optima [8,12]. Focusing
on equioutput permutations of hidden-layer neurons, [2,35], among others, pro-
pose to align the layer-wise embeddings of multiple networks and thus improve
upon the performance of individual models. Following a similar idea, [30] apply
a post-hoc standardization on parameter vectors in ReLU-activated NNs that
draws from the notion of equioutput equivalence classes.

In the field of Bayesian deep learning, the idea of utilizing – exact or approx-
imate – parameter symmetries, represented by permutation groups, has led to
the development of lifted MCMC [5,26]. Orbital Markov chains have been intro-
duced to leverage parameter symmetries in order to reduce mixing times [5,25].
Lifted MCMC has been considered mainly in the context of probabilistic graphi-
cal models. There is scope to harness lifted MCMC in the context of MLPs since
these can be cast as graphical models [19,36].

We believe that equioutput symmetries have the potential to facilitate
MCMC inference, despite the apparent complexity they introduce in the param-
eter posterior density. From the insight that a vast part of the sampling space
is made up of symmetric copies of some minimal search set, we conclude that
running multiple short MCMC chains in parallel, each of which can sample a
functionally different mode, represents a more efficient use of the available bud-
get than collecting a large number of samples from a single chain. In Sect. 4, we
propose an upper bound for MCMC chains necessary to observe all functionally
diverse posterior modes, which is a key criterion for successful inference. The
perspective of parameter posterior symmetries thus lends a new theoretical jus-
tification to previous efforts in multi-chain MCMC that are motivated mainly
by the exploitation of parallel computing resources [23,32]. Our experiments
in Sect. 5 suggest that this approach is indeed more effective than single-chain
MCMC in BNNs with many symmetries in their parameter posterior density. In
agreement with [18], our findings advocate to focus on function-space instead of
parameter-space mixing during MCMC sampling.

We thus view the existence of equioutput parameter states as a benign phe-
nomenon. That said, there are still benefits to be gained from removing the sym-
metries: with a parameter posterior density reduced to the minimal parameter set
sufficient to represent its full functional diversity, we get an opportunity for bet-
ter interpretation, and possibly even analytical approximation. We demonstrate
the potential of symmetry removal in Sect. 5.3 by means of a custom algorithm
(Supplementary Material2 B). In the following section, we provide the mathe-
matical background and introduce the characterization and formal notation of
equioutput transformations.

2 https://github.com/jgwiese/mcmc bnn symmetry/.../sub 44 supplementary material.pdf.

https://github.com/jgwiese/mcmc_bnn_symmetry/blob/main/sub_44_supplementary_material.pdf
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3 Background and Notation

MLP Architectures. In this work, we consider NNs of the following form. Let
f : X → Y represent an MLP with K layers, where layer l ∈ {1, . . . , K} consists
of Ml neurons, mapping a feature vector x = (x1, . . . , xn)� ∈ X ⊆ R

n, n ∈ N,
to an outcome vector

f(x) =: ŷ = (ŷ1, . . . , ŷm)� ∈ Y ⊆ R
m, m ∈ N,

to estimate y = (y1, . . . , ym)� ∈ Y. The i-th neuron in the l-th layer of the
MLP is associated with the weights wlij , j = 1, . . . ,Ml−1, and the bias bli. We
summarize all the MLP parameters in the vector

θ := (w211, . . . , wKMKMK−1 , b21, . . . , bKMK
)� ∈ Θ ⊆ R

d

and write fθ to make clear that the MLP is parameterized by θ. For each hidden
layer l ∈ {2, . . . ,K − 1}, the inputs are linearly transformed and then activated
by a function a. More specifically, we define the pre-activations of the i-th neuron
in the l-th hidden layer as

oli =
Ml−1∑

j=1

wlijz(l−1)j + bli

with post-activations z(l−1)i = a(o(l−1)i) from the preceding layer. For the input
layer, we have z1i = xi, i = 1, . . . , n, and for the output layer, zKi = ŷi, i =
1, . . . ,MK .

Predictive Uncertainty. In the Bayesian paradigm, a prior density p(θ) is
imposed on the parameters, typically as part of a Bayesian model of the data.
Using Bayes’ rule, the parameter posterior density

p(θ|D) =
p(D|θ)p(θ)

p(D)

updates this prior belief based on the information provided by the data D and
encoded in the likelihood p(D|θ). In supervised learning, the data are typically
given by a set of N feature vectors x ∈ X and outcome vectors y ∈ Y, forming the
dataset D = {(x(1),y(1)), . . . , (x(N),y(N))}. The PPD p(y∗|x∗,D) quantifies the
predictive or functional uncertainty of the model for a new observation (x∗,y∗) ∈
X × Y. Since

p(y∗|x∗,D) =
∫

Θ

p(y∗|x∗,θ)p(θ|D) dθ,

deriving this uncertainty requires access to the posterior density p(θ|D), which
can be estimated from MCMC sampling.
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Equioutput Transformations. Let us now characterize the notion of equiout-
put parameter states, and the transformations to convert between them, more
formally. Two parameter states θ,θ′ are considered equioutput if the maps fθ , fθ ′

yield the same outputs for all possible inputs from X . We denote this equivalence
relation (see proof in Supplementary Material A.2) by ∼ and write:

θ ∼ θ′ ⇐⇒ fθ (x) = fθ ′(x)∀x ∈ X , θ,θ′ ∈ Θ.

The equioutput relation is always defined with respect to a particular MLP f ,
which we omit in our notation when it is clear from the context.

All MLPs with more than one neuron in at least one hidden layer exhibit
such equioutput parameter states that arise from permutation invariances of the
input-output mapping [15,20]. Since the operations in the pre-activation of the
i-th neuron in the l-th layer commute3, the Ml > 1 neurons of a hidden layer l
can be freely interchanged by permuting their associated parameters. In addition,
equioutput transformations can arise from the use of certain activation functions
with inherent symmetry properties. For example, in the case of tanh, the signs of
corresponding parameters can be flipped using tanh(x) = − tanh(−x). For ReLU
activations, a scaling transformation can be applied such that the mapping of
the network remains unchanged, i.e., ReLU(x) = c−1 · ReLU(c · x) for |c| > 0
(see also Supplementary Material A.1).

We consider transformation maps that are linear in θ and induce a finite
amount of equioutput transformation matrices, which includes, for example, the
tanh activation function. The ReLU activation function allows for infinitely many
possibilities of re-scaling the weights and is excluded from our findings. More
specifically, let

FT : Θ → Θ,θ 	→ Tθ, T ∈ R
d×d,

be an activation-related transformation of a parameter vector that might, for
instance, encode an output-preserving sign flip. FT constitutes an equioutput
transformation if fθ (·) = fFT (θ)(·). We collect all output-preserving transforma-
tion matrices T in the set T , i.e.,

T =
{
T ∈ R

d×d | fθ (·) = fFT (θ)(·)
}

.

Similarly, let
FP : Θ → Θ,θ 	→ Pθ, P ∈ {0, 1}d×d,

be a transformation that permutes elements in the parameter vector. We define
the set of permutation matrices that yield equioutput parameter states as

P =
{
P ∈ R

d×d | fθ (·) = fFP (θ)(·)
}

.

3 Recall that the pre-activation of neuron i in layer l is oli =
∑Ml−1

j=1 wlijz(l−1)j + bli.
By the commutative property of sums, any permutation π : J → J of elements from
the set J = {1, . . . , Ml−1} will lead to the same pre-activation:
oli =

∑
j∈J wlijz(l−1)j + bli =

∑
j∈π(J) wlijz(l−1)j + bli..
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The cardinality of P is at least
∏K−1

l=2 Ml! [15] when traversing through the NN
from the first layer in a sequential manner, applying to each layer permutations
that compensate for permutations in its predecessor.

Since activation functions operate neuron-wise, activation- and permutation-
related equioutput transformations do not interact (for instance, we could per-
mute the associated weights of two neurons and later flip their sign). We can,
therefore, define arbitrary combinations of activation and permutation transfor-
mations as

E =
{
E = TP ∈ R

d×d,T ∈ T ,P ∈ P | fθ (·) = fFE (θ)(·)
}

.

The transformation matrices in E will exhibit a block-diagonal structure with
blocks corresponding to network layers. This is due to the permutations P affect-
ing both incoming and outgoing weights, but only in the sense that two incoming
and two outgoing weights swap places, never changing layers. The activation-
related sign flips or re-scalings occur neuron-wise, making T a diagonal matrix
that does not alter the block-diagonal structure of P .

For the cardinality of the set E of equioutput transformations, we can estab-
lish a lower bound that builds upon the minimum cardinality of P:

|E| ≥
∏K−1

l=2 Ml! · |Tl|,

where |Tl| denotes the number of activation-related transformations applicable
to neurons in layer l. From this, it becomes immediately clear that the amount of
functional redundancy increases rapidly with the network size (see also Fig. 1).
As a result of equioutput parameter states, the MLP parameter posterior density
exhibits functional redundancy in the form of symmetries for commonly used
priors (see Sect. 4; Supplementary Material A.3):

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|Eθ)p(Eθ)
p(D)

= p(Eθ|D), θ ∈ Θ,E ∈ E . (1)

4 Efficient Sampling

These symmetric structures in the parameter posterior density suggest that sam-
pling can be made more efficient. In the following section, we show that the PPD
can theoretically be obtained from a small reference set of non-equivalent param-
eter states and propose an upper bound on Markov chains that suffice to sample
all non-symmetric posterior modes.

4.1 Posterior Reference Set

As introduced in Sect. 3, for each parameter state θ of an NN, there are func-
tionally redundant counterparts θ′ related to θ by an equioutput transforma-
tion, such that fθ (·) = fθ ′(·). We can use this equivalence relation to dissect the
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Fig. 1. Example of tanh-activated MLPs. Left : Cardinality lower bound of the equiout-
put transformation set for a single hidden layer with 1 to 128 neurons; the redundancy
factor for 128 neurons is at 1.31 · 10254. Right : A ten-dimensional MLP parameter pos-
terior (top-right corner, depicted as bivariate marginal density) exhibits symmetries,
such that all red sample clusters are equioutput-related to the green cluster. The asso-
ciated function spaces are identical, i.e., many posterior modes are redundant. (Color
figure online)

parameter space Θ into disjoint equivalence classes. For this, let the reference
set S1 be a minimal set of representatives of each equivalence class (cf. open
minimal sufficient search sets in [6]). All parameter states in S1 are functionally
diverse, i.e., θ, θ̃ ∈ S1 ⇒ θ �∼ θ̃, and each element in Θ is equivalent to exactly
one element in S1. For a finite amount of equioutput transformations, as in the
case of tanh-activated MLPs (finite possibilities of sign-flip combinations of hid-
den neurons), the NN parameter space can then be dissected into |E| disjoint
representative sets, which contain equioutput transformations of the elements of
the reference set, in the following way.

Proposition 1 (Parameter space dissection). Let S1 be the reference set
of uniquely identified network parameter states. Then, for a finite number of
equioutput transformations, it holds that the parameter space can be dissected
into |E| disjoint, non-empty representative sets up to a set S0 ⊂ Θ, i.e.,

Θ =
( ⋃̇|E|

j=1Sj

)
∪̇ S0, where Sj

∼= {θ | θ = Ejθ
′ ∀θ′ ∈ S1,Ej ∈ E} , (2)

where ∪̇ denotes the union over disjoint sets. We use S0 as a residual quantity
to account for cases that cannot be assigned unambiguously to one of the sets Sj

because they remain unchanged even under a transformation with non-identity
matrices Ej ∈ E.

The edge cases that make up S0 exist, e.g., on the boundary of two classes
[6] or in degenerated cases such as the zero vector [34,36]. For a characterization
of the involved sets, as well as a proof sketch, see Supplementary Material A.4.

Equioutput parameter states have the same posterior probabilities p(θ|D) =
p(Eθ|D) if the prior is transformation-invariant; see Supplementary Mate-
rial A.3. Moreover, equioutput parameter states produce by definition the same
predictions p(y∗|x∗,θ) = p(y∗|x∗,Eθ) for any E ∈ E . Thus, the following corol-
lary holds.
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Corollary 1 (Reformulated posterior predictive density). Let E be
finite. As in Proposition 1, consider the disjoint non-empty sets Sj , j ∈
{1, . . . , |E|}, and residual space S0. If the prior density p(θ) is transformation-
invariant, then the posterior predictive density expresses as

p(y∗|x∗,D) =
∫

Θ

p(y∗|x∗,θ)p(θ|D) dθ (3)

= |E|
∫

Sj

p(y∗|x∗,θ)p(θ|D) dθ +
∫

S0
p(y∗|x∗,θ)p(θ|D) dθ

≈ |E|
∫

Sj

p(y∗|x∗,θ)p(θ|D) dθ. (4)

The proof of Corollary 1 is given in Supplementary Material A.5. It follows
from Proposition 1 and the assumption of transformation-invariant prior densi-
ties, which is often satisfied in practice (e.g., for widely-applied isotropic Gaus-
sian priors). We can further approximate (3) by (4) as the set S0 ⊂ R

d is of
negligible size (depending on Θ, potentially even with zero Lebesgue measure).

As a consequence of Corollary 1, the PPD can be obtained up to the residual
set by only integrating over uniquely identified parameter states from one of the
sets Sj , with a multiplicative factor |E| that corrects the probability values by
the amount of redundancy in the posterior. In other words, only a fraction 1/|E|
of the posterior must be sampled in order to infer a set of uniquely identified
parameter states of the NN, and thus, to obtain the full PPD. This reduces the
target sampling space drastically, as illustrated in Fig. 1. For example, it allows
the posterior space of a single-layer, tanh-activated network with 128 neurons to
be effectively reduced to a 10254-th of its original size.

In the case of an infinite amount of equioutput transformations, such as in
ReLU-activated MLPs (the scaling factor |c| > 0 can be chosen arbitrarily), we
can use similar reasoning. Only one representative set of the posterior density
needs to be observed in order to capture the full functional diversity of a network
because the integrals over two representative sets are identical. For a more in-
depth discussion of ReLU symmetries, see, for example, [4].

How to Obtain a Representative Set? In practice, when using Monte Carlo
to approximate Equation (4), it is not necessary to actually constrain the sam-
pling procedure to a specific set Sj , which might indeed not be straightforward4.
Since any equioutput transformation is known a priori, we just need to be aware
of the fact that each sample can theoretically be mapped to different represen-
tative sets after running the sampling procedure. Hence, for the calculation of
the PPD integral, the samples can remain scattered across the various represen-
tative sets as long as they cover all functionally diverse parameter states. For
4 [10] demonstrate that finding invariant representations for groups acting on the

input space is an NP-hard problem. While we are not aware of such a result for
the parameter space, the NP-hardness in [10] for permutations of the inputs only
suggests a similar property in our case.
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the purpose of providing better interpretability and analytic approximation of
the posterior, it may still be worthwhile to explicitly remove the symmetries. In
Sect. 5.3, we demonstrate such symmetry removal using a custom algorithm for
tanh-activated networks (Supplementary Material B).

4.2 An Upper Bound for Markov Chains

The question remains how many samples are needed to approximate a set of
uniquely identified parameter states sufficiently well. Even in a symmetry-free
setting, BNN posteriors can exhibit multiple functionally diverse modes repre-
senting structurally different hypotheses, depending on the network architecture
and the underlying data-generating process. For example, in Sect. 5.3, we dis-
cuss the case of an under-parameterized network that preserves three distinctive
modes caused by its restricted capacity.

In the following, we assume ν ∈ N functionally diverse modes with the goal
of visiting every mode or its local proximity at least once when running MCMC.
As the ability to switch from one mode to another within a chain depends on
various factors, such as the acceptance probability and the current state of other
parameters, increasing the number of samples per chain does not necessarily
correlate with the number of visited modes. We, therefore, propose to focus on
the number of independent chains, rather than the number of samples per chain,
to effectively control the number of visited modes.

This further allows us to derive an upper bound for the number of indepen-
dent chains that are required to visit every mode at least once. The number
of samples from each chain will then ultimately determine the approximation
quality. In the computation of the PPD, we formulate the Monte Carlo inte-
gration over all samples from all chains simultaneously [23]. In practice, given
a user-defined number of maximal resources ρ (e.g., CPU cores), the following
proposition provides a lower bound on the probability that the number of chains
G necessary to visit every mode remains below the resource limit of the user
(i.e., G < ρ).

Proposition 2 (Probabilistic bound for sufficient number of Markov
chains). Let π1, . . . , πν be the respective probabilities of the ν functionally
diverse modes to be visited by an independently started Markov chain and
ΠJ :=

∑
j∈J πj. Then, given ρ chains,

P(G < ρ) ≥ 1 − ρ−1
{∑ν−1

q=0(−1)ν−1−q
∑

J:|J|=q(1 − ΠJ )−1
}

. (5)

The proof can be found in Supplementary Material A.6. Note that this bound
is independent of the NN architecture and only depends on the assumptions
about the number and probabilities of functionally diverse modes ν, disregarding
symmetric copies. Proposition 2 can be used to calculate the number of MCMC
chains given certain assumptions – for example, from domain knowledge, or in a
worst-case scenario calculation – and thus provides practical guidance for MCMC
sampling of MLPs. Judging by the comparably high predictive performance of
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local approximations such as LA and DE [21,22], we conclude that a small
amount of functional modes is reasonable to assume in practice. Our qualitative
experiments in Sect. 5 support this supposition.

Table 1. Mean log pointwise predictive density (LPPD) values on test sets (larger is
better; one standard error in parentheses). The highest performance per dataset and
network is highlighted in bold.

Smaller network f1 Larger network f2

MCMC (ours) MCMC (s.c.) DE MCMC (ours) MCMC (s.c.) DE

DS −0.53 (± 0.09) −0.56 (± 0.11) −0.58 (± 0.11) −0.59 (± 0.12) −0.59 (± 0.12) −2.13 (± 0.03)

DI 0.79 (± 0.06) 0.65 (± 0.07) 0.56 (± 0.06) 0.91 (± 0.09) 0.91 (± 0.09) −2.02 (± 0.02)

DR 0.64 (± 0.10) 0.75 (± 0.11) −1.46 (± 0.06) 0.95 (± 0.08) 0.95 (± 0.08) −2.20 (± 0.02)

Airfoil −0.74 (± 0.04) −0.80 (± 0.05) −1.62 (± 0.03) 0.92 (± 0.05) 0.72 (± 0.10) −2.17 (± 0.01)

Concrete −0.41 (± 0.05) −0.44 (± 0.06) −1.59 (± 0.03) 0.26 (± 0.07) 0.25 (± 0.07) −2.03 (± 0.01)

Diabetes −1.20 (± 0.07) −1.20 (± 0.07) −1.47 (± 0.07) −1.18 (± 0.08) −1.22 (± 0.09) −2.09 (± 0.04)

Energy 0.92 (± 0.04) 0.69 (± 0.12) −1.76 (± 0.02) 2.07 (± 0.46) 2.38 (± 0.11) −1.99 (± 0.02)

ForestF −1.37 (± 0.07) −1.37 (± 0.07) −1.60 (± 0.06) −1.43 (± 0.45) −1.69 (± 0.49) −2.20 (± 0.02)

Yacht 1.90 (± 0.16) 1.29 (± 0.56) −1.14 (± 0.14) 3.31 (± 0.21) 0.15 (± 0.09) −2.18 (± 0.03)

As an example of applying Proposition 2, assume ν = 3 functionally diverse
modes in a reference set with π1 = 0.57, π2 = 0.35, π3 = 0.08 (chosen to represent
a rather diverse functional mode set). An upper bound of ρ = 1274 chains ensures
that we observe all functionally diverse modes with probability P(G < ρ) ≥ 0.99.

5 Experiments

We now investigate our theoretical findings and compare the resulting approach
to single-chain MCMC and DE. In all experiments5, we employ a Bayesian
regression model with a normal likelihood function, standard normal prior for
parameters θ, and a truncated standard normal prior restricted to the positive
real line for the variance of the normal likelihood, which we treat as a nuisance
parameter. Depending on the task, we either use a No-U-Turn sampler [16]
with 210 warmup steps to collect a single sample from the posterior or derive
the maximum-a-posteriori estimator using a gradient-based method (details are
given in Supplementary Material C.2, C.3).

5.1 Performance Comparison

In our first experiment, we demonstrate the predictive performance of BNNs,
where the PPD is calculated based on MCMC sampling, using the derived
upper bound for the number of chains (ours). In this case, we collect one sam-
ple per chain for G chains, and thus G samples in total. This is compared to

5 https://github.com/jgwiese/mcmc bnn symmetry.

https://github.com/jgwiese/mcmc_bnn_symmetry
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MCMC sampling collecting G samples from a single chain (s.c.), and DE with
ten ensemble members on three synthetic datasets (DS , DI , and DR) as well
as benchmark data from [9] (for dataset details and additional results on LA,
see Supplementary Material C.1 and E.1, respectively). We use a smaller NN
f1 with a single hidden layer containing three neurons and a larger network f2
with three hidden layers having 16 neurons each, both with tanh activation.
As in Sect. 4.2, we assume three functionally diverse modes ν = 3 and mode
probabilities π1 = 0.57, π2 = 0.35, π3 = 0.08 as in the given example. To demon-
strate the performance of our MCMC-based PPD approximation, we measure
the goodness-of-fit on the test data using the log point-wise predictive density
(LPPD; [13])

LPPD = log
∫

Θ

p(y∗|x∗,θ)p(θ|D) dθ ≈ log

(
1
G

G∑

g=1

p(y∗|x∗,θ(g))

)
, (6)

where θ(1), . . . ,θ(G) are G samples obtained across all chains via MCMC sam-
pling from the parameter posterior density p(θ|D). Equation (6) is evaluated at
each test point (x∗,y∗). Table 1 reports the mean LPPD across N∗ independent
test points for each combination of dataset and sampling scheme (see Supple-
mentary Material C.1 for details). Our results clearly indicate that using only a
moderate amount of Markov chains, following our approach, yields equal or even
better performance than single-chain MCMC and DE in all but two experiments.

5.2 Practical Evaluation of Corollary 1

Next, we investigate the property derived in Corollary 1 using our proposed upper
bound of chains, again with the assumption from the example in Sect. 4.2. To
this end, we analyze the PPD for dataset DI , using network f2. For every newly
collected sample in the MCMC run, the updated PPD is computed approxi-
mately on a two-dimensional (input/output) grid. Then, the Kullback-Leibler
(KL) divergence between consecutive densities is averaged over the grid of input
values of f2 (details in Supplementary Material D.1). As shown in Fig. 2, despite
the size of the network f2 and the high amount of equioutput parameter states
|E| =

(
16! · 216

)3 ≈ 2.58 · 1054, the PPD converges after notably fewer than |E|
samples and plots of the function space indicate the saturation of functional
diversity already after 1274 samples from as many chains.

5.3 Posterior Symmetry Removal

So far we were mainly concerned with the predictive performance of MCMC sam-
pling. Yet, mapping all samples to a joint representative set, as characterized in
Sect. 4.1, has the potential to reduce the effective weight space enormously, facil-
itating interpretability and possibly even analytical approximation. For this, we
propose a custom algorithm for tanh-activated MLPs as a proof-of-concept. Our
algorithm removes symmetries in a data-dependent manner and thus minimizes
the number of remaining modes in the representative set (details in Supplemen-
tary Material B).
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Fig. 2. Convergence of MCMC depicted as the change in KL-divergence on original
(black) and log-scale (blue) when consecutively adding another sample from a new
and independent chain and re-estimating the posterior density. Small overlaying plots:
approximated PPD of the network after 20, 24, 28, and G = 1274 samples; darker colors
correspond to higher probabilities. (Color figure online)

We demonstrate the efficacy of the approach for f1 in two experiments A
and B for datasets DS and DI , respectively. For experiment A (Fig. 3, top) we
visualize the neuron parameter space along the steps of the proposed algorithm
(for details, see Algorithms 1–4 in Supplementary Material B). Different col-
ors encode the current neuron index (i.e., one of {1, 2, 3}) in the hidden layer
of the respective neuron parameter vector. Initially, symmetries of the poste-
rior densities are clearly noticeable (Fig. 3a), and the neuron parameter vec-
tors are distributed identically (Fig. 3d). Upon the first step of the algorithm
(Fig. 3b), the parameter space is effectively halved as a consequence of remov-
ing the tanh-induced sign-flip symmetry, and three clusters remain. The second
(clustering) step removes all permutation symmetries from the full posterior den-
sity by assigning areas of this parameter subspace to the neurons of the model.
This is depicted in Fig. 3c and clearly shows the separation of states by different
cluster colors. In Figs. 3d and 3e, the univariate marginal density of each neu-
ron’s incoming weight w2i1 reveals their reassignment to the parameter space.
After running our algorithm, each neuron exhibits a distinct unimodal density,
resulting in a unimodal density in the full parameter space (visualization in Sup-
plementary Material E.3). We can conclude that only one functionally diverse
mode exists in this case, which should also be recovered by local approximations
like LA.

For experiment B (Fig. 3, bottom), we focus on the visualization of the
full parameter posterior density obtained after the application of the symme-
try removal algorithm (Fig. 3f). Three functionally diverse modes, represented
by different colors, remain in the BNN posterior. We can now interpret these
modes in function space by further clustering the transformed samples using
a spectral clustering approach (details in Supplementary Material D.2). Fig-
ures 3g-j visualize the network parameter states in the function space, revealing
three functionally diverse hypotheses the network can potentially learn from the
given dataset. Such knowledge allows for a better-suited approximation by, e.g.,
a mixture of Laplace approximations (MoLA; [11]), as shown in Supplementary
Material E.2. Note that approaches focusing on a single mode, such as standard
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Fig. 3. For experiment A (top row), the parameter subspaces of hidden neurons are
visualized in their initial state as obtained when running MCMC (a), and after their
transformation and reassignment during the steps of Algorithm 4 (b, c). Different
colors encode the current neuron index in the hidden layer. By reassigning neurons,
Algorithm 4 effectively finds an optimal reference set and allows to separate the multi-
modal complex univariate marginal density (d) into three univariate densities. For
experiment B (bottom row), the MLP parameter posterior density after symmetry
removal results in a tri-modal system, here illustrated as a bivariate plot (f). Investi-
gating these modes, we find that all are functionally diverse, i.e., represent a different
hypothesis of the dataset (g-i). Combined, they form the full function space (j).

LA, would have captured only a third of the functional diversity. For meaningful
UQ, it is thus imperative that all functionally diverse modes are accounted for.

6 Discussion

We showed that the PPD for Bayesian MLPs can be obtained from just a frac-
tion of the parameter space due to the existence of equioutput parameter states.
Together with an upper bound on the number of MCMC chains to guaran-
tee the recovery of every functionally diverse mode, our approach paves the
way towards exact uncertainty quantification (up to a Monte Carlo error) in
deep learning. Furthermore, we demonstrate the use of symmetry removal and
present a proof-of-concept approach to map samples of tanh-activated MLPs to
a representative set. This post-hoc procedure improves the interpretability of the
symmetry-free posterior density drastically and facilitates analytical approxima-
tions. As a future research direction, we plan to investigate whether our MCMC
sampling approach can be improved by initializing the sampling states in an
informative way via ensemble training, building upon insights in [14,28,37].
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Abstract. We introduce a cooperative Bayesian optimization problem
for optimizing black-box functions of two variables where two agents
choose together at which points to query the function but have only
control over one variable each. This setting is inspired by human-AI
teamwork, where an AI-assistant helps its human user solve a problem, in
this simplest case, collaborative optimization. We formulate the solution
as sequential decision-making, where the agent we control models the
user as a computationally rational agent with prior knowledge about the
function. We show that strategic planning of the queries enables better
identification of the global maximum of the function as long as the user
avoids excessive exploration. This planning is made possible by using
Bayes Adaptive Monte Carlo planning and by endowing the agent with a
user model that accounts for conservative belief updates and exploratory
sampling of the points to query.

1 Introduction

Human-AI cooperation refers to the collaboration between human and artificial
intelligence (AI) driven agents to achieve a common goal [16]. In the cooperative
scenario, the agents work autonomously but interdependently, each leveraging
their unique skills and abilities to collectively reach the shared objective. The
cooperation between a human and an AI agent can be impaired by limitations
in their information processing abilities and various other factors such as biases,
heuristics, and incomplete knowledge [10]. It has already been established that
any cooperation is more effective when the involved agents have a theory of mind
of the others [7]. It would therefore be helpful if the AI agent could take into
account the human’s information processing capabilities and biases and adapt
to the changing needs and preferences of the human user [19].
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Fig. 1. Interaction scenario between the user and the AI agent in the optimization
task. Unlike a greedy agent (a), the AI agent we propose (b) has a model of the user
and plans its actions by anticipating the user’s behaviour. This results in a more effi-
cient cooperative exploration of the domain, and therefore avoids getting stuck in a
local optimum. This is visible in the right-hand side plots, showing the corresponding
trajectories of queries to the function f .

A specific kind of human-AI cooperation is when the decision is jointly taken
by two agents for a common goal, and each controls only their part of the deci-
sion. An illustrative example is Hand and Brain chess, a team chess variant in
which two players (the Hand and the Brain) play on each side. Each move is
jointly decided by the team, with the Brain calling out a piece and the Hand
being responsible for moving it. In this game, the Brain should essentially con-
sider a move that is understandable for the Hand. Otherwise, the Hand moves
the piece to a strategically bad position, resulting in a disastrous move. If each
player carries out their task without anticipating the other team member, the
team will end up taking a sub-optimal action. The anticipation is done by build-
ing a model of the partner.

To study this setup in a controlled environment, we propose a cooperative
Bayesian optimization task. The AI agent and human user aim to perform a
sequential black-box optimization task in a 2D space. At each step, the human-
AI team chooses a point to query the function. The choice is made by the AI
agent opting for the first coordinate and then the human user selecting the other
one. In this optimization task, the human user and the AI agent, both with
partial information, cooperatively take part in data acquisition. We formulate
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this cooperative data acquisition as a repeated Bayesian game between the user
and the agent played for a finite horizon. The contributions of this paper are:

– We propose a collaborative AI algorithm for settings where the AI agent plans
its action by assessing the user’s knowledge and decision process without any
prior interaction with the user.

– We show empirically that the algorithm is able to learn the user’s behaviour
in an online setting and use it to anticipate the user’s actions.

– We show empirically that the algorithm helps the team in the optimization
task (measured as the team optimization score) compared to various baselines,
such as a greedy algorithm that maximizes its own beliefs. This is done by
helping a better exploration of the domain of the function.

2 Cooperative Bayesian Optimization

2.1 Problem Formulation

We consider a problem where a team of two agents, the human user and the
AI agent, aims to maximize a black-box function f : X × Y of two parameters
(x, y) ∈ X × Y. Note here that the function is not necessarily 2-dimensional.
The team explores the domain X × Y by acquiring new observations of f . The
exploration consists of a sequence of queries of f at points (xt, yt) ∈ X × Y.
The outcomes of the query are noisy and we denote by f̄(x, y) the outcome of
the query at point (x, y). In this respect, the task of the team is similar to a
Bayesian Optimization (BO) task.

The team proceeds by sequentially querying T points. At each step t, the
team adopts the following protocol for the choice of (xt, yt), presented in Fig. 1.
The AI agent selects xt ∈ X first. The human user observes the value of xt

picked by the AI agent and then selects yt ∈ Y. Finally, both agents observe
the selected tuple (xt, yt) and the value of f(xt, yt). In this paper, we adopt the
point of view of the AI agent and therefore focus on how to optimally select the
first coordinate xt. It is important to mention that X and Y are not necessarily
one-dimensional, but can describe any two sets of variables.

The final performance of the optimization process is measured by the opti-
mization score (described in Sect. 4.2). We view this score as a more under-
standable alternative to the directly related measure of simple regret, defined as
f∗ − f∗

T .

2.2 Mathematical Formalization

We address the problem of the AI agent as a repeated Bayesian game, using
the formalism of model-based reinforcement learning, considering the AI agent
as a decision-making agent interacting with an environment made up of the
function f and the human user. In this environment, the agent takes actions
(choice of a coordinate xt) and gets rewarded depending on the action xt, the
user’s choice yt and the value of the function f(xt, yt).
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We describe the agent’s decision-making problem as Partially Observable
Markov Decision Process (POMDP) M = 〈A,S, T , Ω,O,R〉, where the nota-
tions are explained in what follows.

The space A is the space of the actions available to the agent. In our context,
it corresponds to the set X of points available to the agent. For this reason, we
will use x (instead of the standard notation a usually used in POMDPs) to
designate the coordinate chosen by the agent. A state s ∈ S describes a state
of the agent’s environment, which is made up of the function f and the user. A
state is then defined as a tuple s = (fAI , θ), where fAI : X × Y → R is agent’s
estimation of function f and θ is a parameters set characterizing the user. The
transition T (s, x, s′) measures the probability of a transition from state s to state
s′ after agent’s action x. By definition, the function f is fixed, and consequently
the transition probability T can be written as:

T (s, x, s′) = I(fAI = f ′
AI)p(θ′|s, x) (1)

where s = (fAI , θ), s′ = (f ′
AI , θ

′) and I is the identity function. An observation
ω ∈ Ω corresponds to the user’s choice y and the value of f at point (x, y), i.e.
Ω = Y ×R. The observation prediction O(ω|s, x) ∈ [0, 1] is the probability that
ω ∈ Ω is observed after action x has been played within environment state s.
Unlike some other settings, the observation prediction O in our context does not
depend on the new state, but only on the state before the action. This probability
decomposes as

O(ω = (y, z)|s, x) = p(y|s, x)p(f̄(x, y) = z|s, x, y) (2)

where the probability p(y|s, x) corresponds to user’s decision-making and the
probability p(f̄(x, y) = z|s, x, y) to function sampling. The reward R(x, s, ω)
measures the pay-off of agent’s action x in state s after observing ω. The choice
of the reward function in our implementation will be discussed in Sect. 3.4.

2.3 User Model

In Eqs. 1 and 2, the probabilities p(θ′|s, x) and p(y|s, x) describe the user’s
behaviour, that is, how the user updates their beliefs and how they make deci-
sions. We note that p(θ′|s, x) can be decomposed as

p(θ′|s, x) =
∫

z

∑
y

p(θ′|s, x, y, f(x, y) = z)p(f(x, y) = z|s, x, y)p(y|s, x)dz (3)

where the term p(f(x, y) = z|s, x, y) does not depend on the user. Therefore,
the user’s behaviour is fully defined by p(θ′|s, x, y, f(x, y)) and p(y|s, x).

In the following, we will call the tuple (p(θ′|s, x, y, f(x, y)), p(y|s, x)) the user
model. The user model describes the role played by the user within the environ-
ment of the agent. In practice, it will be used to simulate the behaviour of the
user, which is useful in particular when planning for the action to play. The user
model is not necessarily an accurate description of the user’s behaviour, but is
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a model used by the agent for making decisions. The choice of this model will
restrict the possibilities of behaviours that the agent will be able to consider. In
the case where the user is human, a useful user model should be able to describe
computationally rational behaviours [8].

3 Implementation

In this section, we introduce the practical solution to the Cooperative Bayesian
Optimization problem, considering a minimal user model. This model describes
a user with partial knowledge about the function, able to update their belief and
select their actions in a way that balances exploitation and exploration.

3.1 Bayes Adaptive Monte Carlo Planning

In order to solve the POMDP introduced in Sect. 2.2 and plan the AI agent’s
actions, we rely on a Bayesian model-based Reinforcement learning method.
This method is used to perform a zero-shot planning, where the agent has no
initial information about the user’s behaviour. At each iteration, the model is
updated based on the previous user’s actions, and a zero-shot planning method
is employed to plan for the future.

In order to solve the POMDP, the posterior distribution of the parameters is
estimated using the inference method described in Sect. 3.3 below. This posterior
distribution is used to plan the actions xt by enabling a Monte-Carlo estimation
of the value of each action: At each iteration, we run several simulations with
fixed state st sampled from the posterior distribution. In these conditions, having
a fixed and known state transforms the POMDP into a simple MDP: This makes
it possible to compute the value of the action for this state and, consequently, to
get a Monte-Carlo estimation of the value of an action. Finally, the action that
maximizes the estimated value is chosen. It has been proven that this process
converges to the Bayes-optimal policy with infinite samples [9].

3.2 User Model Specification

We propose a simple user model describing a computationally rational user with
partial knowledge about the function to be optimized. This user model is an
instantiation of the general form of user models as introduced in Sect. 2.3.

User’s Knowledge. We represent the user’s partial knowledge of the function f
using a Gaussian Process [18]. A Gaussian Process (GP) is a stochastic pro-
cess over real-valued functions, such that every finite collection of these random
variables has a multivariate normal distribution. We will denote this GP at
step t as f

(t)
um. We emphasize that fum is not a function, but a prior over func-

tions X × Y → R. This choice is motivated by the observation that Bayesian
Optimization based on GPs provides a surprisingly good framework to explain
active function learning and optimization in humans [2].
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The user’s GP is assumed to have been initialized based on the observa-
tion of a collection of Nu points Du = {(xu

i , yu
i , f̄(xu

i , yu
i ))}i=1,...,Nu

, using GP
regression. For any unseen function value f(x, y), GP regression models this as a
Gaussian random variable with closed-form mean and variance (see [18], Equa-
tions (2.23) and (2.24)). The equations require specifying the covariance (kernel)
function, which in this paper is taken to be the squared exponential kernel [18,
Eq. (2.16)]. The hyperparameters of the kernel function are optimized by maxi-
mizing the marginal likelihood.

Belief Update. The values of the function f sampled during the interaction are
observed by the user and used to sequentially update their GP fum. At time t,
the user’s GP f

(t)
um is updated by observing Dt = {(xt, yt), f̄(xt, yt)}. We denote

by Bbayes(f
(t)
um|{(xt, yt), f̄(xt, yt)}) the GP obtained after Bayes optimal belief

updating, defined as the standard updates (Equations (2.23) and (2.24) in [18]).
However, it has been documented in behavioural studies [6] that humans

deviate from the Bayesian optimal belief update, because of various cognitive
biases [23]. Consequently, in our user model, we consider the conservative belief
updating operator B introduced by Kovach [13]:

f (t+1)
um = αf (t)

um + (1 − α)Bbayes(f (t)
um|{(xt, yt), f̄(xt, yt)}), (4)

where α ∈ [0, 1] represents the degree of conservatism. A low values of α corre-
sponds to an almost Bayes-optimal behaviour, while the case α = 1 corresponds
to the user ignoring the new observations and not updating their belief.

Decision-Making. Motivated by the observation of Borji and Itti [2], we model
the user’s choice of an action yt as the maximization of an acquisition function
y �→ A(xt, y). We consider the UCB acquisition function based on the GP f

(t)
um:

At(y|xt) = E

[
f (t)

um(xt, y)
]

+ β

√
V

[
f
(t)
um(xt, y)

]
(5)

where E[f (t)
um(xt, y)] and V[f (t)

um(xt, y)] are respectively the mean and the variance
of the GP f

(t)
um at point (xt, y), and β ∈ [0, 1] is an exploration-exploitation

trade-off parameter. A low value of β corresponds to less explorative behaviour,
exploiting the current belief over f , while a larger value corresponds to more
explorative behaviour, evaluating f at points with larger uncertainty. Given the
AI’s action xt, a sensible choice of an action yt for the user would consist in
maximizing the acquisition function At(y|xt).

This choice of yt by a maximization can be interpreted as an event of many
pairwise comparisons among different actions y ∈ X : Choosing the action yt

means preferring it to all the others y �= yt. Inspired by [15], we build a prob-
abilistic model of user preferences upon Thurstone’s law of comparative judg-
ment [22] by assuming that the user’s action yt given xt is corrupted by Gaussian
noise,

yt = arg max
y

(At(y|xt) + W (y)) , (6)
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where W is a white Gaussian noise with mean E[W (y)] = 0 and auto-correlation
E[W (y)W (y′)] = σ2 if y = y′ and 0 otherwise. The likelihood p(yt|st, xt) of a
single observation yt|xt corresponding to this noise process takes the form

p(yt|st, xt) =
m∏

i=1

(
1 − [Φ ∗ φ]

(
At(yi|xt) − At(yt|xt)

σ

))
, (7)

where Φ and φ are the cumulative and density function of the standard nor-
mal distribution, respectively, ∗ and is the convolution operator. To evaluate
the likelihood, f

(t)
um and At(y|xt) should be computed recursively by using the

aforementioned equations. For fixed α and β, this is possible given the function
sampling data (Dt)T

t=1. The joint likelihood P
(
(yt|xt)T

t=1, (Dt)T
t=1

∣∣α, β
)

is the
product of the single events yt|xt for t = 1, ..., T .

Summary: Definition of the User Model. The introduced user model is charac-
terized by three parameters: the user’s knowledge of the function fum, the degree
of conservatism α and the degree of explorativeness β. Using the notations of
Sect. 2.2, we can write θ = (fum, α, β). We notice that these parameters are
of different natures though: α and β are characteristics of the user, while fum

corresponds to a mental state, i.e. a description of what the user knows.
When defining the belief-updating probability p(θ′|s, a, y, f(a, y)), we assume

that the parameters α and β, as characteristics of the user, are stationary and
therefore are not updated during the interaction. Only the user’s GP is updated,
following Eq. 4. With our definition of this user model, the user’s decision-
making p(y|s, a) is defined in Eq. 7.

3.3 Inference of the User Model Parameters

The parameters θ = (fum, α, β) are not observed and need to be esti-
mated online during the interaction, based on the user’s actions. We adopt
a Bayesian approach and the inference consists of estimating, at each time
step t, the posterior distribution p

(
α, β, fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
given the

interaction data (yτ |xτ )t
τ=1 and the function sampling data (Dτ )t

τ=1 with
Dτ = (xτ , yτ , f̄(xτ , yτ )). For this, we use the following decomposition:

p
(
α, β, fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
= p

(
α, β

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
p

(
fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1, α, β
)

Estimation of (α, β). The estimation of (α, β) is done using Bayesian belief
update. The initial prior is chosen to be the uniform distribution over the unit
cube. The posterior distribution is approximated using the Laplace approxima-
tion, which consists in the following. The maximum a posteriori (MAP) esti-
mate (αMAP, βMAP) is computed by numerically maximizing the log posterior
with the BFGS algorithm, which also approximates the Hessian. The posterior
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p
(
α, β

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
is approximated as a Gaussian distribution cen-

tered on (αMAP, βMAP) with the covariance matrix corresponding to the inverse
of the negative Hessian at the MAP estimate.

Estimation of fum. The update of fum as given in Equation (4) is determinis-
tic when α is given. Consequently, the term p

(
fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1, α, β
)

is trivial and does not need to be computed during the interaction. Since our
planning algorithm (described in Sect. 3.1) relies on sampling from the parame-
ters (α, β, fum), fum is computed from the whole trajectory (Dτ )t

τ=1 using the
sampled value of α. For the initialization f

(0)
um, we consider that the user has a

uniform prior over the function. This interprets as ignoring the fact that the user
has prior knowledge.

3.4 Choice of the Reward Function

The reward for the agent, as introduced in Sect. 2.2, is designed to be a compro-
mise of two parts, exposed in the following.

The first part is the expectation of the UCB score over the user’s future
action, calculated with fum as estimated in the user model:

R1(x, s, ω) = Ey∼Ausr
[UCB(x, y)] (8)

Intuitively, this first part R1 shows how desirable the point (x, y) is for the user
when the AI selects x. Therefore it values actions x for which the user is able to
find a reasonably good y to query the function. Since R1 is based on the UCB
score, it also guarantees a trade-off between the exploration and exploitation of
the query point.

When the user’s behaviour is almost uniform over actions (e.g. when the
user is more explorative, because of having little knowledge of f or because
of a high β), reward R1 is close to constant and is not enough to make good
choices of xt. We solve this problem by introducing a second part in the reward
definition, that is based on the AI agent’s knowledge of the function. This reward
is defined as the average UCB score over the top K promising y values upon the
AI’s knowledge for a chosen action x:

R2(x, s, ω) =
1
K

∑
y∈topK(Aai)

UCB(x, y) (9)

This reduces the risk of relying too much on the user model, which is not prefect,
especially at the beginning of the interaction.

We define the total reward as a linear combination of these two components:

R(x, s, ω) = R1(x, s, ω) + C R2(x, s, ω) (10)

where C is a compromising factor between the two terms, a hyperparameter of
the proposed method.
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4 Empirical Validation

In this section, we study the performance of our method in the proposed coop-
erative Bayesian game (Sect. 2). We examine scenarios where prior information
is unevenly distributed among agents and when the human user characteristics
vary. In particular, we are interested in how the user’s degree of conservatism
and explorativeness affect the outcome of the Bayesian game.1

4.1 Experimental Setup

Domain. We choose as a function f a 3-modal variant of the Himmelblau func-
tion. It is defined on [0, 1]2 and has 3 minima, located respectively at (0.46, 0.8),
(0.22, 0.44) and (0.74, 0.18). The amplitude of the maxima can be adjusted.

Experimental Protocol. We consider a synthetic user whose characteristics can be
controlled. The agent follows the specification of a computationally rational user
presented in Sect. 3.2: we assume a user who follows a Bayesian optimization rou-
tine based on the UCB acquisition function with an explorativeness parameter
β, and a conservative GP-based belief updating with a conservatism parameter
α. We create 2 × 2 configurations of the human user characteristics by consider-
ing the possible combinations of the values α ∈ {0.1, 0.6} and β ∈ {0.2, 0.7}. For
example, the configuration α = 0.1 and β = 0.7 refers to a human user who is
conservative in belief updating but explorative in decision-making. These values
have been chosen to reflect the extremes, with the user being almost completely
conservative or almost perfectly Bayesian, and the user being almost exclusively
exploitative or almost exclusively explorative.

We study the impact of this prior information by considering 3 × 3 configu-
rations of prior information (see Sect. 2.2) as follows. We provide each of the two
agents with either N = 5 points around local maxima or the global maximum, or
no prior functions evaluations at all. We use the terms “Local”, “Global”, and
“None” to refer to these configurations by considering possible permutations:
(AI’s prior, human’s prior). The points are drawn from a multi-normal distri-
bution centered on the position of the maximum (local or global). For example,
(Global, Local) refers to the configuration, where the AI agent has N = 5 prior
points around the global maximum, while the human user agent has N = 5
points around local maxima of the function.

For the experiments, we consider a discretization of the domain X ×Y into a
50 × 50 grid. Given a simulated user, each experiment consists of 20 interaction
steps. The results are averaged over a sample of 3 different functions f , generated
as described above, and 10 different prior samples (initial points available to each
agent before the interaction, see Sect. 2.3). For our agent, we use the reward
defined in Eq. 10 with C = 1.

1 Implementation of our method and source code for the experiments are available at
https://github.com/ChessGeek95/AI-assisted-Bayesian-optimization/.

https://github.com/ChessGeek95/AI-assisted-Bayesian-optimization/
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All experiments were run on a private cluster consisting of a mixture of Intel R©

Xeon R© Gold 6248, Xeon R© Gold 6148, Xeon R© E5-2690 v3 and Xeon R© E5-2680
v3 processors.

Baselines. To investigate the strengths of our method, we compare it to four
baselines, two of which correspond to a single-agent Bayesian Optimization.

The single-agent BO baselines correspond to one single agent making the
decision, i.e., opting for both coordinates of the point to query, and therefore
correspond to the standard BO problem. The baselines illustrate empirical lower
and upper bounds of the optimization performance:

– VanillaBO (random): Single-agent baseline, querying points (x, y) uniformly
at random on the domain X × Y. This is equivalent to two agents querying
coordinates randomly, which is a lower bound on the performance that any
team should at least achieve.

– VanillaBO (GP-UCB): Single-agent baseline, querying points (x, y) using an
upper confidence bound [4] score upon a Gaussian processes pre-trained on
the prior points. Since the agent has access to all prior data and absolute
control over both coordinates, this is an upper bound on the performance.
The value of β for this agent is chosen to be β = 0.05: it has been chosen
because it gives optimal results compared to other β.

We also compare the performance of our method to two other comparable
multi-agent BO algorithms, corresponding to different strategies for solving the
Cooperative Bayesian Optimization task:

– RandomAI: The AI agent chooses x uniformly at random on the domain X .
– GreedyAI: The AI chooses x by picking the first coordinate of the UCB score

maximizer. It maximizes its own utility function (UCB score) without con-
sidering the other agent, hence the name. As for the GP-UCB agent, the value
of β for this agent is also chosen to be β = 0.05,

4.2 Experiments

Experiment 1: Evolution of the Optimization Performance. We first
study the efficiency of our algorithm in helping the team in the optimization
task. To do so, we introduce, as a metric, the optimization score. We define
this score as the maximum function value f∗

t queried during the cooperative
game of t rounds. Since the objective function is normalized between 0 and
100, an optimization score of 100 denotes maximum performance (also note that
simple regret = 100 − optimization score).

The evolution of the optimization performance over the optimization rounds
is presented in Fig. 2. It can be seen that our method indeed reaches better
performance compared to the GreedyAI and RandomAI baselines. However, in
the initial rounds, GreedyAI displays much better performances (even better
than the VanillaBO (GP-UCB) agent): this is because GreedyAI exploits prior
information and therefore is quickly able to guide the user toward finding a local
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Fig. 2. Evolution of the optimization performance during the interaction. At the end
of the interaction, our agent (StragicAI) gets better performance than other baselines.
It performs slightly worse than the VanillaBO (GP-UCB), because, unlike this baseline,
the StrategicAI does not have control over the full domain X × Y.

maximum. However, once the optimum is found, it does not explore further and
does not find any global optimum, unlike our method, which is more explorative
from the beginning. We also notice that the RandomAI has initial performance
close to the random VanillaBO baseline, but keeps improving: this is due to the
fact that this agent keeps exploring, but in a sub-optimal way. Finally, we still
notice that the VanillaBO (GP-UCB) baseline is indeed a valuable upper-bound
in the long-term: even though our StrategicAI has similar performances on the
first rounds, the AI not having total control over the exploration ends up making
slightly less optimal decisions.

Experiment 2: Impact of the User’s Parameters. The results presented
in Fig. 2 are averaged over all user parameters. To study the impact of the
user’s conservatism and explorativeness on the optimization performance, we
exploit the possibility offered by a controlled synthetic user to directly inter-
pret the performance of our method in the case of various user profiles. The
final optimization score for different (α, β) configurations is reported in Table 1.
The scores are averaged over all combined prior knowledge configurations. These
results confirm that the AI’s strategic planning significantly improves optimiza-
tion performance in all scenarios when compared to greedy or random strategies,
but with the highest margin for conservative users. This suggests that strategic
planning is more crucial when users update their beliefs conservatively. In con-
trast, the level of user exploration does not significantly affect the size of the
margin.

As an addition to this experiment, we performed an ablation study to check
the role played by the choice of the reward (Eq. 10), comparing the cases where
C = 1 (used in all other reported experiments) and where C = 0 (which cor-
responds to reward R1 introduced in Eq. 8). The results reveal that the perfor-
mance of strategic AI deteriorates with an explorative user, by using R1 instead
of the full reward R (which corresponds to the case C = 0).
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Table 1. Impact of the user’s conservativeness (α) and explorativeness (β) onto the
optimization score.

β = 0.2 β = 0.7

α = 0.1 α = 0.6 α = 0.1 α = 0.6

GP-UCB 88.9 ± 21.4

StrategicAI, C = 1 (ours) 77.5 ± 24.8 76.2 ± 23.6 79.3± 24.7 73.5± 23.2

StrategicAI, C = 0 (ours) 79.6± 24.3 77.6± 24.7 75.5 ± 25.2 66.6 ± 23.3

GreedyAI 71.0 ± 22.6 69.4 ± 22.5 69.5 ± 22.6 67.5 ± 21.6

RandomAI 71.0 ± 20.8 64.2 ± 20.3 62.0 ± 21.2 58.7 ± 20.0

Random 52.3 ± 9.1

Experiment 3: Impact of the Prior Knowledge Allocation. Table 2 shows
the impact of the prior knowledge allocation on the optimization score when all
the (α, β) configurations are combined. The results reveal that the AI’s strategic
planning improves the optimization performance regardless of the agent and the
quality of prior knowledge they possess about the function. The only exception
occurs when both agents lack prior knowledge. This may harm the initialization
of the AI’s own Gaussian process belief. In such cases, early-round planning
becomes ineffective. It is worth mentioning that the performance gap between
the strategic AI agent and the greedy AI agent is usually most significant when
the AI agent possesses high-quality prior information, as demonstrated by the
results in rows 1-3 of Table 2.

Experiment 4: User Certainty About the Global Maximum. The opti-
mization score alone may not provide a complete picture of the performance of
collaboration, as the team may achieve a high function value but not “know”
whether it is indeed close to the global maximum. Such certainty requires knowl-
edge of the overall domain, which in turn necessitates exploration. To assess the

Table 2. Impact of the agents’ prior knowledge onto the optimization score. The
tested priors are: knowledge around the global optimum (G), knowledge around a local
optimum (L) and no prior knowledge (N). Each prior condition is indicated with a
subscript: AI for the AI agent, u for the user.

Prior StrategicAI (ours) GreedyAI

GAI & Gu 76.3± 23.3 63.6 ± 18.6

GAI & Lu 75.4± 23.7 67.4 ± 23.2

GAI & Nu 74.0± 25.1 61.3 ± 18.6

LAI & Gu 79.0± 23.0 75.8 ± 22.7

LAI & Lu 82.1± 23.8 70.1 ± 25.5

LAI & Nu 80.0± 23.5 75.1 ± 23.6

NAI & Nu 69.5 ± 23.3 72.1± 20.4
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level of exploration and knowledge, we examine the flatness of the distribution
of the maximum based on the agent’s belief over the function, represented as
p(z∗|fbelief) := p(z∗ = max(x,y) fbelief(x, y)). The degree of flatness is measured
by differential entropy. Specifically, we are interested in how effectively the AI
agent can increase the user’s certainty about the maximum, which we refer to as
the user certainty, H(p(z∗|fu)), where H is the differential entropy and fu is the
human user’s belief over the objective function. A higher user certainty value
means that the human user has a better understanding of the global maximum.

Table 3 replicates Experiment 4.2, but instead of presenting the optimiza-
tion score, it shows the user certainty about the global maximum. The results
reveal that the AI using a random strategy is the most effective approach to
reducing the user’s uncertainty about the global maximum, and that there is a
considerable amount of unexplored space left after T = 20 rounds when AI acts
strategically or greedily. However, the results also indicate that with strategic
planning, the user’s understanding of the global maximum is slightly improved,
regardless of whether they are conservative or Bayesian users and whether they
are explorative or exploitative. In addition, the observation that strategic plan-
ning enables users to explore more space is also supported by a visual inspection
of some of the experimental trials, which can be found in the appendix.

Table 3. User certainty about the global maximum at the end of the game.

β = 0.2 β = 0.7

α = 0.1 α = 0.6 α = 0.1 α = 0.6

StrategicAI 1.54 ± 0.13 1.59 ± 0.15 1.56 ± 0.17 1.56 ± 0.19

GreedyAI 1.66 ± 0.05 1.67 ± 0.06 1.68 ± 0.06 1.68 ± 0.06

RandomAI 1.27± 0.17 1.22± 0.19 1.16± 0.22 1.17± 0.22

5 Related Work

Decomposition-based Optimization. The proposed cooperative BO game resem-
bles a decomposition-based optimizer. Decomposed optimization partitions the
dimensions of the optimized function into disjoint subsets and optimizes sepa-
rately over these partitions [5]. Two popular families of decomposition-based
optimizers are coordinate descent based methods [11] and cooperative co-
evolutionary algorithms [17]. Recently, [12] proposed a decomposition-based
optimization algorithm for large-scale optimization problems, which is based
on Bayesian optimization. However, this literature is focused on algorithmic
optimization and does not address the problem from the multi-agent learning
perspective.

Multi-Agent Bayesian Optimization. The closest to our work is collaborative BO
which considers multiple parties optimizing the same objective function. Still,
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the utility from evaluating the function is individual, as [20], where a trusted
mediator selects an input query to be assigned to each party who then evaluates
the objective function at the assigned input. The main difference with our work
is the absence of this mediator. In other words, in our setting, the parties have
autonomy over their own decisions.

Human-Agent Teaming. The autonomy mentioned above is a crucial charac-
teristic of human-autonomy teams (HATs), where autonomous agents with a
partial or high degree of self-governance work toward a common goal [14,16].
The HAT literature offers numerous testbeds that enable researchers to design
algorithms and evaluate performance; a selection of these is presented in [16].
One such testbed is the game of Hanabi, which is a cooperative card game of
imperfect information for two to five players [1]. Although the proposed coop-
erative BO game is similar to Hanabi, the crucial difference is that we do not
allow direct communication, which would make collaboration easier and focus
the solution on designing the communication aspects. By contrast, in Hanabi,
players can exchange hints as a means of communication. This idea of commu-
nication is inherent to the whole field of Cooperative Game Theory [3], in which
cooperation is made possible by using binding agreements. However, this domain
mainly focuses on matrix games and not sequential repeated games in extensive
form. Recently, Sundin et al. [21] considered a similar problem for an applica-
tion to molecular design. In this work, the first agent’s action corresponds to a
restriction of a search space, and the second agent’s action to picking within the
restricted space. This differs from our work in that the function they optimize is
known by the second agent but not observed by the first agent, while we consider
a function unknown by both agents and the samples of which are observed.

6 Conclusion

We introduced a cooperative setup for Bayesian optimization of a function of two
parameters, where a user and an AI agent sequentially select one coordinate each.
The case where the AI agent chooses first is difficult because the agent cannot
know the user’s action. Therefore, we endow the AI agent with a model of the
user, i.e. a probabilistic description of the user’s behaviour and decision-making.
We use this model within a Bayes Adaptive Monte Carlo Planning algorithm
to simulate the user’s behaviour. The AI agent’s strategic planning of actions
enables making choices adapted to the user’s biases and current knowledge of
the domain. We showed empirically that our method, based on a simple user
model, leads to better optimization scores than a non-strategic planner. Even
though our algorithm is, in principle, adapted to be used with human users, the
current implementation is yet too computationally expensive to work in real-time
(calculation time of the order of a minute per action). Alleviating this issue is
an important future work to make our method usable in real-world applications
with real users.
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Abstract. Missing data persists as a major barrier to data analysis
across numerous applications. Recently, deep generative models have
been used for imputation of missing data, motivated by their ability
to learn complex and non-linear relationships. In this work, we investi-
gate the ability of variational autoencoders (VAEs) to account for uncer-
tainty in missing data through multiple imputation. We find that VAEs
provide poor empirical coverage of missing data, with underestimation
and overconfident imputations. To overcome this, we employ β-VAEs,
which viewed from a generalized Bayes framework, provide robustness
to model misspecification. Assigning a good value of β is critical for
uncertainty calibration and we demonstrate how this can be achieved
using cross-validation. We assess three alternative methods for sampling
from the posterior distribution of missing values and apply the approach
to transcriptomics datasets with various simulated missingness scenarios.
Finally, we show that single imputation in transcriptomic data can cause
false discoveries in downstream tasks and employing multiple imputation
with β-VAEs can effectively mitigate these inaccuracies.

Keywords: VAEs · multiple imputation

1 Introduction

Missing data persists as a major barrier in analyses of multivariate data, due
to issues like incomplete collection, data availability and low coverage. Early
approaches for dealing with missing data tend to reduce the generalizability of
results or skew the trends present in the data [38]. These include listwise dele-
tion, where only complete observations are considered, or imputation methods,
where the missing values are estimated. Some of these imputation strategies
include substitution by the mean of observed values, stochastic regression tech-
niques and hot deck imputation. Single imputation implicitly assumes that the
imputation is perfect and thereby fails to account for the uncertainty introduced
by the prediction. An attractive solution for this is multiple imputation, which
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models the uncertainty in the missing values by producing several plausible val-
ues for each imputed data point [30]. The imputed datasets are then combined
and analyzed in downstream tasks to give estimates and standard errors that
acknowledge uncertainty in the missing data.

Recently, deep generative models have emerged as a popular tool for imput-
ing data, due to their ability to capture non-linear relationships and complex
dependencies [3,7,10,12,17,21,23–26,29,31,32,34]. For example, Qiu et al. [34]
use variational autoencoders (VAEs) for imputation of high-dimensional genomic
data and find that it performs better than competing methods, such as singular
value decomposition and K-nearest neighbours, but they focus solely on single
imputation. In this work, we extend this approach to account for uncertainty
through multiple imputation strategies. While expressive and powerful, deep
models have been shown to be overconfident [39] and underestimate the vari-
ability of out-of-distribution test data [33]. In line with these results, we find
that VAEs provide poor empirical coverage of the missing data, with underesti-
mation and overconfident imputations for missing data values that are far from
the mean.

To overcome this, we employ β-VAEs [14], which provide a framework for
approximate Bayesian inference of deep generative models under the power like-
lihood. In statistics, inference based on the power likelihood has been shown to
provide robustness against model misspecification [2], and thus, in our setting,
it is crucial to avoid overfitting and achieve good coverage and well-calibrated
uncertainty of the missing data. Assigning a good value of β is critical [15], and
we employ cross-validation to tune β.

Lastly, we study the effects of imputation in downstream analyses. In the task
of identifying discriminating gene sets in transcriptomic data from cancer cells,
we show that single imputation can induce correlations that confound regression
analyses. Further, we show that multiple imputation with β-VAEs yields fewer
false positives in this task.

2 Background

2.1 Variational Autoencoders

Variational autoencoders [19] are probabilistic deep generative models comprised
of two parts, the encoder and decoder. The encoder (also referred to as the
inference model) takes an observed data point, x ∈ R

D, and computes the poste-
rior distribution, pθ (z|x), of the latent variables, z ∈ R

K . As the true posterior is
intractable in most cases, an approximate model, qφ(z|x), is used to approximate
the true posterior, pθ (z|x), and encode the observed data into the latent vari-
ables. The second part is the decoder (also referred to as the generative model)
where the latent variables, z, are used to reconstruct data point, x̂, via the gener-
ative model, pθ (x|z). The standard choice of distribution for both the inference
and generative model is a simple, factorized Gaussian, where the Gaussian mean
and variance are parameterized by neural networks, with φ and θ containing
the parameters of the encoder and decoder neural networks respectively. Based
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on a training data set X = (x1, . . . ,xN ) containing N data points, the neural
network parameters φ and θ are optimized during training of the VAE by min-
imizing the reconstruction loss (the negative log-likelihood of the data) and the
latent loss (the Kullback-Leibler (KL) divergence between the variational poste-
rior, qφ(Z|X), and the prior (which we set to a standard Gaussian), p(Z), with
Z = (z1, . . . , zN )).

From a Bayesian perspective, this is equivalent to approximate variational
inference of deep latent variable models, under the generative model xn | zn ∼
pθ (xn | zn) with a Gaussian prior on latent variables zn ∼ N(0, I). To over-
come the intractability of the posterior, amortized variational inference [11] is
employed, assuming the variational posterior qφ(zn|xn) is parameterized by a
neural network with φ containing the weights and biases. The variational param-
eters φ and generative model parameters θ are optimized by minimizing the KL
divergence between the variational posterior qφ(Z|X) and the true posterior
pθ (Z|X), or equivalently maximizing the evidence lower bound (ELBO):

ELBO =
N∑

n=1

Ezn∼qφ (zn|xn)[log pθ (xn|zn)] − DKL(qφ(zn|xn), p(zn)).

During training, the ELBO is maximized using stochastic gradient descent.
To compute the required gradients, the re-parameterization trick [18,35] is used
to obtain independence between the latent noise and φ.

β-VAEs An extension on the classic VAE is the β-VAE, which includes a hyper-
parameter β that adjusts the relative weight of the latent loss [14]:

ELBO =
N∑

n=1

Ezn∼qφ (zn|xn)[log pθ (xn|zn)] − β DKL(qφ(zn|xn), p(zn)). (1)

While in the machine learning community, β-VAEs are motivated by their
improvement in disentangling the latent variables [5], we provide an alternative
motivation from a statistical perspective. In particular, maximizing the β-VAE
bound in (1), is equivalent to maximizing:

N∑

n=1

Ezn∼qφ (zn|xn)[log pθ (xn|zn)1/β ] − DKL(qφ(zn|xn), p(zn)),

or minimizing the KL divergence between the variational posterior qφ(Z|X) and
the posterior under the power likelihood (see Appendix A.4 [36]):

pθ ,β(Z|X) ∝
N∏

n=1

pθ (xn|zn)1/βp(zn).

The use of the power likelihood in Bayesian statistics provides frequentist guar-
antees of posterior consistency in nonparametric models [40], while the Bayesian
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model under the standard updating with β = 1 may be inconsistent [1].
Moreover, the power likelihood provides robustness to model misspecification
[2]. Given the complex, high-dimensional nature of the deep generative model
pθ (xn|zn), this acknowledges and allows for a mismatch between the generative
model and the true data generating distribution.

2.2 Single Imputation with VAEs

VAEs are ideal for imputing missing transcriptomic data, as they can learn
non-linear relationships and generate imputations over thousands of features. In
this work, we develop the approach of Qiu et al. [34]. They first train the VAE
using only the subset of complete data to optimize the parameters φ and θ. For
each data point n = 1, . . . , N , xn can be split into two parts: xobs,n containing
the observed features and xmis,n containing the missing features, where Xobs =
(xobs,1, . . . ,xobs,N ) and Xmis = (xmis,1, . . . ,xmis,N ). For each data point with
missing features, i.e. xn �= xobs,n, the optimal choice, under the squared error
loss, is to impute with the mean under the generative model:

x̂mis,n = E [xmis,n | xobs,n] =
∫

xmis,n pθ (xmis,n | xobs,n) dxmis,n

=
∫ ∫

xmis,n pθ (xmis,n, zn | xobs,n) dzndxmis,n.

This integral is intractable; thus in [34], it is approximated by iteratively com-
puting: 1) the expectation of zn (mean of the encoder) given x̂mis,n and xobs,n:

ẑn =
∫

zn qφ(zn | x̂mis,n,xobs,n) dzn,

and 2) the expectation of x̂mis,n (mean of the decoder) given ẑn:

x̂mis,n =
∫

xmis,n pθ (xmis,n | xobs,n, ẑn) dxmis,n.

Each missing value is initialized with the mean observed value for its respec-
tive feature, and subsequently re-estimated until convergence. Note that when
the likelihood factorizes across features (e.g. factorized Gaussian), pθ (xmis,n |
xobs,n, zn) = pθ (xmis,n | zn). In their paper, Qiu et al. [34] optimized the model
and hyper-parameters through a grid search, claiming that the standard VAE
(β = 1) and training for 250 epochs resulted in the lowest mean absolute error of
the imputed values when compared to true values. However, the authors did not
examine the uncertainty calibration nor did they consider multiple imputation.

2.3 Multiple Imputation

Multiple imputation (see e.g. [22,30,38]) improves upon single imputation by
modelling the uncertainty associated with the imputed values. It does so by cre-
ating M plausible values for each missing data point. Combining the M datasets
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enables estimation of standard errors and confidence intervals for dataset derived
statistics. Historically setting M between 3 and 5 was deemed adequate [37] oth-
ers point to cases where it may be necessary to set M higher [13].

In multiple imputation we aim to obtain and simulate from the predictive
distribution for the missing data given the observed data, i.e. p(Xmis|Xobs).
In particular, we assume that X follows a distribution, p(X|ψ), where ψ is
a collection of all parameters of the model. Then we can write our predictive
distribution as:

p(Xmis|Xobs) =
∫

p(Xmis,ψ|Xobs)dψ =
∫

p(Xmis|Xobs,ψ)p(ψ|Xobs)dψ.

To impute the missing data, and thereby simulate one of M plausible
datasets, data augmentation (DA) algorithms can be employed. Specifically,
DA is a Markov chain method which iteratively samples 1) the parameters
ψ from the posterior p(ψ|Xobs,Xmis) and 2) missing data Xmis given ψ from
p(Xmis|Xobs,ψ). This ultimately results in sampling from the predictive dis-
tribution p(Xmis|Xobs), producing one of the plausible datasets, denoted as
Xm

mis = (xm
mis,1, . . . ,x

m
mis,N ). This procedure is repeated M times to achieve M

plausible datasets. Inferences based on these M imputed datasets can be com-
bined via Rubin’s rules to compute accurate inference about the entire dataset
X.

3 Methodology

In this work, we generalize single imputation with VAEs in two ways. First,
we employ and compare three multiple imputation strategies to account for
uncertainty in the missing data. Second, we extend using β-VAEs for improved
robustness and uncertainty quantification. We propose an additional minor mod-
ification to the approach of Qiu et al., whereby we train the VAE by including
both complete samples and those with some missingness. This requires that we
apply mean imputation of missing values prior to training. We find this approach
leads to modest improvements in imputation accuracy and allows the approach
to be employed even in scenarios where the majority of samples contain some
missingness.

3.1 Multiple Imputation with β-VAEs

In the case of multiple imputation (MI), the latent variables, Z, of the β-VAE
represent the parameters of our model, previously referred to as ψ in Sect. 2.3.
To produce a sample from our target predictive distribution, pθ ,β(Xmis|Xobs),
we can iteratively sample from the joint distribution pθ ,β(Xmis,Z|Xobs) via a
Markov chain Monte Carlo scheme. For β-VAEs, the predictive distribution is
constructed from the power likelihood, that is the likelihood of our generative
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model is raised to the power 1/β (see Section 2.1):

pθ ,β(Xmis|Xobs) ∝
∫

pθ (Xmis|Xobs,Z)1/βpθ ,β(Z|Xobs)dZ

=
N∏

n=1

∫
pθ (xmis,n|xobs,n, zn)1/βpθ ,β(zn|xobs,n)dzn,

(2)

where standard VAEs correspond to β = 1. We note that in the case of the
factored Gaussian generative model, the power likelihood pθ (xmis,n|xobs,n, zn)1/β

is simply proportional to a Gaussian with variance rescaled by a factor of β. On
the other hand, pθ ,β(Z|Xobs) represents the intractable true posterior of the
latent variables under the power likelihood given the observed data only.

In the following, we implement and compare three different approaches to
sample from our target predictive distribution in (2): 1) pseudo-Gibbs (Sect. 3.1),
2) Metropolis-within-Gibbs (Sect. 3.1), and 3) sampling importance resampling
(Sect. 3.1). These strategies are proposed in [28,29,35], respectively, for missing
data imputation with deep generative models, and we describe a simple extension
based on β-VAEs and the power likelihood. Prior to imputation, we first train
the β-VAE, using mean imputation for the missing values, to obtain estimates
of generative model parameters θ and variational parameters φ, and thus also
an approximation of the true posterior of the latent variables.

Pseudo-Gibbs. Pseudo-Gibbs sampling was the first strategy developed to
generate approximate samples from the predictive distribution in deep generative
models [35]. In particular, approximate samples from the joint pθ ,β(Xmis,Z |
Xobs) are obtained by iteratively sampling from the encoder and decoder. More
specifically, for s = 1, . . . , S iterations and every data point n ∈ {1, . . . , N} with
missing features, the pseudo-Gibbs algorithm replaces the expectation steps in
the single imputation of Sect. 2.2 with sampling, as follows: First, Sample zn

(sample of encoder) given x(s−1)
mis,n :

z(s)n ∼ qφ(zn | x(s−1)
mis,n ,xobs,n). (3)

Next, we sample x(s)
mis,n (sample of decoder) given z(s)n based on the power like-

lihood:

x(s)
mis,n ∼ pθ ,β(xmis,n | xobs,n, z(s)n ) ∝ pθ (xmis,n | xobs,n, z(s)n )1/β .

Ideally, in the first step, we would aim to sample from the intractable true
posterior of the latent variables. However, if the variational posterior provides
a good approximation, the pseudo-Gibbs scheme will produce samples from a
distribution close to our target.

Metropolis-Within-Gibbs. The pseudo-Gibbs algorithm was improved and
extended by [28], who derived a Metropolis-within-Gibbs (MWG) sampler that is
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asymptotically guaranteed to produce samples from the target predictive distri-
bution. This is a simple modification of pseudo-Gibbs that corrects the first step
by using the variational posterior as a proposal within a Metropolis-Hastings
algorithm. Specifically, in the first step, the sampled value from the encoder in
(3) represents the proposed value for the latent variables, denoted by z∗

n, which
is then accepted according to the acceptance probability:

a(z(s−1)
n → z∗

n) = min
(
1,

pθ (x
(s−1)
mis,n ,xobs,n|z∗

n)1/βp(z∗
n)

pθ (x
(s−1)
mis,n ,xobs,n|z(s−1)

n )1/βp(z(s−1))

qφ (z(s−1)
n |x(s−1)

mis,n ,xobs)

qφ (z∗
n|x(s−1)

mis,n ,xobs,n)

)

Thus, we set:

z(s)n =

{
z∗

n with prob. a(z(s−1)
n → z∗

n)
z(s−1)

n with prob. 1 − a(z(s−1)
n → z∗

n)
.

If the variational posterior is a perfect approximation of the true posterior, the
acceptance probability will be one, and the algorithm reduces to pseudo-Gibbs.
In general, MWG acknowledges and corrects for the approximation of the pos-
terior; however, if the variational posterior is far from the true posterior, MWG
will suffer from low acceptance rates and slow convergence.

Sampling Importance Resampling. An alternative to Gibbs is sampling
importance resampling (SIR), proposed by [29]. First, we perform importance
sampling using the variational posterior as the importance distribution. In this
case, for every data point n ∈ {1, . . . , N} with missing features, we take s =
1, . . . , S samples of the latent variables from our importance distribution:

z(s)n ∼ qφ(zn | x(0)
mis,n,xobs,n),

where x(0)
mis,n denotes an initial mean imputation for the missing data (zero is

the mean after feature standardization). These importance samples (z(s)n ), for
s = 1, . . . , S, have weights w

(s)
n proportional to:

ω(s)
n =

pθ (xobs,n|z(s)n )1/βp(z(s)n )

qφ(z
(s)
n |x(0)

mis,n,xobs,n)
,

where w
(s)
n = ω

(s)
n /

∑S
s=1 ω

(s)
n (for further details, see Appendix A.5 [36]). Then,

for multiple imputation, we obtain M imputations by first sampling (zm
n ), for

m = 1, . . . M , with replacement from the importance samples (z(s)n ) with prob-
ability w

(s)
n . Next, for each zm

n , we impute the missing data by sampling from

xm
mis,n ∼ pθ ,β(xmis,n | xobs,n, zm

n ).

In contrast to Gibbs sampling, an advantage of SIR is parallelizability. How-
ever, the discrepancy between the variational posterior and true posterior deter-
mines the efficiency of the algorithm, and a large discrepancy may result in
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degeneracy of the weights and require a large number of importance samples
(which is required to be exponential in KL divergence between the importance
distribution and the target [4]).

3.2 Cross-Validation Training Regime

When the generative model and θ match the true data generating distribution
exactly, learning is achieved optimally with β = 1. However, in practice, we have
a mismatch and assigning a good value of β becomes critical to achieve robustness
and accurate uncertainty quantification. Indeed, if β is set too low, the posterior
uncertainty can be underestimated, while if β is set too high, the posterior
uncertainty is overestimated. Some directions for assigning a value of β from
an information theoretic perspective are provided in [15]. Instead, we employ
cross-validation (CV) to tune β for accurate multiple imputation and coverage
of the missing data. A second consideration that affects uncertainty calibration in
deep models is overfitting. We observe that training for too long leads to under-
estimated uncertainty on the held-out data (Supplementary Figure A.3 [36]).
Therefore, selecting the correct number of epochs is critical for well-calibrated
uncertainty. This motivates the CV approach to select β and the number of
epochs jointly.

Specifically, the CV approach to tuning β and the number of epochs consists
of creating k copies of the data and adding a small proportion of additional
MCAR missingness in each copy. We then carry out a grid search over the
number of epochs and values of β, training k models for each value of β. The final
selection is the combination that has acceptable coverage while minimizing the
mean absolute error (MAE) over the introduced missing values (averaged across
the k models). Optimal values are selected by visual inspection of the MAE and
coverage in the CV plots (Supplementary Figure A.3 [36]). Once the optimal
hyper-parameters for β and epochs are selected, the model is retrained using all
of the data. We observed that following this approach results in coverage and
MAE on the test set being close to the values estimated through cross-validation.

3.3 Evaluating Imputation Performance

To evaluate the imputation performance, we consider two quantities: 1) the mean
absolute error (MAE) to assess reconstruction accuracy and 2) the empirical
coverage (EC) to quantify uncertainty. The MAE compares our imputed values to
the ground truth that was originally masked in the complete dataset. Recall that
X̂mis = (x̂mis,1, . . . , x̂mis,N ) represents the imputed values, while Xmis represents
the true (masked) values. The MAE is defined as:

MAE =
1
N

N∑

n=1

|x̂mis,n − xmis,n|, (4)

where |x̂mis,n −xmis,n| represents the average absolute difference across all miss-
ing features for the nth data point. For multiple imputation, the imputed values
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Fig. 1. Standard VAE (β=1) underestimates the uncertainty in multiple
imputation. Here we report (a) the accuracy at imputed missing values compared
to the ground truth by MAE and (b) the fraction of true values that fall within the
95% CIs for the three multiple imputation approaches pseudo-Gibbs (PG), Metropolis-
within-Gibbs (MWG) and sampling importance resampling (SIR). Dotted line repre-
sents the desired coverage at 0.95. Finally, (c) depicts the imputed values for the
missing data by single imputation (SI), ranked by their true values (highlighted in
red). (Color figure online)

in (4) are averaged across the M imputed datasets, x̂mis,n = 1
M

∑M
m=1 x

m
mis,n.

To evaluate uncertainty in multiple imputation, we first compute 100(1 − α)%
confidence intervals (CIs) for each missing value based on the M imputed values.
The empirical coverage is then computed as the fraction of times where the true
value falls within the predicted interval.

4 Results: Genomic Data Imputation

4.1 Limitations of Single Imputation and Standard VAEs

We compare single imputation with standard VAEs to multiple imputation using
three methods to sample the posterior (MWG, PG, and SIR). In order to bench-
mark against [34] we employed the same RNA-sequencing dataset from the Can-
cer Genome Atlas (TCGA). This dataset contains D = 17, 175 features (RNA-
sequencing counts) for N = 667 glioma patients, comprised of two cancer sub-
types, glioblastoma (GBM) and low-grade glioma (LGG). We first simulate miss-
ingness in this dataset by masking 10% of values completely at random (MCAR)
in 20% of samples, scale the dataset and subsequently train the VAE with the
zero imputation at missing value indices (see Sect. 3). In order to benchmark
against their method, we use the same model and hyper-parameters that were
found to be optimal in [34], specifically, the standard VAE (β=1) with 250 train-
ing epochs and a learning rate of 10−5. Once our model is trained, we generate
M = 100 plausible datasets for each multiple imputation approach and perform
single imputation (as described in Sect. 2.2). We set M much higher than would
typically be used in MI, in order to measure empirical coverage with a high
degree of precision. We examine the effect of varying M as a hyper-parameter
in our analysis (Supplementary Figure A.1 [36]).
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To evaluate imputation of the original masked values, we consider imputation
accuracy by MAE and find that the multiple imputation approaches have similar
accuracy to single imputation (SI), with pseudo-Gibbs performing slightly better
than the other MI approaches (Fig. 1a). Next, we consider the empirical cover-
age of the masked values based on the 95% CIs computed from the M = 100
imputed datasets for all three multiple imputation approaches, and find that
the uncertainty is underestimated when β = 1 (Fig. 1b). Additionally, the values
imputed at masked data points with single imputation are underestimated at
more extreme true values (Fig. 1c). As [34] only used reconstruction accuracy
with single imputation to optimize hyperparameters, they were unable to assess
uncertainty calibration in the imputations. To overcome this, we explore regu-
larization of the latent space through β-VAEs, optimizing the hyperparameters
by considering both reconstruction accuracy and coverage.

4.2 Multiple Imputation with β-VAEs for Accurate Uncertainty
Quantification

For improved robustness, we employ β-VAEs and the cross-validation scheme
described in Sect. 3.2 to tune β and the number of training epochs, resulting
in a value of β = 2 and 250 training epochs (Supplementary Figure A.3 [36]).
We then train the β-VAE with these optimal parameters and impute values
by SI and all three MI approaches PG, MWG and SIR. This results in good
coverage at 95%, with a much lower deviation from the desired coverage than
the standard VAE with β = 1 (Fig. 2, Supplementary Figure A.2, Supplementary
Figure A.5, Supplementary Figure A.6 [36]). Even with regularization of the
latent space, single imputation still results in underestimation at extreme values
(Supplementary Figure A.2 [36]). Our multiple imputation by β-VAEs yields
good coverage across all missing data, even extreme values, while still retaining
comparable accuracy to single imputation (Fig. 2d).

4.3 Multiple Imputation Reduces False Positives in Downstream
Tasks

We next investigate the impact of all imputation approaches on downstream
tasks, namely in identifying discriminating gene sets through logistic regression
with the LASSO penalty. In particular, we run LASSO regression on all imputed
datasets to identify the genes which discriminate between the two cancer sub-
types, GBM and LGG. This results in one gene set from our ground truth dataset
with no missingness (GT), one from single imputation (SI), and 100 discriminat-
ing gene sets for each multiple imputation approach, PG, MWG and SIR. We
propose that non-zero LASSO coefficients that arise in the imputed data but do
not show up in the complete data LASSO model are false positives arising as
artefacts of imputation.

We find that the union across all discriminating gene sets for each multiple
imputation approach is much larger than the ground truth set, with the total
number of possible non-zero coefficients ranging from 143 to 155, and only 31
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Fig. 2. Multiple imputation with β-VAEs provides calibrated coverage. The
standard VAE (β=1) cannot achieve a balance of high accuracy and calibrated coverage
(a). While the β-VAE with β=2 (b) gets close to the error minimum while maintaining
accurate uncertainty estimation (as measured by empirical coverage with a 95% CI.
After imputing by SI, MWG, PG and SIR, we summarize imputation performance by
(c) the empirical coverage at 95% CIs (dotted line represents the desired coverage at
0.95) and (d) the accuracy at imputed values, comparing single imputation with all
three MI strategies.

discriminating genes in the true dataset (Table 1). When comparing the esti-
mated coefficients from the ground truth data to the (averaged) estimated coef-
ficients based on the imputed data, this results in a slightly higher MAE for
multiple imputation approaches (0.066, 0.064 and 0.069 for PG, MWG and SIR,
respectively) compared to single imputation (0.053), which also has a set of 31
discriminating genes, although these are not identical to the ground truth set.
However, when we inspect the coverage across the multiple imputations, we find
that our coverage is close to the desired 95% across PG, MWG and SIR (Table 1,
Supplementary Figure A.7 [36]).

To identify discriminating gene sets across multiple imputations, we consider
two approaches: selecting genes that 1) do not include a coefficient of zero in
the 95% CI computed from the 100 imputed datasets, and 2) have an inclusion
probability, denoted Pincl and defined as the fraction of imputed datasets that
the gene has a non-zero LASSO coefficient, greater than a specified threshold.
The first approach results in the same set of 12 genes across all three multiple
imputation approaches that are all in the true set of non-zero LASSO coefficients
(Table 1, Fig. 3), giving a false discovery rate (FDR) of 0%. These 12 genes are
also contained within the set for single imputation; however, single imputation
results in 7 false positives (Fig. 3), yielding an FDR of 22.6% (7/31). In the
second approach, if we threshold at Pincl > 0.5, this results in a final set of 25
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Table 1. Performance of different imputation techniques, single imputation (SI) and
multiple imputation by PG, MWG and SIR for imputation at missing value indices
(first two rows) and downstream impact on LASSO regression (subsequent rows). The
final row reports the false discovery rate, based genes with an inclusion probability
> 0.5 for multiple imputation.

Metric SI PG MWG SIR

MAE 0.302 0.301 0.304 0.303
95% CI coverage N/A 96.2% 95.9% 95.6%
LASSO: MAE 0.053 0.066 0.064 0.069
LASSO: 95% CI coverage N/A 97.4% 97.2% 96.6%
LASSO: total number of non-zero coefficients 31 155 143 149
LASSO: number of genes without zero in 95% CI N/A 12 12 12
LASSO: number of genes with Pincl > 0.5 N/A 25 25 25
LASSO: False discovery rate 22.6% 8% 8% 8%

discriminating genes for each multiple imputation approach (Table 1, Supple-
mentary Figure A.8 [36]). In this case, our gene set contains 2 false positives,
yielding an FDR of 8.0% (Fig. 3). In summary, we find that multiple imputation
with β-VAEs not only provides well-calibrated uncertainty but also results in
much more acceptable FDRs in downstream tasks.

4.4 Multiple Imputation in New Missing Scenarios and Additional
Transcriptomic Datasets

Lastly, we show that our results are consistent when applied to another tran-
scriptomic dataset and with different missingness scenarios. As missing-not-at-
random (MNAR) is common in transcriptomic data, due to either low coverage
or artefacts of the sequencing protocol, we choose to explore this additional miss-
ing scenario [6]. Here we select genes with GC content at the highest 10% and
randomly mask half of these values to generate our MNAR simulated dataset. We
additionally explore a new pan-cancer transcriptomic dataset, which is comprised
of 17,175 features and 953 samples across 2 cancer types, lung adenocarcinoma
(LUAD) and lung squamous carcinoma (LUSC). This makes up four groups for
which we run our imputation framework: (1) MCAR for LGG and GBM, (2)
MNAR for LGG and GBM, (3) MCAR for LUAD and LUSC and (4) MNAR
for LUAD and LUSC.

For all four groups, we simulate missingness as described previously. We first
tune β and the number of epochs by simulating additional MCAR missingness,
then train the VAE with these tuned hyper-parameters before imputing at miss-
ing values. We evaluate accuracy by MAE. Coverage is evaluated by looking
at the EC and the FPR in the downstream task of identifying discriminating
gene sets with LASSO regression. We find that running cross-validation to tune
β on the new transcriptomic dataset (LUAD-LUSC) results in the selection of
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Fig. 3. Upset plot of discriminating gene sets from different imputation
approaches. We report the discriminating gene sets by single imputation (SI), ground
truth (GT), and all three multiple imputation approaches PG, MWG and SIR with two
different inclusion criteria, zero not contained in 95% CI (nonzero_95CI) and inclusion
probability, Pincl > 0.5 (P_incl_0.5).

Fig. 4. Multiple imputation across new missing scenarios and new transcrip-
tomic datasets. Across different missing scenarios (MCAR and MNAR) for both
transcriptomic datasets (LGG versus GBM and LUAD versus LUSC), we report the
(a) MAE, (b) EC (empirical coverage), and (c) false positive rate (FPR) of discrimi-
nating gene sets from LASSO regression defined by SI and Pincl = 0.5 for MI settings.
In plots (a) and (c), the red dot represents the estimate from the single imputation
approach.

approximately the same optimal values for β and the number of epochs (β = 2
and epochs = 250). Our results show that in all four contexts, we are able
to retain imputation accuracy compared to single imputation (Fig. 4a) while
still estimating coverage appropriately at the 95% level (Fig. 4b). Evaluating
the discriminating gene sets identified by LASSO regression in the new LUAD-
LUSC dataset and MNAR missingness scenarios, we repeat our finding that the
false positive rate (Fig. 4c) is reduced and precision is increased (Supplementary
Figure A.9 [36]) across all MI settings compared to SI. Here we have used the
gene set for Pincl > 0.5 for each MI setting to increase our true positive rate,
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but we see this holds for the more stringent set as well, which are genes that do
not include a coefficient of zero in the 95% CI computed from the 100 imputed
datasets (Supplementary Figure A.10 [36]).

5 Discussion

We describe a deep learning framework for multiple imputation using β-VAEs.
We propose and compare three multiple imputation methods and develop a
new training regime, which uses all observed data to tune hyperparameters by
assessing accuracy as well as empirical coverage. Our approach captures the com-
plex, non-linear relationships present in high-dimensional genomic data, imput-
ing values with high accuracy while retaining good coverage. Previous work [34]
employed standard VAEs for genomic data imputation by single imputation,
resulting in inaccurate and overconfident imputations at extreme missing val-
ues. More recent work has investigated multiple imputation using VAEs, but
has not leveraged the potential of tuning β for proper uncertainty calibration
[27]. Here we investigate the impact of these different imputation approaches on
downstream tasks, namely discriminating gene sets identified by logistic regres-
sion with the LASSO penalty. We find that multiple imputation through β-
VAEs identifies genes that discriminate between the two cancer subtypes with
lower false discovery rates than previous methods. All three multiple imputation
approaches perform similarly in terms of accuracy and coverage though SIR may
be preferred as it permits parallelization (Supplementary Figure A.11 [36]).

Future work will continue to investigate missing not at random settings [7,17]
and mixed data [24]. In addition, extensions using ensembles of deep generative
models may improve robustness and calibration. Such ensembles can be built
from simple approaches, such as training with multiple initializations [20], com-
posing models across different epochs [16], or Monte Carlo dropout [9], to more
advanced approaches, such as Bayesian methods [8].
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Abstract. This paper introduces a new framework for classifying prob-
ability density functions. The proposed method fits in the class of con-
strained Gaussian processes indexed by distribution functions. Firstly,
instead of classifying observations directly, we consider their isometric
transformations which enables us to satisfy both positiveness and unit
integral hard constraints. Secondly, we introduce the theoretical propri-
eties and give numerical details of how to decompose each transformed
observation in an appropriate orthonormal basis. As a result, we show
that the coefficients are belonging to the unit sphere when equipped with
the standard Euclidean metric as a natural metric. Lastly, the proposed
methods are illustrated and successfully evaluated in different configura-
tions and with various dataset.

Keywords: Classification · Constrained Gaussian Processes ·
Distribution Functions · Bayesian Inference

1 Introduction

Supervised learning is a powerful tool for solving many real-world problems in
various fields [2]. It has a wide range of applications, including but not limited to,
image recognition, natural language processing, sentiment analysis, fraud detec-
tion, and prediction in finance and health-care. For example, in image recog-
nition [20], supervised learning algorithms can be trained on large datasets of
labeled images to identify objects and classify them into specific categories. In
language processing [16], supervised learning can be used for text classification,
sentiment analysis, and language translation. In finance [26], supervised learning
can be used to predict stock prices. Some popular supervised learning algorithms
include linear regression [14], logistic regression [13], decision trees [6], random
forests [9] and support vector machines [30]. These algorithms have different
strengths and weaknesses and are suitable for different types of problems. The
choice of an algorithm depends on the nature of the problem, the amount of
labeled data available and the desired level of accuracy.

Nowadays, Gaussian processes are powerful methods for modeling complex
data that does not have a simple linear relationship between the input and the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 507–522, 2023.
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output variables [28,32]. They are particularly useful when data have a high
degree of noise or/and uncertainty. A Gaussian process (GP) can also be used
for Bayesian optimization and for active learning. In probability and statistics a
standard GP is a stochastic process (a collection of random variables indexed by
time or space), such that every finite collection has a multivariate normal distri-
bution, i.e., every finite linear combination of them is normally distributed [10].
GP regression models have been extensively developed for statistical machine
learning. One of the main advantages of GP regression is that it provides a
measure of uncertainty in the predictions. A Gaussian process classifier (GPc)
is a machine learning method that adapts GPs for the classification task where
the goal is to learn a mapping from input features to a categorical output. The
first step of a GPc is to specify a covariance function that defines the covari-
ance between the input features. The covariance function essentially captures the
similarity between pairs of data points. Once the covariance function is specified
the GPc can be trained on a labeled dataset using a technique called maxi-
mum likelihood estimation. This involves finding the values of the covariance
hyperparameters that maximize the marginal likelihood of the observed data.

However, standard GPs were limited to data in vector spaces. In fields such
as shape analysis [19,31] and diffusion tensor imaging [1] data often lie on a
manifold. Therefore, the standard GP model is not straightforwardly applicable
to a non-Euclidean space due to hard constraints/limitations imposed by the
underlying function [24]. This usually makes the GP model nonviable since the
resulting predictive distribution does not live in the correct geometric space. In
this context, the linear regression was first generalized to solve the problem of
manifold-valued data based on the geodesic regression before being extended
for multidimensional covariates [18]. Furthermore, [22] generalized GPs to Rie-
mannian manifolds as wrapped Gaussian processes. Recently, [4] constructed
covariance functions in order to obtain GPs indexed by probability measures
endowed with the Wasserstein metric. More recently, [29] provided a unified
framework of GPs indexed by non-decreasing distribution functions (SNDF)
endowed with the Fisher-Rao metric. The closest to our work is that of [11] for
which authors have represented functional data by their corresponding probabil-
ity density functions (PDFs). They also benefited from the connection between
the set of PDFs endowed with the Fisher-Rao metric and the set of square-
root density functions (SRDFs) endowed with the L

2 metric resulting to be the
Hilbert upper-hemisphere with many advantageous geometric tools [12].

In general, functional data analysis (FDA) is about the analysis of informa-
tion on univariate functions, multidimensional curves, surfaces, etc [27]. Some
of commonly used techniques in FDA include functional principal component
analysis [33]. A relevant reference on this topic includes the classification of func-
tional data with a segmentation approach [7] and FDA via neural networks [21].
In particular, a PDF is a type of functional data that describes the probabil-
ity distribution of a continuous random variable. In other words, the PDF of
a continuous random variable is a function that maps each realization of the
random variable to the relative probability of that value occurring. The set of
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PDFs is a constrained functional space that has been applied in many real-world
applications [5]. Indeed, PDFs are most commonly preferred as a representa-
tion of functional data thanks to their ability to improve the local distributions
and explore the skewness of original data [15]. Contrariwise, such representations
even their ability to describe functional data prevent the linearity of transformed
data due to both positiveness and unit integral constraints [3]. To overcome such
issue one should define a metric on the set of PDFs which matches the mentioned
constraints. In particular, the consistency of regression and classification with
PDFs as inputs was established in [23,25].

One of the main disadvantages of GPs indexed by Riemannian manifolds is
that they can be computationally expensive especially for large datasets. In fact,
the distance should be evaluated in functional spaces. However, several approx-
imate methods can be used to make this class of GPs more computationally
efficient. Keeping the same idea, in this paper, we will develops GPs indexed
by PDFs as a measure of divergence between them based on the well-defined
covariance function. In contrast to [11] we consider the formal expansion of a
SRDF in terms of a L

2 basis yielding from the convergent orthogonal series
expansion [8]. We then exploit the fact that the set of SRDFs endowed with the
L
2 functional metric resulting to be the Hilbert hemi-sphere is isometric to the

Euclidean sphere endowed with the l2 square-summable metric generated by the
set of coefficients resulting from the expansion at hand. Given a finite set of L2

basis assumed to maintain most information of the SRDF the restriction to the
(uncountably) infinite-dimensional Hilbert sphere translates to a restriction to
the (countably) finite-dimensional sphere endowed with the l2 Euclidean metric.

The rest of the paper is organized as follows. In Sect. 2, we review the GPc
model, inference, learning, and prediction. Section 3 presents how to move from
a PDF to a vector of coefficients belonging to the tangent space of the Euclidean
sphere when dealing with the convergent orthogonal series expansion. Section 4
introduces the GPc indexed by the set of PDFs thanks to the isometry with
the tangent space of the Euclidean sphere. Empirical results are presented and
discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Standard Gaussian Process Classifier

We are given N observations (x1, y1), . . . , (xN , yN ) with xi ∈ R
d are the

d-dimensional inputs (predictors) and yi are the associated responses (i =
1, . . . , N). In this paper, we consider the binary classification where yi takes val-
ues in {−1,+1} for which a GP becomes a GPc. A GPc is a probabilistic model
that makes predictions by learning a mapping from inputs to class probabilities.
In particular, we are interested in finding the probability of the target class “+1”
satisfying: π(x) = P(y = +1|f(x)) = σ(f(x)), depending on an activation func-
tion σ : R → [0, 1] and usually referring to the sigmoid σ(t) = 1/(1+exp(−t)). In
a Bayesian framework, we model f with a zero mean GPc of a covariance func-
tion c(., .) controlling its underlying structure, i.e., f(x) ∼ GP(0, c(x, x′)). Note
that, in this context, our formulation is different from kernel-based methods [17]
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and all predictions are guaranteed to be PDFs. Since yi is of binary values then
yi|f(xi) follows a Bernoulli law ∼ B(σ(f(xi))). The standard GPc model is{

f ∼ GP(0, c)
yi|f(xi) ∼ B(σ(f(xi)))

In this paper, the covariance function c(., .) is supposed to be homogeneous which
means that it is associated with a stationary parametrized kernel Kθ : R → R

such that c(x, x′) = Kθ(||x − x′||2).
Likelihood. Let x = (x1, ..., xN )T , y = (y1, ..., yN )T and f = (f1, ..., fN )T =
(f(x1), ..., f(xN ))T . The likelihood term is the product of individual likelihoods

P(y|f) =
N∏

i=1

P(yi|fi) =
N∏

i=1

σ(yifi) (1)

Prior. Since f ∼ GP(0, c) then f |x follows a multivariate Gaussian law

P(f |x) = N (f |0,C); C = c(x,x) (2)

Posterior. From the Bayes’ rule we write the posterior distribution as

P(f |x,y) =
P(f |x) × P(y|f)

P(y|x) ∝ P(f |x) × P(y|f) (3)

where P(y|x) refers to the marginal likelihood. The posterior is analytically
intractable and need to be approximated due to the likelihood term. To handle
this issue one can introduce the Laplace approximation by finding the maximum
a posteriori (MAP) estimator of f denoted f̂ = (f̂1, ..., f̂N )T from the Newton-
Raphson method, iteratively

fk+1 =
(
C−1 +Wk

)−1(
Wkfk + ∇ logP(y|f)|f=fk

)
; k = 1, 2, . . . (4)

Wk is the negative Hessian matrix of the likelihood at fk: Wk =
− ∇2 logP(y|f)

∣∣
f=fk

. Once we estimate f̂ and Ŵ = − ∇2 logP(y|f)
∣∣
f=f̂

yields
a posterior approximation from a second order Taylor expansion of logP(f |x,y)
around f̂ as

P̂(f |y,x) = N (f |f̂ , (C−1 + Ŵ)−1) (5)

Given a test input x∗ the predictive distribution at f∗ = f(x∗) is then

P̂(f∗|x,y, x∗) = N (f∗|μ(x∗), σ2(x∗)) (6)

with {
μ(x∗) = CT

∗ C
−1f̂

σ2(x∗) = C∗∗ − CT
∗ (C+ Ŵ−1)−1C∗

(7)
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where C∗ = c(x, x∗) and C∗∗ = c(x∗, x∗). Using the moments of prediction the
predictor of y∗ = +1 satisfies

π̄(x∗) = P(y∗ = 1|x∗) ≈
∫
R

σ(f∗)P̂(f∗|x,y, x∗)df∗ (8)

For some applications, the hyperparameter θ associated to the kernel Kθ is
known a priori and is chosen according to, for example, certain physical prop-
erties. However, in many applied environments the kernel’s hyperparameter is
learned from data for instance when maximizing the approximate log marginal
likelihood satisfying

log P̂(y|x) = −1
2
f̂TC−1f̂ + logP(y|f̂) − 1

2
log

∣∣IN + Ŵ
1
2CŴ

1
2
∣∣ (9)

where IN refers to the N ×N diagonal matrix. At this stage, it becomes possible
to fit the kernel hyperparameters, for instance, by a gradient-descent algorithm.
Inferring the predictive distribution or learning the hyperparameters from the
log approximate marginal likelihood is dominated by the inversion of the N ×N
covariance matrix C, which incurs a computational cost of O(N3). Additionally,
the memory requirements for GPc scale with a computational complexity of
O(N2).

3 Manifold Structure

Let p be a PDF of a real-valued random variable with respect to the Lebesgue
measure. The set of all PDFs defined on I = [0, 1] is a simplex satisfying

P =
{

p : I → R
∣∣ p is nonnegative and

∫
I

p(t)dt = 1
}

(10)

P is a Riemannian manifold when endowed with the Fisher-Rao metric
〈
g1, g2

〉
p
=

∫
I

g1(t)g2(t)
p(t)

dt (11)

where g1, g2 ∈ Tp(P) are two tangent vectors at p belonging to

Tp(P) =
{

g : I → R
∣∣ ∫

I

g(t)dt = 0
}

(12)

As a second representation we introduce the set of SRDFs satisfying

H =
{

ψ : I → R
∣∣ ψ is nonnegative, and ||ψ||L2 =

( ∫
I

ψ(t)2dt
)1/2

= 1
}

(13)

Endowed with the L
2 metric H results to be the Hilbert upper-hemisphere (non-

negative part). In addition, the tangent space of H locally at ψ is

Tψ(H) =
{

f : I → R
∣∣ 〈

ψ, f
〉
L2 =

∫
I

ψ(t)f(t)dt = 0
}

(14)
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Associated with any p ∈ P is a unique ψ ∈ H (isometrically) expressed as

ψ(t) =
√

p(t); t ∈ I (15)

The advantage of representing a PDF p ∈ P with ψ ≡ √
p ∈ H is that it greatly

simplifies the underlying geometry of P with some nice tools on the Hilbert
sphere. Since ψ is an element of L2(I,R), it can be represented as a convergent
orthogonal series expansion

ψ(t) =
∞∑

l=1

alφl(t) (16)

where (φl)l is a complete orthonormal basis in L
2(I,R). Note that ψ(t) can be

re-written as

ψ(t) = Φ(t)T A (17)

for A = (a1, a2, . . . )T and Φ(t) = (φ1(t), φ2(t), . . . )T . Consequently, ψ(t) is a
SRDF if and only if, in addition to the non-negativity constraint, A ∈ S∞ from
the following equality

||ψ||2
L2 =

∫
I

ψ(t)2dt =
∞∑

l=1

a2
l

∫
I

φl(t)2dt =
∞∑

l=1

a2
l = ||A||22 (18)

Here, S∞ refers to the unit infinite-dimensional Euclidean (square-summable)
sphere satisfying

S∞ =
{

A ∈ l2
∣∣ ||A||2 =

( ∞∑
l=1

a2
l

)1/2

= 1
}

(19)

with the corresponding tangent space locally at A as

TA(S∞) =
{

B ∈ l2
∣∣ 〈

A,B
〉
2
=

∞∑
l=1

albl = 0
}

(20)

Exponential Map. Let A be an element of S∞ and B ∈ TA(S∞). We define
the exponential map as

expA(B) = cos
(
||B||2

)
A + sin

(
||B||2

) B

||B|| 2
(21)

The exponential map is a diffeomorphism between the tangent space and the
unit finite-dimensional sphere if we restrict B so that ||B||2 ∈ [0, π[.
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Log Map. For A1, A2 ∈ S∞ such that A1 does not belong to the cut locus of
A2. We define B ∈ TA2(S∞) to be the inverse exponential (log) map of A1 if
expA2

(B) = A1. We then use the notation

B = logA2
(A1) (22)

where B = α
||α|| 2dS∞

(
A1, A2

)
and α = A2 −

〈
A1, A2

〉
2
A1. Here, dS∞

(
., .

)
refers

to the geodesic distance on the sphere (the angle of the shortest arc), i.e.,
dS∞

(
A1, A2

)
= arccos(

〈
A1, A2

〉
2
).

4 Gaussian Process Classifier on PDFs

In this section, we focus on constructing a GPc on P based on the connection to
the tangent space of the finite-dimensional sphere. A GPc Z on P is a random
field indexed by P so that (Z(p1), . . . , Z(pN ))T is a multivariate Gaussian vector
for p1, . . . , pN ∈ P. A zero mean GPc Z is completely specified by its covariance
function cP : P × P → R defined as

cP(pi, pj) =cov(Z(pi), Z(pj)) (23)

A covariance function cP(., .) on P should satisfy the following condition: for
any N ≥ 1 and p = (p1, . . . , pN )T the matrix CP = cP(p,p) is symmetric
nonnegative definite.

Lemma 1. Given an orthonormal basis for L
2, the set of PDFs equipped with

the Fisher-Rao metric (P,
〈
., .

〉
p
) is isometric to the sphere with its natural

Euclidean metric (S∞,
〈
., .

〉
2
).

Proof. The proof yields by composing two isometric maps in (15) and (18). ��

Since A1 → logA2
(A1) is an isometry between S∞ and TA2(S∞) for A2 ∈ S∞

then from Lemma 1 we get an isometry between P and TA2(S∞); p(.) ≡
(Φ(.)T A1)2 → logA2

(A1) by composition of two isometries. As a special case,
let E = T1(S∞) be the tangent space of S∞ at the infinite unity pole 1 =
(0, . . . , 0, 1). The strategy that we adopt to construct covariance functions is to
exploit the isometric map log1 based on the linear tangent space E . That is, we
construct covariance functions with (i, j) component as

cP(pi, pj) = Kθ(‖ log1(Ai) − log1(Aj)‖2) (24)

It seems natural to consider a truncated version of ψ at order d expressed as
ψd(t) =

∑d
l=1 alφl(t) and consider the rest of the sum as an error approximation:

ed(t) =
∑∞

l=d+1 alφl(t). The truncation ψd(t) is then re-written as ψd(t) =
Φd(t)T Ad for Ad = (a1 . . . , ad)T ∈ Sd−1 and Φd(t) = (φ1(t), . . . , φd)T . The
covariance on P approximately becomes

cP(pi, pj) ≈ Kθ(‖ log1d(Ad
i ) − log1d(Ad

j )‖2) (25)

where 1d is the d-dimensional unity pole of Sd−1.



514 A. Fradi and C. Samir

Proposition 1. Let Kθ : R → R be a kernel associated to a homogeneous covari-
ance function c(xi, xj) defined on R

d × R
d, i.e., c(xi, xj) = Kθ(‖xi − xj‖2) and

cP(., .) be defined like in (25). Then, cP(., .) is approximately a covariance func-
tion.

Proof. Let pi (i = 1, . . . , N) be a sample of i.i.d. observations on the PDF p
depending on the corresponding finite-dimensional spherical coefficients Ad

i ∈
Sd−1 and Bd

i = log1d(Ad
i ). Consider the matrix C̃ with entries C̃ij ≈

〈
Bd

i , Bd
j

〉
2
.

Then C̃ is approximately a Gram matrix in R
N×N . Therefore, there exists a d×d

nonnegative diagonal matrix D and a N ×d orthogonal matrix P such that C̃ ≈
PDPT . If e1, . . . , eN denote the canonical basis of RN then eT

i C̃ej ≈ xT
i xj with

xi = D1/2PT ei ∈ R
d depending on p1, . . . , pN . This implies that

〈
Bd

i , Bd
j

〉
2

≈
xT

i xj and consequently || log1d(Ad
i ) − log1d(Ad

j )||2 ≈ ||xi − xj ||2. Finally, any
matrix with entries Kθ(‖ log1d(Ad

i )− log1d(Ad
j )‖2) can be approximately seen as

a covariance matrix with entries Kθ(||xi − xj ||2) and inherits its properties. ��

Let pi (i = 1, . . . , N) be a sample of i.i.d. observations on the PDF p depending
on the corresponding spherical coefficients Ad

i ∈ Sd−1, respectively.

Corollary 1. If Z is a GPc indexed by PDFs such that{
Z ∼ GP(0, cP)

yi|Z(pi) ∼ B(σ(Z(pi)))

then there is an approximated standard GPc f on Ed = T1d(Sd−1) satisfying⎧⎪⎨
⎪⎩

f ∼ GP(0, c)

yi|f(Bd
i ) ∼ B(σ(f(Bd

i )))

Bd
i = log1d(Ad

i )

5 Experimental Results

In this section, we evaluate the proposed model on various datasets and compare
it to other state-of-the-art methods. We consider the squared exponential (SE)
kernel satisfying

K(τ) = σ2 exp(−0.5τ2/γ2); τ = ||x − x′||2 (26)

Functions drawn from a GP with this kernel are infinitely differentiable, and can
display long-range trends. GPs with a SE kernel are well-suited for modeling
functions that exhibit smoothness and continuity properties, such as classifica-
tion problems. The covariance structures that can be learned from data are the
variance σ2 and the length-scale γ. The orthonormal basis in L

2(I,R) is set to
φl(t) =

√
2 sin(lπt) and the truncation order is fixed to d = 30, see more details

in [12]. Note that all the methods tested in this section have been carefully
implemented in Python programming language on a standard desktop machine
running linux.
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5.1 Illustrative and Challenging Datasets

Synthetic PDFs. We consider two datasets of simulated PDFs: beta and
inverse gamma distributions. They have been applied to model randomness on
intervals of finite length and have been widely used in simulation studies for a
variety of disciplines. We performed this experiment by simulating 1000 PDFs
slightly different for two classes in each dataset. Each observation pi represents
a PDF when we add a random uniform noise to initial parameters. For beta
dataset we take P(pi|yi = +1) = B(2 + εi; 2) for the first class and P(pi|yi =
−1) = B(1.8+εi; 2) for the second one where εi ∼ U([−0.2; 0.2]) is a realization of
the uniform law. For inverse gamma dataset we take P(pi|yi = +1) = IG(3+ εi)
for the first class and P(pi|yi = −1) = IG(2.8+ εi) for the second one. We show
some examples of pi in Fig. 1 (top) with different colors (blue and red) for the
two classes.

Real PDFs. In this part, a real study was conducted with two datasets of PDFs.
The first dataset consists of 1500 observations giving the segmented and prepro-
cessed electrocardiogram (ECG) signals for Heartbeat (500 normal and 1000
abnormal) ECG Heartbeat Categorization Dataset. This dataset contains a col-
lection of ECG recordings with a sampling frequency: 125Hz, where the goal is to
classify each heartbeat into normal or abnormal when the human was affected by
different arrhythmias and myocardial infarction. Each signal includes informa-
tion about the symptoms during a short period. The information in this dataset

Beta Invgamma

Heartbeat Growth

Fig. 1. Some examples of PDFs with first class (blue) and second class (red). For
Growth: boys (blue) and girls (red) and Heartbeat: normal (blue) and abnormal (red).
(Color figure online)

https://www.kaggle.com/shayanfazeli/heartbeat
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could be used to develop strategies to control this problem. It could also be used
to develop better treatments for other similar problems. We display some exam-
ples of signals represented by their PDFs registered on I = [0, 1] and normalized
to admit an unit integral in Fig. 1 (bottom-left). Moreover, the second dataset
used in this analysis consists of monthly clinical growth charts for children from 1
to 12 years (100 girls and 100 boys) National Center for Health Statistics. It is a
typical example of biological dynamics observed over months. Each growth chart
represents the size (the increase in centimeters) of a child during 132 months. In
this context, all growth charts were represented by PDFs of child sizes registered
on I = [0, 1], see some examples in Fig. 1 (bottom-right) for which we make the
use of nonparametric kernel method with an automatic bandwidth.

Beta Invgamma

Heartbeat Growth

Fig. 2. Top: TPCA of projected coefficients into the tangent space of the sphere with
first class (blue) and second class (red). Bottom: The predicted class “1” probabilities
are shown in the contour plots. The black dashed line represents the decision boundary
at π̄(Colorfigureonline)(Cd,k

i ) = 1
2
.

5.2 Tangent Principal Component Analysis

Tangent principal component analysis (TPCA) is a mathematical technique, also
called Geodesic Component Analysis, used for dimensionality reduction and fea-
ture extraction in machine learning and data analysis. It is particularly useful
for data embedded on curved manifolds. According to our case, this technique
involves first computing the tangent space at each point on the finite-dimensional
sphere Sd−1 then performs to obtain a set of orthogonal basis vectors that cap-
ture the most important variations in data. If some point movements Bd

i were
to be totally correlated manifold learning methods including: t-SNE, Isomap,

https://www.cdc.gov/growthcharts/clinical_charts.htm
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LLE, and MDS are useful for nonlinear dimensionality reduction. Since our vec-
tor data Bd

i are not of high-dimension (d = 30) and belong to the Euclidean
tangent space we establish the TPCA. The central idea of TPCA is to reduce
the dimensionality of projected vectors into the tangent space of Sd−1 belonging
to a linear sub-space of Rd by keeping one (k = 1), two (k = 2) or three (k = 3)
dimensions in R

k. This is achieved when transforming to a new set of variables,
known as principal components (PCs) so that the first directions retain most of
the variation presented in the original variables. First, we find the eigenvectors
of the covariance matrix of the whole dataset Bd

i . Second, we sort the eigen-
vectors by decreasing the corresponding eigenvalues and choose k eigenvectors
of the largest eigenvalues to be the principal directions. Finally, we transform
the original data Bd

i into the new sub-space of reduced dimension R
k. Let Cd,k

i

(i = 1, . . . , N) be the resulting coefficients in R
k. Generally, the variance ratio

indicates the proportion of the total variance that is accounted by each princi-
pal component. Specifically, principal components with high variance ratios are
considered to be more important and should be retained, while those with low
variance ratios may be discarded. In Fig. 2 (top) we show results of the coeffi-
cients projected into one principal direction for Beta and Invgamma datasets.
Indeed, only one principal component (k = 1) accounts for the largest proportion
of the variance, with a variance ratio of 0.99 for both. Figure 2 (bottom) shows
a scatter plot of the data with the first two principal components (k = 2) for the
Heartbeat and Growth datasets. The first principal component (which explains
67% of the variance for Heartbeat and 38% for Growth) separates the two classes
along the x-axis, while the second principal component (which explains 19% of
the variance for Heartbeat and 15% for Growth) separates the classes along the
y-axis. Although the action of TPCA is not by isometry but only a dimension-
ality reduction technique that finds the directions of maximum variance we add
the contour plot in each region associated with the predicted class “1” probability
that shows how GPc can be successfully performed in low-dimensional tangent
spaces mainly when real data are not linearly separable.

5.3 Results and Comparison

To evaluate the performance of the proposed method, we split the labeled dataset
into two subsets: training and test. The training set (75% of the dataset: 50%
for training and 25% for validation) is used to train the model, while the test set
(25% of the dataset) is used to evaluate its performance. Some commonly used
metrics for evaluating the performance of a classification model include:

– Accuracy: The proportion of correctly classified instances in the test set.
– AUC: The measure of the overall performance of the model based on the ROC

curve.
– LOSS: The measure of the logarithmic (also known as cross-entropy loss)

between the predicted probability distribution and the true label.

In order to get an accurate estimate of the model’s performance, we perform
multiple random splits of the dataset into training and test sets, and train and



518 A. Fradi and C. Samir

Fig. 3. The classification results with first class (label 1) and second class (label 0).

Fig. 4. The boxplots of different metrics: Accuracy score (top), AUC score (middle),
and LOSS measure (bottom).
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test the model on each split which could reduce the variance in the performance
metrics obtained from a single split. The predicted class probabilities in our
model provide a measure of uncertainty in the model’s predictions and used
to make informed decisions based on the level of confidence in the classification
result. Now, we show results of the predicted class “1” probabilities of one among
100 runs in Fig. 3. The observed values involve computing the mean and variance
of the conditional distribution of the output labels given the input data and
the model parameters, and then using them to compute the predicted class
probabilities. We state that most well classified test data are far from the decision
boundary at π̄(Bd

i ) =
1
2 , which gives a good precision to our method.

At this stage, we will compare the results of our approach with some base-
line methods: i) GPs indexed by PDFs (GPP), ii) GPs based on the Wasserstein
distance (GPW), and iii) neural network (NN) model for classifying univariate
functional data to determine whether the differences in performance are signifi-
cant. We remind that standard classification models are not suitable for curved
spaces and can not be applied in this context. For an attempt to show it is
different, we provide some details about the NN model architecture. We first
define the NN model using Keras’ Sequential function in Python. The model has
an input layer equal to the number of time instances of each observation. The
first hidden layer a fully connected layer with 32 neurons and a ReLU activation
function, followed by a dropout (regularization) layer that randomly sets 50% of
the input units to 0 during training to prevent overfitting. Then, we add a second
hidden layer with 16 neurons and ReLU activation, followed by another dropout
layer with a dropout rate of 50%. Finally, the model has an output layer with
one neuron and sigmoid activation. This produces a scalar output between 0 and
1, representing the model’s prediction for the binary classification problem. We
compile the model with binary cross-entropy loss and Adam optimizer.

In Fig. 4 we illustrate boxplots of the accuracy, AUC and LOSS metrics for
the binary classification problem across the 100 runs of the model. The boxplots
of most dataset are relatively narrow for the Accuracy and AUC scores, indicat-
ing that these metrics are consistent across different runs. However, we also see
a few outliers with other datasets that are in somewhat lower/higher than the
rest, which may indicate that there are some runs where the model is perform-
ing poorly or exceptionally well. Since most criteria values are sometimes very
close for different methods which rends comparison nontrivial we also summarize
the mean and the standard deviations (std) values in Table 1. Accordingly, our
proposed method achieved a mean accuracy of 0.761, 0.779, 0.849 and 0.847 for
Beta, InvGamma, Heartbeat and Growth, which is significantly better than the
baseline GPP, GPW and NN. However, our proposed method outperformed the
same methods in terms of AUC, achieving a score of 0.885, 0.891, 0.918 and
0.938, respectively, see Table 2. Regarding the LOSS measure in Table 3, our
proposed method achieves a lower value for three among four datasets: Beta,
Heartbeat and Growth. Overall, our proposed method showed promising results
and outperformed the baseline methods on all datasets in terms of accuracy and
AUC, while it still competitive in terms of LOSS measure. Our method, on the
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other hand, is designed to be computationally efficient. This is because it consid-
ers some coefficients instead of PDFs directly that are optimized for an efficient
training. This allows our method to achieve comparable or better accuracy than
traditional methods, while requiring less computational resources. To illustrate
this, let’s compare the computational time of our method against the baseline
methods, particularly for the Beta dataset. We assume that all programs run on
a desktop machine with 32 GB memory and CPU Xeon(R) 3.60GHz. Note that
the elapsed times for predicting all the Beta test set are 10−3, 8.9 × 10−4 and
3×10−2 seconds using GPW, GPP, and NN respectively while it takes 5.7×10−4

seconds for our proposal.

Table 1. Accuracy score.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.761 0.027 0.757 0.025 0.757 0.026 0.755 0.025
InvGamma 0.779 0.023 0.773 0.024 0.77 0.024 0.757 0.025
Heartbeat 0.849 0.017 0.666 0.022 0.802 0.018 0.837 0.015
Growth 0.847 0.046 0.841 0.047 0.844 0.036 0.825 0.025

Table 2. AUC score.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.885 0.018 0.882 0.018 0.884 0.018 0.878 0.017
InvGamma 0.891 0.016 0.887 0.017 0.888 0.016 0.878 0.016
Heartbeat 0.918 0.004 0.768 0.024 0.853 0.018 0.89 0.014
Growth 0.938 0.03 0.923 0.029 0.901 0.037 0.923 0.017

Table 3. LOSS measure.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.368 0.021 0.371 0.021 0.41 0.024 0.393 0.035
InvGamma 0.387 0.017 0.388 0.021 0.406 0.022 0.378 0.038
Heartbeat 0.367 0.018 0.638 0.015 0.689 0.001 0.919 0.343
Growth 0.334 0.058 0.337 0.056 0.563 0.014 0.464 0.063
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6 Conclusion

In this paper, we have introduced a novel approach for classifying probability den-
sity functions with a Gaussian process classifier model. Our methodology benefits
from the use of functions decomposed with coefficients projected into the tangent
space of the sphere, which can perform inference on PDFs. The theoretical founda-
tion detailed in this paper exploits the simple geometry implied the nonparametric
Fisher-Rao metric. The experimental evaluation has demonstrated that this new
model is competitive on several challenging datasets. Furthermore, the problem
formulation can be extended to many other supervised and unsupervised areas of
statistical machine learning. Nevertheless, it would be very interesting to further
investigate substantial impacts on the computational costs.
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Abstract. One of the fundamental challenges in causal inference is to
estimate the causal effect of a treatment on its outcome of interest from
observational data. However, causal effect estimation often suffers from
the impacts of confounding bias caused by unmeasured confounders that
affect both the treatment and the outcome. The instrumental variable
(IV) approach is a powerful way to eliminate the confounding bias from
latent confounders. However, the existing IV-based estimators require a
nominated IV, and for a conditional IV (CIV) the corresponding condi-
tioning set too, for causal effect estimation. This limits the application
of IV-based estimators. In this paper, by leveraging the advantage of
disentangled representation learning, we propose a novel method, named
DVAE.CIV, for learning and disentangling the representations of CIV
and the representations of its conditioning set for causal effect estima-
tions from data with latent confounders. Extensive experimental results
on both synthetic and real-world datasets demonstrate the superiority
of the proposed DVAE.CIV method against the existing causal effect
estimators.

Keywords: Causal Inference · Instrumental Variable · Latent
Confounder

1 Introduction

It is a fundamental task to query or estimate the causal effect of a treatment
(a.k.a. exposure, intervention or action) on an outcome of interest in causal infer-
ence. Causal effect estimation has wide applications across many fields, includ-
ing but not limited to, economics [19], epidemiology [16,28], and computer sci-
ence [30]. The gold standard method for causal effect estimation is randomised
controlled trials (RCT), but they are often impractical or unethical due to cost
restrictions or ethical constraints [19,30]. Instead of conducting an RCT, esti-
mating causal effects from observational data offers an alternative to evaluate
the effect of a treatment on the outcome of interest.
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Fig. 1. Three causal DAGs are utilised to illustrate the problems of causal effect esti-
mation from observational data. In all three DAGs, X, U , W and Y are the set of pre-
treatment variables, latent confounder, treatment and outcome variables, respectively.
(a) indicates the unconfoundedness assumption holding, and (b) shows the causal effect
of W on Y is non-identification since there is a latent confounder U . (c) illustrates the
problem studied in this work, in which the set X is represented by three sets {S,C,F}.

Confounding bias is a major obstacle in estimating causal effects from obser-
vational data. It arises from confounders that affect both the treatment vari-
able W and the outcome variable Y . When all confounders are measured (i.e.,
the unconfoundedness assumption [19,31] is satisfied), adjusting for the set
of all measured confounders is sufficient to obtain an unbiased estimation of
the causal effect from observational data [1,19]. For example, in the causal
graph of Fig. 1(a), the unconfoundedness is satisfied when given X. Neverthe-
less, the unconfoundedness assumption is untestable, and there exists a latent
(a.k.a. unobserved, unmeasured) confounder affecting both W and Y in many
real-world applications, e.g. the latent confounder U affects both W and Y in
the causal graph in Fig. 1(b). In such a situation, the causal effect of W on Y
is non-identification [30]. Most existing data-driven methods rely on the uncon-
foundedness assumption and thus it becomes challenging and questionable for
them to obtain unbiased causal effects from data with latent confounders.

The instrumental variable (IV) approach is a practical and powerful tech-
nique for addressing the challenging problem of causal effect estimation in the
presence of latent confounders. The IV approach requires a valid IV for elimi-
nating the confounding bias caused by latent confounders [2,18]. Valid IVs are
exogenous variables that are associated with W but not directly associated with
Y [16,27]. A valid IV S needs to satisfy three conditions: (1) S is correlated
to W ; (2) S and Y do not share confounders (i.e. unconfounded instrument);
and (3) the effect of S on Y is entirely through W (i.e. exogenous) [16,27].
However, the last two conditions are too strict and not testable in real-world
applications. Therefore, in many existing IV-based methods, an IV is nominated
based on prior or domain knowledge. However, in many real-world applications,
the nominated IVs based on domain knowledge could violate one of the three
conditions, resulting in a biased estimate and potentially leading to incorrect
conclusions [6,16].
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It is a challenging problem to discover a valid IV directly from data. Inves-
tigators usually collect as many covariates as possible, but few of them are
valid IVs that satisfy the three conditions. Instead of discovering a valid IV,
Kang et al. [20] proposed a data-driven method, referred to as sisVIVE, based
on the assumption of some invalid and some valid IVs (i.e. more than half of
candidate IVs are valid IVs ) to provide a bound of causal effect estimations.
Hartford et al. [14] proposed DeepIV, a deep learning based IV approach for
counterfactual predictions, but it requires a nominated IV and the correspond-
ing conditioning set. Kuang et al. [23] developed a method to model a summary
IV as a latent variable based on the statistical dependencies of the set of can-
didate IVs. Yuan et al. [36] proposed a data-driven method to automatically
generate a synthetic IV for counterfactual predictions, but the method does not
consider the confounding bias between the IV and the outcome, and the condi-
tion of unconfounded instrument may be violated in many cases. Therefore, it
is desirable to develop an algorithm for learning a valid IV that considers the
unconfounded instrument for causal effect estimations, especially conditional
average causal effect estimations, from data with latent confounders.

To provide a practical solution for conditional average causal effect estima-
tions, in this work, we focus on conditional IV (CIV), which can be consid-
ered as an IV with relaxed conditions and a CIV requires a conditioning set to
instrumentalise it to function as an IV (details see Definition 1). We propose to
leverage disentangled representation learning technique to learn from data the
representations of a CIV and its conditioning set.

Specifically, as shown in Fig. 1(c), we assume that the observed covariates
are learned through three representations, S, C and F. Here, S affects both
treatment W and C, C represents the confounding factor affecting both W and
the outcome Y , and F represents the risk factor affecting both C and Y . We then
establish a theorem that S is a valid CIV that is instrumentalised by {C,F},
meaning that {C,F} is the conditioning set of S. Supported by this theorem,
we design and develop a novel disentangled representation learning algorithm
called DVAE.CIV model, which is based on the Variational AutoEncoder (VAE)
model [22]. This model allows us to obtain the representations of the CIV S
and its conditioning set {C,F}, enabling us to use S as a valid IV conditioning
on {C,F} for estimating the conditional average causal effects of W on Y from
data when there are latent confounders. The main contributions of the paper
are summarised as follows.

– We address a challenging problem in conditional average causal effect estima-
tions from data with latent confounders by utilising the CIV approach and
VAE models.

– We propose a novel disentanglement learning model based on the conditional
VAE model to learn and disentangle the representations of covariates into the
representations of a CIV S and its conditioning set {C,F} for conditional
average causal effect estimations from data with latent confounders.
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– We conduct extensive experiments on synthetic and real-world datasets to
show the performance of the DVAE.CIV model, w.r.t. causal effect estima-
tions from data with latent confounders.

2 Preliminaries

In this paper, uppercase and lowercase letters are utilised to represent variables
and their values, respectively. Bold-faced uppercase and lowercase letters indicate
a set of variables and a value assignment of the set, respectively.

A DAG (direct acyclic graph) is a graph that contains directed edges (i.e. →)
without cycles. In a DAG G, the directed edge Xi → Xj represents that Xi is
a cause of Xj , and Xj is an effect of Xi. A DAG is a causal DAG when a
direct edge Xi → Xj represents that Xi is a cause of Xj . In this work, we
assume a causal DAG G = (V,E) to represent the underlying system, where
V = X ∪ U ∪ {W,Y }, and E ⊆ V × V denotes directed edges. In V, we assume
that X is the set of pretreatment variables, U is the set of latent confounders, W
is a binary treatment variable (w = 1 and w = 0 denote the treated sample and
control sample, respectively), and Y (w) is an outcome of interest. Following the
potential outcome model [19,31], we have the potential outcomes Y (w = 1) and
Y (w = 0) relative to the treatment W . Note that we can only measure one of the
two potential outcomes for a given individual xi. Conceptually, the individual
causal effect (ICE) at xi is defined as ICEi = Yi(w = 1)−Yi(w = 0). The average
causal effect of W on Y is defined as ACE(W,Y ) = E[Yi(w = 1) − Yi(w = 0)],
where E is the expectation function.

The conditional average causal effect (CACE) of W on Y is referred to
as CACE(W,Y ), and defined as the form P (Y |do(w),X), where do(·) is do-
operation and indicates an intervention on the treatment (i.e. set the value of
W as per [30]). Conceptually, P (Y |do(w),X) can be obtained as:

CACE(W,Y ) = E[Yi(w = 1) − Yi(w = 0) | xi = x] (1)

In this work, we would like to estimate CACE(W,Y ) from data that there
exists at least a latent confounder U affecting both W and Y . When there is an
IV S and the set of conditioning covariates Z available in data, CACE(W,Y )
can be calculated by the following formula as in [3,19]:

CACE(W,Y ) =
E(Y |W = 1, S = 1,Z) − E(Y |W = 0, S = 1,Z)

E(W |S = 1,Z) − E(W |S = 0,Z)
(2)

The approach of CIV allows a measured covariate to be a valid IV condition-
ing on a set of measured variables. The formal definition of the CIV in a DAG
(Definition 7.4.1 on Page 248 [30]) is introduced as follows.

Definition 1 (Conditional IV). Let G = (V,E) be a DAG with V = X ∪
U ∪ {W,Y }, a variable Q ∈ X is a conditional IV w.r.t. W → Y if there exists
a set of measured variables Z ⊆ X such that (i) Q ⊥�⊥d W | Z, (ii) Q ⊥⊥d Y | Z in
GW , and (iii) ∀Z ∈ Z, Z is not a descendant of Y .
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Here, ⊥⊥d and ⊥�⊥d are d-separation and d-connection for reading the condi-
tioning relationships between nodes in a DAG [30]. The manipulated DAG GW

in Definition 1 is obtained by deleting the direct edge W → Y from the DAG G.
Note that Definition 1 is defined on a single CIV Q that can be generalised to a
set of CIVs Q easily.

With the pretreatment variables assumption, there is not a descendant of
Y in X, i.e. the condition (iii) of Definition 1 is always held. It means that
one needs to check the first two conditions for verifying whether a variable is
a CIV or not. Note that discovering a conditioning set Z from a given DAG is
NP-complete [37]. Under the pretreatment assumption, the time complexity of
discovering a conditioning set is still NP-complete. Instead of discovering a con-
ditioning set from a given causal DAG, in this work, we will utilise disentangled
representation learning to learn the representations of CIVs and the representa-
tions of the conditioning set directly from data with latent confounders.

3 The Proposed DVAE.CIV Model

3.1 The Disentangled Representation Learning Scheme for Causal
Effect Estimation

In this work, we would like to estimate CACE(W,Y ) from observational data
with latent confounders. Note that the causal effect of W on Y is non-identifiable
when there exists a latent confounder U ∈ U affecting both W and Y ,
i.e. W ← U → Y in the underlying DAG [6,30]. It is challenging to recover
CACE(W,Y ) from data with latent confounders due to the effect of U is not
computable. If there is a nominated CIV and its corresponding conditioning set,
CACE(W,Y ) can be obtained unbiasedly from data by using an IV-based esti-
mator. However, a CIV and its conditioning set are usually unknown in many
real-world applications. Furthermore, if an invalid CIV is used, the wrong result
or conclusion may be drawn [9,27].

To estimate the conditional average causal effects and average causal effects
from data with latent confounders, we propose and design the DVAE.CIV model
to learn three representations {S,C,F} as in the scheme of Fig. 1(c). Here S is
the representation of CIVs that only affect W but not Y , F is the represen-
tation of the risk factors that affects Y but not W , and C is the confounding
representation that affecting both W and Y .

Our proposed DVAE.CIV model relies on VAEs: we assume that the mea-
sured covariates factorise conditioning on the latent variables, and use an infer-
ence model [22] which follows a factorisation of the true posterior [15,26]. Based
on our disentanglement setting in Fig. 1(c), we have the following theoretical
result for causal effect estimation from data with latent confounders.

Theorem 1. Let G = (X ∪ U ∪ {W,Y },E) be a causal DAG, in which X is
a set of pretreatment variables, U is a set of latent confounders, W and Y are
treatment and outcome variables, respectively, and W → Y is in E. If we can
learn the three representations as per the scheme in Fig. 1(c), then the quantities
of CACE(W,Y ) can be calculated by using IV-based method.
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Proof. The directed edge W → Y in G is to ensure that W has a causal effect
on Y . In the causal DAG in Fig. 1(c), we first show that the set C ∪ F instru-
mentalists S to be a valid CIV. S is a common cause of W and C, so S ⊥�⊥d W ,
i.e. the first condition of Definition 1 holds. In the causal DAG G in Fig. 1(c),
C is a collider and is a common cause of W and Y . That is, conditioning on C,
the path W ← S → C ← F → Y is open, but F is sufficient to block this path.
For the path S → C → Y , C blocks it. Furthermore, in the manipulated DAG
GW , W is a collider such that the empty set blocks the three paths between S
and Y , i.e. S → W ← U → Y , S → W ← C ← F → Y and S → W ← C → Y .
Hence, the set C ∪ F blocks all paths between S and Y in GW , i.e. the second
condition of Definition 1 holds. Finally, C ∪ F does not contains a descendant
of Y due to the pretreatment variables assumption. Thus, the set C ∪ F instru-
mentalists S. As in Eq.(2), the IV-based estimators, such as DeepIV [14], can
be applied to remove the effect of U by inputting the CIV representation S and
the representations of its conditioning set C ∪ F. Therefore, the quantities of
CACE(W,Y) can be obtained by using the CIV S and its conditioning set C∪F
in an IV-based estimator.

Theorem 1 ensures that a family of data-driven methods can be applied for
causal effect estimation from data with latent confounders.

3.2 Learning the Three Representations

Based on Theorem 1, we have known that the set {C,F} instrumentalists S. In
this section, we present our proposed DVAE.CIV model for obtaining the three
latent representations from data by using the VAE technique [22], and the archi-
tecture of DVAE.CIV is presented in Fig. 2. As shown in Fig. 2, the DVAE.CIV
model is to learn and disentangle the latent representation Φ of X into two
disjoint sets {S,F} by using disentangled variational autoencoder [15,38], and
generate the representation C conditioning on X by jointing the Conditional
Variational AutoEncoder (CVAE) network [32].

The DVAE.CIV model is designed to learn three representations shown in
Fig. 1(c) by utilising the inference model and generative model to approximate
the posterior distribution p(X|S,C,F). The inference model comprises three
independent encoders q(S|X), q(C|X), and q(F|X), which are treated as vari-
ational posteriors over the three latent representations. The generative model
utilises the three latent representations with a decoder model p(X|S,C,F) to
reconstruct the measured distribution X.

Following the standard VAE model [22], the prior distributions p(S) and p(F)
are drawn from the Gaussian distributions as:

p(S) =
DS∏

i=1

N (Si|0, 1); p(F) =
DF∏

i=1

N (Fi|0, 1). (3)
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Fig. 2. The architecture of DVAE.CIV model. A yellow box indicates the drawing
of samples from the respective distributions, a grey box indicates the parameterised
deterministic neural network transitions, and a circle represents switching paths based
on the value of W . (Color figure online)

where DS and DF are the dimensions of S and F, respectively. In the inference
model, the variational approximations of the posteriors are described as:

q(S|X) =
DS∏

i=1

N (μ = μ̂Si
, σ2 = σ̂2

Si
); q(C|X) =

DC∏

i=1

N (μ = μ̂Ci
, σ2 = σ̂2

Ci
);

q(F|X) =
DF∏

i=1

N (μ = μ̂Fi
, σ2 = σ̂2

Fi
),

(4)

where DC is the dimension of C, and μ̂S, μ̂C, μ̂F and σ̂2
S, σ̂2

C, σ̂2
F are the param-

eters of means and variances in the Gaussian distributions parameterised by
neural networks.

In the generative model, we utilise the Monte Carlo (MC) sampling strategy
to sample the distribution C based on the Conditional Variational AutoEncoder
network (CVAE) [32] such that the latent representation of C is generated from
the distribution X:

p(C) � p(C|X). (5)

Furthermore, the generative models for W and X with the three latent rep-
resentations are formalised as:

p(W |S,C) = Bern(σ(ψ1(S,C))); p(X|S,F) =
DX∏

i=1

p(Xi|S,C), (6)

where ψ1(·) is a function parameterised by neural networks, σ(·) is the logistic
function and Bern(·) is the function of Bernoulli distribution.

In our generative model, the latent representation for the outcome Y is based
on the data type of Y . For the outcome Y with continuous values, we use a
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Gaussian distribution with its mean and variance parameterised by a pair of
independent neural networks, i.e. p(Y |w = 0,C,F) and p(Y |w = 1,C,F). Thus,
the continuous Y is modelled by:

p(Y |W,C,F) = N (μ = μ̂Y , σ2 = σ̂2
Y ),

μ̂Y = W · ψ2(C,F) + (1 − W ) · ψ3(C,F);

σ̂2
Y = W · ψ4(C,F) + (1 − W ) · ψ5(C,F),

(7)

where ψ2(·), ψ3(·), ψ4(·) and ψ5(·) are neural networks parameterised by their
own parameters.

For the outcome Y with binary values, a Bernoulli distribution function based
on neural networks is employed to model it and described as:

p(Y |W,C,F) = Bern(σ(ψ6(W,C,F))), (8)

where ψ6(·) is the same with the function ψ1. These parameters of neural net-
works can be approximated by maximising the Evidence lower bound (ELBO)
LELBO:

LELBO(X,W, Y ) = Eq[log p(X|S,C,F)] − DKL[q(S|X)||p(S)]
− DKL[q(C|X)||p(C|X)] − DKL[q(F|X)||p(F)],

(9)

where the decoder p(C|X) is to ensure that the latent representation C captures
as much information of X as possible.

To ensure that the treatment W can be recovered from the latent represen-
tations S and C, and the outcome Y can be recovered from the latent represen-
tations C and F, two auxiliary predictors are added and the objective function
of DVAE.CIV can be formalised as:

LDVAE.CIV = − LELBO(X,W, Y ) + αEq[log q(W |S,C)]
+ βEq[log q(Y |W,C,F)],

(10)

where α and β are the weights for the auxiliary predictors.
After training the DVAE.CIV model, we get the CIV representation S and

the conditioning set representations {C,F} based on Theorem 1. For estimating
conditional causal effects, we employ an IV-based prediction, DeepIV [14], to
implement this part, i.e. we feed S and {C,F} into the DeepIV method for
conditional causal effect estimation.

4 Experiments

In this section, we evaluate the performance of the proposed DVAE.IV model
by applying it to a set of synthetic datasets and three real-world datasets for
CACE(W,Y ) and average causal effect (ACE) estimation. The three real-world
datasets include SchoolingReturns [7], Cattaneo [8] and RHC [11] that are usu-
ally utilised in evaluating the methods of causal effect estimation from observa-
tional data. Details of the implementation of DVAE.CIV and the appendix are
provided in the GitHub1.
1 https://github.com/IRON13/DVAE.CIV.

https://github.com/IRON13/DVAE.CIV
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4.1 Experimental Setup

We compare the DVAE.CIV against the famous estimators in conditional causal
effect estimation that are widely utilised in causal inference from observational
data. Note that the ACE can be obtained by averaging the CACE(W,Y ) of
all individuals. These compared causal effect estimators are introduced in the
following.

Compared Causal Effect Estimators. We compare our proposed DVAE.CIV with
two Variational AutoEncoder based (VAE-based) causal effect estimators, three
tree-based causal effect estimators, two machine learning based (ML-based)
causal effect estimators, and three IV-based causal effect estimators. The two
VAE-based causal effect estimators are Causal Effect Variational AutoEncoder
(CEVAE) [26] and Treatment Effect estimation by Disentangled Variational
AutoEncoder (TEDVAE) [38]). The three tree-based causal effect estimators are
the standard Bayesian Additive Regression Trees (BART) [17], causal random
forest (CF) [35] and causal random forest for IV regression (CFIVR) [4]. Note
that CFIVR also belongs to IV-based estimators. The two ML-based causal effect
estimators are double machine learning (DML) [10] and doubly robust learning
(DRL) [12]. The three IV-based causal effect estimators are DeepIV [14], orthog-
onal instrumental variable (OrthIV) [33] and double machine learning based IV
(DMLIV) [10].

Remarks. The five estimators TEDVAE, BART, CF, DML and DRL rely on the
assumption of unconfoundedness [19] (i.e. no latent confounders in data), so the
five estimators cannot deal with the case with the data with latent confounders.
CEVAE can deal with latent confounders, but it requires that all measured
variables are proxy variables of the latent confounders, while our DVAE.CIV
model does not have the restriction. The IV-based estimators CFIVR, DeepIV,
OrthIV and DMLIV require a known IV that is nominated based on domain
knowledge, but the nominated IV usually is not a valid IV and thus may result
in a wrong conclusion as argued in Introduction.

Implementation Details. We use Python and the libraries including pytorch [29],
pyro [5] and econml to implement DVAE.CIV. In our experiments, the dimension
of latent representations is set as |S| = 1, |C| = 5 and |F | = 5, respectively. The
implementation of CEVAE is based on the Python library pyro [5] and the code of
TEDVAE is from the authors’ GitHub2. For BART, we use the implementation
in the R package bartCause [17]. For CF and CFIVR, we use the implementations
in the R functions causal forest and instrumental forest in the R package grf [4],
respectively. The implementations of DML, DRL, DeepIV, OrthIV and DMLIV
are from the Python package encoml.

2 https://github.com/WeijiaZhang24/TEDVAE.

https://github.com/WeijiaZhang24/TEDVAE
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Evaluation Metrics. For performance evaluation, two commonly used metrics
are employed in our experiments. For the synthetic datasets, we use absolute
error of average causal effect [17], i.e. εACE = |ACE − ˆACE| where ACE is the
true causal effect and ˆACE is the estimated causal effect, and Precision of the
Estimation of Heterogeneous Effect (PEHE, it is used to evaluate the CACE esti-
mations.) [17,26]

√
εPEHE =

√
E(((y1 − y0) − (ŷ1 − ŷ0))2) where y1, y0 are the

true outcomes and ŷ1, ŷ0 are the predicted outcomes, to assess the performance
of all methods in terms of the causal effect estimation. Lower values of both met-
rics indicate better performance. For multiple replications, we present the mean
with standard deviation. For the three real-world datasets, we use the reference
causal effect in the literature as the baseline to evaluate the performance of all
estimators since there is no ground truth causal effect available.

4.2 Simulation Study

It is challenging to evaluate a causal effect estimation method with real-world
data since there is no ground truth in the real-world data. In this section,
we design simulation studies to evaluate the performance of our proposed
DVAE.CIV method in the case that there exists a latent confounder U affecting
both W and Y , and there exists a CIV and its conditioning set in the synthetic
datasets.

We use a causal DAG G provided in the appendix to generate synthetic
datasets with a range of sample sizes: 2k, 6k, 10k, and 20k. In the causal DAG
G, X = {S,X1,X2,X3,X4,X5} is the set of measured covariates and U =
{U,U1, U2, U3, U4} is the set of latent confounders in which U affects both W
and Y . Note that S is a CIV conditioning on the set {X1,X2} for all synthetic
datasets. Moreover, the data generation process allows the synthetic datasets to
have the true individual causal effect. We provide the details of the synthetic data
generating process in the appendix. In our experiments, the IV-based estimators
OrthIV, DMLIV, DeepIV and CFIVR utilise the true CIV S and the conditioning
set {X1,X2} as input for causal effect estimation.

To provide a reliable assessment, we repeatedly generate 30 synthetic datasets
for each sample size setting and utilize the aforementioned metrics to evaluate
the performance of the DVAE.CIV against the compared estimators with respect
to the task of ACE estimation and CACE estimation from data with latent
confounders. For each dataset, we randomly take 70% of samples for training and
30% for testing. The results of all estimators with respect to the ACE estimations
and CACE estimations measured by the metrics εACE and

√
εPEHE in the out-

of-sample set are provided in Tables 1 and 2, respectively. The out-of-sample set
is on testing samples, and the within-sample set is on training samples. The
results of the within-sample set are provided in the appendix.

Results. By analysing the experiment results in Table 1, we have the following
observations: (1) the ML-based and VAE-based estimators, DML, DRL, CEVAE
and TEDVAE have the largest εACE because the confounding bias caused by con-
founders and the latent confounder U is not adjusted at all. (2) the tree-based
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Table 1. The out-of-sample absolute error εACE (mean ± std) over 30 synthetic
datasets. The best results are highlighted in boldface and the runner-up results are
underlined. DVAE.CIV is the runner-up on all synthetic datasets, and it relies on the
least domain knowledge among all estimators compared since it learns and disentangles
the representations of CIV and its conditioning set from data directly.

Samples 2k 6k 10k 20k

Estimators εACE εACE εACE εACE

ML-based DML 5.507 ± 0.387 5.624 ± 0.182 5.619 ± 0.122 5.633 ± 0.096

DRL 5.746 ± 0.404 5.833 ± 0.186 5.825 ± 0.156 5.860 ± 0.106

tree-based BART 3.586 ± 0.179 3.596 ± 0.090 3.613 ± 0.065 3.622 ± 0.060

CF 3.226 ± 0.342 3.246 ± 0.141 3.274 ± 0.127 3.312 ± 0.074

VAE-based CEVAE 5.595 ± 0.455 5.652 ± 0.183 5.631 ± 0.179 5.726 ± 0.123

TEDVAE 5.615 ± 0.455 5.655 ± 0.181 5.634 ± 0.172 5.696 ± 0.112

IV-based OrthIV 2.212 ± 1.260 1.952 ± 0.585 1.792 ± 0.607 1.974 ± 0.419

DMLIV 2.170 ± 1.189 1.888 ± 0.572 1.790 ± 0.626 1.971 ± 0.432

DeepIV 0.352± 0.180 0.632 ± 0.245 0.726 ± 0.315 0.757 ± 0.354

CFIVR 1.228 ± 0.949 0.504± 0.369 0.543± 0.474 0.415± 0.307

DVAE.CIV 0.577 ± 0.117 0.577 ± 0.064 0.561 ± 0.075 0.512 ± 0.091

estimators, BART and CF have the second largest εACE as they fail to deal
with the confounding bias caused by the latent confounder U . (3) the IV-based
estimators including DVAE.CIV significantly outperform the other estimators
including DML, DRL, BART, CF, CEVAE and TEDVAE. (4) DVAE.CIV is the
second best performer on all synthetic datasets and its performance is compa-
rable with CFIVR and DeepIV. (5) as the sample size increases, the standard
deviation of most estimators including DVAE.CIV decreases significantly. It’s
worth mentioning that DVAE.CIV requires the least domain knowledge among
all estimators since it only relies on the assumption that there exists a CIV and
the conditioning set (maybe an empty set). This is very important in practice,
as in many real-world applications, there is rarely sufficient prior knowledge for
nominating a valid IV.

From the results in Table 2, we can conclude that (1) the ML-based, tree-
based, and VAE-based estimators have the worst performance with respect
to conditional causal effect estimations. (2) Among the IV-based estimators,
DeepIV achieves the best performance on the first two groups of synthetic
datasets and the second-best performance on the other datasets, and CFIVR
obtains the best performance on the last four groups of synthetic datasets and
the second-best performance on the first two groups of synthetic datasets. (3)
DVAE.CIV obtains the second-best performance on all synthetic datasets. (4)
The standard deviation of DVAE.CIV is the smallest on all datasets, and as the
sample size increases, the standard deviation of DVAE.CIV reduces significantly.
These conclusions demonstrate that DVAE.CIV can learn and disentangle the
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Table 2. The out-of-sample
√

εPEHE (mean ± std) over 30 synthetic datasets. The
lowest

√
εPEHE are highlighted in boldface and the runner-up results are underlined.

DVAE.CIV is in the runner-up results on the first two groups of synthetic datasets
and achieves the third smallest

√
εPEHE on the last four groups of synthetic datasets.

It’s worth mentioning that DVAE.CIV obtains the lowest standard deviation on all
synthetic datasets.

Samples 2k 6k 10k 20k

Estimators
√

εPEHE
√

εPEHE
√

εPEHE
√

εPEHE

ML-based DML 5.484 ± 0.382 5.584 ± 0.167 5.580 ± 0.128 5.609 ± 0.105

DRL 5.701 ± 0.408 5.773 ± 0.179 5.767 ± 0.156 5.815 ± 0.112

tree-based BART 4.791 ± 0.205 4.790 ± 0.083 4.789 ± 0.072 4.790 ± 0.060

CF 3.483 ± 0.319 3.500 ± 0.134 3.523 ± 0.120 3.554 ± 0.070

VAE-based CEVAE 6.093 ± 0.396 6.138 ± 0.175 6.107 ± 0.160 6.192 ± 0.112

TEDVAE 6.111 ± 0.392 6.138 ± 0.177 6.110 ± 0.158 6.167 ± 0.103

IV-based OrthIV 3.070 ± 0.718 2.798 ± 0.299 2.734 ± 0.256 2.795 ± 0.218

DMLIV 3.027 ± 0.682 2.767 ± 0.278 2.736±.0.268 2.794 ± 0.221

DeepIV 2.396± 0.054 2.412 ± 0.042 2.418± 0.060 2.425 ± 0.065

CFIVR 3.016 ± 0.658 2.421± 0.235 2.423 ± 0.351 2.203± 0.145

DVAE.CIV 2.448 ± 0.044 2.460 ± 0.037 2.452 ± 0.024 2.442 ± 0.025

representations of the CIV and its conditioning set for CACE estimation from
data with latent confounders.

In conclusion, DVAE.CIV achieves competitive performance compared to
state-of-the-art causal effect estimators while requiring the least prior knowledge
in ACE and CACE estimations from observational data with latent confounders.

4.3 Experiments on Three Real-World Datasets

We selected three real-world datasets with their empirical causal effect values
available and commonly used in the literature to assess the performance of
DVAE.CIV in ACE estimations. We did not conduct experiments on CACE
estimation on the three datasets since there were no ground truth or empirical
estimates of CACEs available for these datasets. The three real-world datasets
are SchoolingReturns [7], Cattaneo [8], and RHC [11]. These datasets are widely
utilized in the evaluation of either IV estimators or data-driven causal effect
estimators [13]. Note that SchoolingReturns has a nominated CIV, and the last
two datasets do not have a nominated IV for causal effect estimation. Thus, we
only compared the DVAE.CIV model with all the aforementioned estimators on
SchoolingReturns and the ML-based, tree-based, and VAE-based estimators on
both Cattaneo and RHC datasets.

SchoolingReturns. The dataset is from the national longitudinal survey of youth
(NLSY), a well-known dataset of US young employees, aged range from 24 to
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Table 3. Estimated ACEs by all methods on the three real-world datasets. We highlight
the estimated causal effects within the empirical interval on SchoolingReturns and
Cattaneo. We use ‘-’ to indicate that an IV-based estimator does not work on Cattaneo
and RHC since there is not a nominated IV. Note that all estimators on RHC obtain
a consistent result.

Samples SchoolingReturns Cattaneo RHC

ML-based DML –0.0227 –150.21 0.0244

DRL –0.0154 –164.32 0.0447

tree-based BART –0.0384 –172.53 0.0381

CF 0.1400 –232.33 0.0278

VAE-based CEVAE 0.02617 –221.23 0.0322

TEDVAE 0.0029 –228.65 0.0293

IV-based OrthIV 1.3180 – –

DMLIV 1.2806 – –

DeepIV 0.0328 – –

CFIVR 1.1510 – –

DVAE.CIV 0.1855 –224.79 0.0414

34 [7]. The dataset has 3,010 samples and 19 variables [7]. The variable of the
education of employees is the treatment variable, and the variable of the raw
wages in 1976 (in cents per hour) is the outcome variable. The dataset was
collected to study the causal effect of education on earnings. Note that the
variable of geographical proximity to a college, i.e. nearcollege is nominated to
be an IV by Card [7]. The empirical estimate ACE(W,Y ) = 0.1329 with 95%
confidence interval (0.0484, 0.2175) is from [34] and used as the reference value.

Cattaneo. The dataset has the birth weights of 4,642 singleton births with 20
variables ( [8]) that were collected from Pennsylvania, USA for the study of the
average of maternal smoking status during pregnancy (W ) on a baby’s birth
weight (Y , in grams). The dataset contains several covariates: mother’s age,
mother’s marital status, an indicator for the previous infant where the newborn
died, mother’s race, mother’s education, father’s education, number of prenatal
care visits, months since last birth, an indicator of firstborn infant and indicator
of alcohol consumption during pregnancy. The authors [8] found a strong nega-
tive effect of maternal smoking on the weights of babies, i.e., about 200g to 250g
lighter for a baby with a mother smoking during pregnancy.

Right Heart Catheterization (RHC). RHC is a real-world dataset obtained from
an observational study regarding a diagnostic procedure for the management
of critically ill patients [11]. The RHC dataset can be downloaded from the R
package Hmisc3. The dataset contains 2,707 samples with 72 covariates [11,25].

3 https://CRAN.R-project.org/package=Hmisc.

https://CRAN.R-project.org/package=Hmisc
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RHC was for investigating the adult patients who participated in the Study to
Understand Prognoses and Preferences for Outcomes and Risks of Treatments
(SUPPORT). The treatment variable W is whether a patient received an RHC
within 24 h of admission, and the outcome variable Y is whether a patient died
at any time up to 180 d after admission. Note that the empirical conclusion is
that applying RHC leads to higher mortality within 180 d than not applying
RHC [11].

Results. All results on the three real-world datasets are reported in Table 3. From
Table 3, we make the following observations: (1) the estimated causal effects by
DVAE.CIV and CF on SchoolingReturns and Cattaneo fall within the empiri-
cal intervals, while DML, DRL, and BART provide an opposite estimate to the
empirical value on SchoolingReturns; (2) as there is no nominated IV on Cat-
taneo and RHC, the estimators OrthIV, DMLIV, DeepIV, and CFIVR do not
work on both datasets; (3) all estimators, including DVAE.CIV, obtain a con-
sistent estimation on the RHC data, and they reach the same conclusion as the
empirical conclusion [11]. These observations further confirm that DVAE.CIV is
capable of removing the bias between W and Y in real-world datasets.

In conclusion, our simulation studies show the high performance of
DVAE.CIV in ACE and CACE estimations from data with latent confounders,
and our experiments on three real-world datasets further confirm the capability
of DVAE.CIV in ACE estimation from observational data.

Limitations. The performance of DVAE.CIV relies on the assumptions made
in this work and the assumptions on the VAE model. Note that the identifica-
tion of the VAE model [21] is an important issue for our proposed DVAE.CIV
model. When some of the assumptions or the VAE identification do not hold,
DVAE.CIV may obtain an inconsistent conclusion. To obtain a consistent con-
clusion, it would be better to conduct a sensitivity analysis [19,30] together with
DVAE.CIV to achieve a reliable conclusion in real-world applications.

5 Conclusion

It is a crucial challenge to deal with the bias caused by latent confounders in
conditional causal effect estimations from observational data. IV-based methods
allow us to remove such confounding bias in an effective way, but it relies on
a nominated IV/CIV based on domain knowledge. In this paper, we propose
an efficient approach, DVAE.CIV for conditional causal effect estimations from
observational data with latent confounders. The DVAE.CIV utilizes the advan-
tages of deep generative models for learning the representations of a CIV and
its conditioning set from data with latent confounders. We theoretically show
the soundness of the DVAE.CIV model. The effectiveness and potential of the
DVAE.CIV are demonstrated by extensive experiments. In simulation studies,
DVAE.CIV achieves competitive performance against state-of-the-art estimators
that require extra prior knowledge in ACE and CACE estimation from data with
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latent confounders. The experimental results on three real-world datasets show
the superiority of the DVAE.CIV model on ACE estimation over the existing
estimators.

Acknowledgments. This work has been supported by the Australian Research Coun-
cil (grant number: DP200101210 and DP230101122).
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Abstract. Testing for Conditional Independence (CI) is a fundamen-
tal task for causal discovery but is particularly challenging in mixed
discrete-continuous data. In this context, inadequate assumptions or dis-
cretization of continuous variables reduce the CI test’s statistical power,
which yields incorrect learned causal structures. In this work, we present
a non-parametric CI test leveraging k-nearest neighbor (kNN) methods
that are adaptive to mixed discrete-continuous data. In particular, a
kNN-based conditional mutual information estimator serves as the test
statistic, and the p-value is calculated using a kNN-based local permu-
tation scheme. We prove the CI test’s statistical validity and power in
mixed discrete-continuous data, which yields consistency when used in
constraint-based causal discovery. An extensive evaluation of synthetic
and real-world data shows that the proposed CI test outperforms state-
of-the-art approaches in the accuracy of CI testing and causal discovery,
particularly in settings with low sample sizes.

Keywords: Non-Parametric CI Testing · Causal Discovery · Mixed
Data

1 Introduction

Conditional Independence (CI) testing is at the core of causal discovery
(Sect. 1.1), but particularly challenging in many real-world scenarios (Sect. 1.2).
Therefore, we propose a data-adaptive CI test for mixed discrete-continuous data
(Sect. 1.3).

1.1 Conditional Independence in Causal Discovery

Causal discovery has received widespread attention as the knowledge of underly-
ing causal structures improves decision support within many real-world scenar-
ios [17,46]. For example, in discrete manufacturing, causal discovery is the key
to root cause analysis of failures and quality deviations, cf. [25].
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Causal structures between a finite set of random variables V = {X,Y, . . . }
are encoded in a Causal Graphical Model (CGM) consisting of a Directed Acyclic
Graph (DAG) G, and the joint distribution over the variables V, denoted by
PV, cf. [38,46]. In G, a directed edge X → Y depicts a direct causal mechanism
between the two respective variables X and Y , for X,Y ∈ V. Causal discovery
aims to derive as many underlying causal structures in G from observational data
as possible building upon the coincidence between the causal structures of G and
the CI characteristics of PV [46]. Therefore, constraint-based methods, such as
the well-known PC algorithm, apply CI tests to recover the causal structures,
cf. [8]. For instance, if a CI test states the conditional independence of variables
X and Y given a (possibly empty) set of variables Z ⊆ V \ {X,Y }, denoted by
X ⊥⊥Y | Z, then there is no edge between X and Y . Constraint-based methods
are flexible and exist in various extensions, e.g., to allow for latent variables or
cycles [42,46,47], or are used for causal feature selection [50]. Hence, they are
popular in practice [33].

1.2 Challenges in Practice

In principle, constraint-based methods do not make any assumption on the func-
tional form of causal mechanisms or parameters of the joint distribution. How-
ever, they require access to a CI oracle that captures all CI characteristics such
that selecting an appropriate CI test is fundamental and challenging [17,33].
In practice, the true statistical properties are mostly unknown such that inad-
equate assumptions, e.g., of parametric CI tests, yield incorrect learned causal
structures [46]. For example, the well-known partial Pearson’s correlation-based
CI test via Fisher’s Z transformation assumes that PV is multivariate Gaus-
sian [3,27]. Hence, the underlying causal mechanisms are assumed to be lin-
ear and conditional independence cannot be detected if the mechanisms are
non-linear. Further, the omnipresence of mixed discrete-continuous data, e.g.,
continuous quality measurements and discrete failure messages in discrete man-
ufacturing [20], impedes the selection of appropriate CI tests in real-world sce-
narios [19,33]. In this case, parametric models that allow for mixed discrete-
continuous data usually make further restrictions, such as conditional Gaussian
models assuming that discrete variables have discrete parents only [40]. Hence,
for simplification in practice, continuous variables are often discretized to use
standard CI tests such as Pearson’s χ2 test for discrete data, cf. [20,23,35], to
the detriment of the accuracy of the learned causal structures [12,40].

1.3 Contribution and Structure

In this work, we propose mCMIkNN1, a data-adaptive CI test for mixed discrete-
continuous data and its application to causal discovery. Our contributions are:

– We propose a kNN-based local conditional permutation scheme to derive a
non-parametric CI test using a kNN-based CMI estimator as a test statistic.

– We provide theoretical results on the CI test’s validity and power. In partic-
ular, we prove that mCMIkNN is able to control type I and type II errors.

1 Code and Appendix can be found on https://github.com/hpi-epic/mCMIkNN.

https://github.com/hpi-epic/mCMIkNN
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– We show that mCMIkNN allows for consistent estimation of causal structures
when used in constraint-based causal discovery.

– An extensive evaluation on synthetic and real-world data shows that mCMIkNN
outperforms state-of-the-art competitors, particularly for low sample sizes.

The remainder of this paper is structured as follows. In Sect. 2, we examine the
problem of CI testing and related work. In Sect. 3, we provide background on
kNN-based CMI estimation. In Sect. 4, we introduce mCMIkNN and prove theo-
retical results. In Sect. 5, we empirically evaluate the accuracy of our CI test
mCMIkNN compared to state-of-the-art approaches. In Sect. 6, we conclude our
work.

2 Conditional Independence Testing Problem

In this section, we provide a formalization of the CI testing problem (Sect. 2.1)
together with existing fundamental limits of CI testing (Sect. 2.2) before consid-
ering related work on CI testing for mixed discrete-continuous data (Sect. 2.3).

2.1 Problem Description

Let (X × Y × Z,B, PXY Z) be a probability space defined on the metric space
X ×Y ×Z with dimensionality dX +dY +dZ , equipped with the Borel σ-algebra
B, and a regular joint probability measure PXY Z . Hence, we assume that the dX ,
dY , and dZ-dimensional random variables X, Y , and Z take values in X , Y, and
Z according to the marginal mixed discrete-continuous probability distributions
PX , PY , and PZ . I.e., single variables in X, Y , or Z may follow a discrete, a
continuous, or a mixture distribution.

We consider the problem of testing the CI of two random vectors X and
Y given a (possibly empty) random vector Z sampled according to the mixed
discrete-continuous probability distribution PXY Z , i.e., testing the null hypoth-
esis of CI H0 : X ⊥⊥ Y |Z against the alternative hypothesis of dependence
H1 : X �⊥⊥Y |Z. Therefore, let (xi, yi, zi)n

i=1 be n i.i.d. observations sampled from
PXY Z such that we aim to derive a CI test Φn : X n × Yn × Zn × [0, 1] → {0, 1}
that rejects H0 if Φn = 1 given a nominal level α ∈ [0, 1].

2.2 Fundamental Limits of CI Testing

The general problem of CI testing is extensively studied, as it is a fundamental
concept beyond its application in constraint-based causal discovery [11]. In this
context, it is necessary to note that Shah and Peters [45] provided a no-free
lunch theorem for CI that, given a continuously distributed conditioning set Z,
it is impossible to derive a CI test that is able to control the type I error, via
for instance a permutation scheme, and has nontrivial power without additional
restrictions. But, under the restriction that the conditional distribution PX|Z is
known or can be approximated sufficiently, conditional permutation (CP) tests
can calibrate a test statistic guaranteeing a controlled type I error [4]. Further,
the recent work of Kim et al. [28] shows that the problem of CI testing is more
generally determined by the probability of observing collisions in Z.
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2.3 Related Work

We consider the problem of CI testing and its application in causal discovery. In
this context, constraint-based methods require CI tests that (R1) yield accurate
CI decisions, and (R2) are computationally feasible as they are applied hundreds
of times. Generally, CI testing for mixed discrete-continuous data can be cate-
gorized into discretization-based, parametric, and non-parametric approaches.

Discretization-Based Approaches: As CI tests for discrete variables are
well-studied, continuous variables are often discretized, cf. [23,35]. In this con-
text, commonly used CI tests for discrete data are Pearson’s X 2 and likelihood
ratio tests [13,39,46]. Although discretization simplifies the testing problem, the
resulting information loss yields a decreased accuracy [12,40], cf. (R1).

Parametric CI Testing: Postulating an underlying parametric functional
model allows for a regression-based characterization of CI that can be used
to construct valid CI tests. Examples are well-known likelihood ratio tests,
e.g., assuming conditional Gaussianity (CG) [1,44] or using multinomial logistic
regression models [48]. Another stream of research focuses on Copula models to
examine CI characteristics in mixed discrete-continuous data, where variables are
assumed to be induced by latent Gaussian variables such that CI can be deter-
mined by examining the correlation matrix of the latent variables model [9,10].
As these approaches require that the postulated parametric models hold, they
may yield invalid CI decisions if assumptions are inaccurate [46], cf. (R1).

Non-Parametric CI Testing: Non-parametric CI testing faces the twofold
challenge to, first, derive a test statistic from observational data without para-
metric assumptions, and second, derive the p-value given that the test statistic’s
distribution under H0 may be unknown. In continuous data, a wide range of
methods is used for non-parametric CI testing, as reviewed by Li and Fan [32].
For example, kernel-based approaches, such as KCIT [52], test for vanishing cor-
relations within Reproducing Kernel Hilbert Spaces (RKHS). Another example
is CMIknn from Runge [43], which uses a kNN-based estimator to test for a van-
ishing Conditional Mutual Information (CMI) in combination with a local per-
mutation scheme. The recent emergence of non-parametric CMI estimators for
mixed discrete-continuous data provides the basis for new approaches to non-
parametric CI testing. For example, the construction of adaptive histograms
derived following the minimum description length (MDL) principle allows for
estimating CMI from mixed discrete-continuous data [6,34,36,51]. In this case,
CMI can be estimated via discrete plug-in estimators as the data is adaptively
discretized according to the histogram with minimal MDL. Hence, the estimated
test statistic follows the common X 2 distribution, which allows for derivation via
Pearson’s X 2 test, aHisχ2, see [36]. However, MDL approaches suffer from their
worst-case computational complexity and weaknesses regarding a low number of
samples, cf. (R2). Another approach for non-parametric CMI estimation builds
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upon kNN methods, which are well-studied in continuous data, cf. [15,29,30],
and have recently been applied to mixed discrete-continuous data [16,37]. As the
asymptotic distribution of kNN-based estimators is unclear, it remains to show
that they can be used as a test statistic for a valid CI. In this context, it is worth
noticing that permutation tests yield more robust constraint-based causal dis-
covery than asymptotic CI tests, particularly for small sample sizes [49], cf. (R1).
Following this, we combine a kNN-based CMI estimator and a kNN based local
CP scheme (similar to Runge [43], which is restricted to the continuous case),
and additionally provide theoretical results on the test’s validity and power.

3 Background: KNN-Based CMI Estimation

In this section, we provide information on kNN-based CMI estimation for
mixed discrete-continuous data (Sect. 3.1). Further, we introduce an algorithmic
description of the estimator (Sect. 3.2) and recap theoretical results (Sect. 3.3).

3.1 Introduction to CMI Estimation

A commonly used test statistic is the Conditional Mutual Information (CMI)
I(X;Y |Z) as it provides a general measure of variables’ CI, i.e., I(X;Y |Z) = 0
if and only if X ⊥⊥ Y |Z, see [16,18,43]. Generally, I(X;Y |Z) is defined

as I(X;Y |Z) =
∫

log
(

dPXY |Z
d(PX|Z×PY |Z)

)

dPXY Z , where dPXY |Z
d(PX|Z×PY |Z) is the

Radon-Nikodym derivative of the joint conditional measure, PXY |Z , with
respect to the product of the marginal conditional measures, PX|Z × PY |Z .
Note the non-singularity of PXY Z ensures the existence of a product ref-
erence measure and that the Radon-Nikodym derivative is well-defined [37,
Lem. 2.1, Thm. 2.2]. Although well-defined, estimating CMI I(X;Y |Z) from
mixed discrete-continuous data is a particularly hard challenge [16,36,37]. Gen-
erally, CMI estimation can be tackled by expressing I(X;Y |Z) in terms of
Shannon entropies, i.e., I(X;Y |Z) = H(X,Y,Z) − H(X,Z) − H(Y,Z) + H(Z)
with Shannon entropy H(W ) for all cases W = XY Z,XZ, Y Z,Z, respectively,
cf. [18,36,37]. In the continuous case, the KSG technique from Kraskov et al. [30]
estimates the Shannon entropy H(W ) locally for every sample (wi)n

i=1 where
wi ∼ PW , i.e., estimating H(W ) via Ĥn(W ) = −∑n

i=1 log ̂fW (wi) by consider-
ing the k-nearest neighbors within the �∞-norm for every sample i = 1, ..., n to
locally estimate the density fW density of W = XY Z,XZ, Y Z,Z, respectively,
cf. [18,36,37]. For mixed discrete-continuous data, there is a non-zero probabil-
ity that the kNN distance is zero for some samples. In this case, Gao et al. [16]
extended the KSG technique by fixing the radius and using a plug-in estima-
tor that differentiates between mixed, continuous, and discrete points. Recently,
Mesner and Shalizi [37] extended this idea to derive a consistent CMI estimator
in the mixed discrete-continuous case.
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Algorithm 1. kNN-based CMI Estimator [37]
Input: Samples (x, y, z) := (xi, yi, zi)

n
i=1, and kNN-parameter kCMI

Output: The estimated value În(x; y|z) of the CMI I(X; Y |Z)
1: Let di,j(w) := ‖(wi) − (wj)‖∞ for w ⊆ (x, y, z), i, j = 1, . . . , n
2: for i = 1, . . . , n do
3: ρi := the kCMI-smallest distance in {di,j(x, y, z), j �= i} � Adapt kCMI acc. ρi

4: k̃i := |{(xj , yj , zj) : di,j(x, y, z) ≤ ρi, j �= i}|
5: nxz,i := |{(xj , zj) : di,j(x, z) ≤ ρi, j �= i}| � Local estimates
6: nyz,i := |{(yj , zj) : di,j(y, z) ≤ ρi, j �= i}|
7: nz,i := |{(zj : di,j(z) ≤ ρi, j �= i}|
8: ξi := ψ(k̃i) − ψ(nxz,i) − ψ(nyz,i) + ψ(nz,i)
9: end for

10: În(x; y|z) = 1
n

∑n
i=1 ξi � Global CMI estimation

11: return max(În(x; y|z), 0)

3.2 Algorithm for KNN-Based CMI Estimation

Algorithm 1 provides an algorithmic description of the theoretically examined
estimator În(X;Y |Z) developed by Mesner and Shalizi [37]. The basic idea is to
take the mean of Shannon entropies estimated locally for each sample i = 1, ..., n
considering samples j �= i, j = 1, ..., n, that are close to i according to the
�∞-norm, i.e., under consideration of the respective sample distance di,j(w) :=
‖(wi)− (wj)‖∞, i, j = 1, ..., n, of w = (wi)n

i=1 for all cases w = xyz, xy, yz, z (see
Algorithm 1, line 1). In this context, fixation of a kNN radius ρi used for local
estimation of Shannon entropies yields a consistent global estimator. Therefore,
for each sample i = 1, . . . , n, let ρi be the smallest distance between (xi, yi, zi)
and the kCMI-nearest sample (xj , yj , zj), j �= i, j = 1, . . . , n, and replace kCMI

with k̃i, the number of samples whose distance to (xi, yi, zi) is smaller or equal
to ρi (see Algorithm 1, line 3-4). For discrete or mixed discrete-continuous sam-
ples (xi, yi, zi)n

i=1 it holds that ρi = 0, and there may be more samples than
kCMI samples with zero distance. In this case, adapting the number of consid-
ered samples k̃i to all samples with zero distance prevents undercounting, which,
otherwise, yields a bias of the CMI estimator, see [37]. In case of continuous sam-
ples (xi, yi, zi)n

i=1, there are exactly k̃i = kCMI samples within the kCMI-nearest
distance with probability 1. The next step estimates the Shannon entropies
required by the 3H-principle locally for each sample i, i = 1, . . . , n. Therefore, let
nxz,i, nyz,i, and nz,i be the numbers of k̃i-nearest samples within the distance
of ρi in the respective subspace XZ, Y Z, and Z (see Algorithm 1, lines 5-
7). Fixing the local kNN distance ρi, using the �∞-norm, simplifies the local
estimation as most relevant terms for CMI estimation using the 3H-principle
cancel out, i.e., ξi := − ̂fXY Z(xi, yi, zi) + ̂fXZ(xi, zi) + ̂fY Z(yi, zi) − ̂fZ(zi) =
ψ(k̃i)−ψ(nxz,i)−ψ(nyz,i)+ψ(nz,i), with digamma function ψ (see Algorithm 1,
line 8) [16,37]. Then, the global CMI estimate În(x; y|z) is the average of the
local CMI estimates ξi of each sample (xi, yi, zi)n

i=1, and the positive part is
returned, as CMI or MI are non-negative (see Algorithm 1, line 10-11).
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3.3 Properties of KNN-Based CMI Estimation

We recap the theoretic results of În(X,Y |Z) proved by Mesner and Shal-
izi [37]. Under mild assumptions, În(x; y|z) is asymptotically unbiased, see [37,
Thm. 3.1].

Corollary 1 (Asymptotic-Unbiasedness of În(x; y|z) [37, Thm. 3.1])
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z . Assume

(A1) PXY |Z is non-singular such that f ≡ dPXY |Z
d(PX|Z×PY |Z) is well-defined, and

assume, for some C > 0, f(x, y, z) < C for all (x, y, z) ∈ X × Y × Z;
(A2) {(x, y, z) ∈ X ×Y ×Z : PXY Z((x, y, z)) > 0} countable and nowhere dense

in X × Y × Z;
(A3) kCMI = kCMI,n → ∞ and kCMI,n

n → 0 as n → ∞;

then EPXY Z

[
În(x; y|z)

]
→ I(X;Y |Z) as n → ∞.

While (A1) seems rather technical, checking for non-singularity is helpful for
data analysis by checking sufficient conditions. Given non-singularity, assump-
tions (A2) and (A3) are satisfied whenever PXY Z is (i) (finitely) discrete, (ii)
continuous, (iii) some dimensions are (countably) discrete and some are continu-
ous, and (iv) a mixture of the previous cases, which covers most real-world data.
For more details on the assumptions, see Appendix A.

We prove that the CMI estimator În(X;Y |Z) described in Algorithm 1 is
consistent.

Corollary 2 (Consistency of În(x; y|z))
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z and assume (A1)-(A3) of Cor. 1
hold. Then, for all ε > 0, limn→∞ PPXY Z

(∣
∣
∣În(x; y|z) − I(X;Y |Z)

∣
∣
∣ > ε

)
= 0.

Proof. Recap that În(x; y|z) has asymptotic vanishing variance [37, Thm. 3.2],
i.e., lim

n→∞ Var(În(x; y|z)) = 0, and is asymptotically unbiased, see Cor. 1 or [37,

Thm. 3.1]. The consistency of În(x; y|z) follows from Chebyshev’s inequality. �

Therefore, the kNN-based estimator described in Algorithm 1 serves as a valid
test statistic for H0 : X ⊥⊥Y |Z vs. H1 : X �⊥⊥Y |Z. Note that, În(x; y|z) is biased
towards zero for high-dimensional data with fixed sample size, i.e., it suffers from
the curse of dimensionality, see [37, Thm. 3.3].

Corollary 3 (Dimensionality-Biasedness of În(x; y|z) [37, Thm. 3.3])
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z and assume (A1)-(A3) of Cor. 1

hold, if the entropy rate of Z is nonzero, i.e., lim
dZ→∞

1
dZ

H(Z) �= 0, then, for fixed

dimensions dX and dY , PPXY Z

(
În(x; y|z) = 0

)
→ 1 as dZ → ∞.

Hence, even with asymptotic consistency, one must pay attention when estimat-
ing În(X;Y |Z) in high-dimensional settings, particularly for low sample sizes.
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4 mCMIkNN: Our Approach on Non-Parametric CI Testing

In this section, we recap the concept of Conditional Permutation (CP) schemes
for CI testing (Sect. 4.1). Then, we introduce our approach for kNN-based CI
testing in mixed discrete-continuous data, called mCMIkNN (Sect. 4.2). We prove
that mCMIkNN is able to control type I and type II errors (Sect. 4.3). Moreover, we
examine mCMIkNN-based causal discovery and prove its consistency (Sect. 4.4).

4.1 Introduction to Conditional Permutation Schemes

Using permutation schemes for non-parametric independence testing between
two variables X and Y has a long history in statistics, cf. [5,22,31]. The
basic idea is to compare an appropriate test statistic for independence calcu-
lated from the original samples (xi, yi)n

i=1 against the test statistics calculated
Mperm times from samples (xπm(i), yi)n

i=1 for a permutation πm of {1, . . . , n},
m = 1, . . . , Mperm, i.e., where samples of X are randomly permuted such that
H0 : X ⊥⊥ Y holds. In the discrete case, a permutation scheme to test for CI,
i.e., for H0 : X ⊥⊥ Y |Z, can be achieved by permuting X for each realization
Z = z to utilize the unconditional X ⊥⊥Y |Z = z. In contrast, testing for CI in
continuous or mixed discrete-continuous data is more challenging [45], as sim-
ply permuting X without considering the confounding effect of Z may yield
very different marginal distributions, hence, suffers in type I error control [4,28].
Therefore, Conditional Permutation (CP) schemes aim to compare a test statis-
tic estimated from the original data (xi, yi, zi)n

i=1, with test statistics estimated
from, conditionally on Z, permuted samples (xπm(i), yi, zi)n

i=1, m = 1, ...,Mperm

to ensure H0 : X ⊥⊥ Y |Z. Then, the Mperm + 1 samples (xi, yi, zi)n
i=1 and

(xπm(i), yi, zi)n
i=1, m = 1, ...,Mperm are exchangeable under H0, i.e., are drawn

with replacement such that the p-value can be calculated in line with com-
mon Monte Carlo simulations [4,28]. This requires either an approximation of
PX|Z either based upon model assumptions to simulate PX|Z [4], or using an
adaptive binning strategy of Z such that permutations can be drawn for each
binned realization Z = z [28] (both focusing on the continuous case). To provide
a data-adaptive approach valid in mixed discrete-continuous data without too
restrictive assumptions, cf. (R1), which is computationally feasible, cf. (R2), we
propose a local CP scheme leveraging ideas of kNN-based methods, cf. Section 3.
In particular, our local CP scheme draws samples (xπm(i), yi, zi)n

i=1 such that (I)
the marginal distributions are preserved, and (II) xi is replaced by xπm(i) only
locally regarding the kperm-nearest distance σi in the space of Z. Intuitively, the
idea is similar to common conditional permutation schemes in the discrete case,
where entries of the variable X are permuted for each realization Z = z, but
considering local permutations regarding the neighborhood of Z = z.

4.2 Algorithm for KNN-Based CI Testing

Algorithm 2 gives an algorithmic description of our kNN-based local CP scheme
for non-parametric CI testing in mixed discrete-continuous data.
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Algorithm 2. mCMIkNN: kNN-based non-parametric CI Test
Input: Samples (x, y, z) := (xi, yi, zi)

n
i=1, and parameters kCMI , kperm, and Mperm

Output: The estimated p-value pperm,n for H0 : X ⊥⊥Y | Z
1: În := În(x; y|z)
2: for i = 1, . . . , n do � Neighbors within kpermNN-distance σi in Z
3: σi := kperm smallest distance in {‖(zi) − (zj)‖∞, j �= i, for i, j = 1, ..., n}
4: z̃i := {j : ‖(zi) − (zj)‖∞ ≤ σi, j �= i}
5: end for
6: for m = 1, . . . , Mperm do � Local CP scheme
7: πi

m := permutation of z̃i, i = 1, . . . , n
8: πm := π1

m ◦ · · · ◦ πn
m;

9: Î
(m)
n := În

(
x(m); y|z

)
where x(m) := (xπm(i))

n
i=1

10: end for
11: pperm,n := 1

1+Mperm

(
1 +

∑Mperm

m=1 1{Î
(m)
n ≥ În}

)
� Monte Carlo p-value

12: return pperm,n

First, the sample CMI În := În(x; y|z) is estimated from the original sam-
ples via Algorithm 1 with parameter kCMI (see Algorithm 2, line 1). To receive
local conditional permutations for each sample (xi, yi, zi)n

i=1, the kperm-nearest
neighbor distance σi w.r.t. the �∞-norm of the subspace of Z is considered.
Hence, z̃i is the respective set of indices j �= i, j = 1, ..., n of points with dis-
tance smaller or equal to σi in the subspace of Z (see Algorithm 2, lines 3-4).
According to a Monte Carlo procedure, samples are permuted Mperm times (see
Algorithm 2, line 6). For each m = 1, . . . , Mperm, the local conditional permu-
tation πi

m, i = 1, . . . , n, is a random permutation of the index set of z̃i such
that the global permutation scheme πm of the samples’ index set {1, . . . , n} is
achieved by concatenating all local permutations, i.e., πm := π1

m ◦ ... ◦ πn
m (see

Algorithm 2, lines 7-8). In the case of discrete data, z̃i contains all indices of
samples j with distance ρi = 0 to zi, i.e., the permutation scheme coincides
with discrete permutation tests where permutations are considered according to
Z = zi. In the continuous case, z̃i contains exactly the, in space Z, kperm-nearest
neighbors’ indices and the global permutation scheme approximates PX|Z=zi

locally within kperm-NN distance σi of zi. Therefore, local conditional permuted
samples (xπm(i), yi, zi) are drawn by shuffling the values of xi according to πm

and respective CMI values Î
(m)
n := În

(
x(m); y|z)

are estimated using Algorithm1
(see Algorithm 2, line 9). Hence, by construction, (xπm(i), yi, zi) are drawn under
H0 : X⊥⊥Y |Z such that the p-value pperm,n can be calculated according to a
Monte Carlo scheme comparing the samples’ CMI value În with the H0 CMI
values Î

(m)
n (see Algorithm 2, line 11).

We define the CI test mCMIkNN as Φperm,n := 1{pperm,n ≤ α} for the pperm,n

returned by Algorithm 2 and, hence, reject H0 : X ⊥⊥ Y |Z if Φn = 1. The
computational complexity of mCMIkNN is determined by the kNN searches in
Algorithms 1 and 2, which is implemented in O(n × log(n)) using k-d-trees. For
more details on assumptions, parameters, and computational complexity, see
Appendix A.
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4.3 Properties of mCMIkNN

The following two theorems show that mCMIkNN is valid, i.e., is able to control
type I errors, and has non-trivial power, i.e., is able to control type II errors.

Theorem 1 (Validity: Type I Error Control of Φperm,n)
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z , and assume (A1), (A2), and

(A4) kperm = kperm,n → ∞ and kperm,n

n → 0 as n → ∞,

hold, then Φperm,n with p-value estimated according to Algorithm 2 is able to
control type I error, i.e., for any desired nominal value α ∈ [0, 1], when H0 is
true, then

lim
n→∞ EPXY Z

[Φperm,n] ≤ α. (1)

Note that this holds true independent of the test statistic Tn : X n × Yn ×
Zn → R. The idea of the proof is to bound the type I error using the total
variation distance between the samples’ conditional distribution Pn

X|Z and the

conditional distribution P̃n
X|Z , approximated by the local CP scheme to simulate

H0 and show that it vanishes for n → ∞. For a detailed proof, see Appendix B.

Theorem 2 (Power: Type II Error Control of Φperm,n)
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z , and assume (A1) - (A4) hold.
Then Φperm,n, with p-value estimated according to Algorithm 2, is able to control

type II error, i.e., for any desired nominal value β ∈
[

1
1+Mperm

, 1
]
, when H1 is

true, then
lim

n→∞ EPXY Z
[1 − Φperm,n] = 0. (2)

Hence, mCMIkNN’s power is naturally bounded according to Mperm, i.e., 1 − β ≤
1− 1

1+Mperm
. The proof follows from the asymptotic consistency of În(x; y|z) and

that the local CP scheme allows asymptotic consistent approximating PX|Z . For
a detailed proof, see Appendix B. Therefore, our work is in line with the result of
Shah and Peters [45] and Kim et al. [28] by demonstrating that, under the mild
assumptions (A1) and (A2) which allow approximating PX|Z , one can derive a
CI test that is valid (see Thm. 1), and has non-trivial power (see Thm. 2).

4.4 mCMIkNN-based Constraint-based Causal Discovery

We examine the asymptotic consistency of mCMIkNN-based causal discovery, in
particular, using the well-known PC algorithm [46]. Note that constraint-based
methods for causal discovery cannot distinguish between different DAGs G in
the same equivalence class. Hence, the PC algorithm aims to find the Completed
Partially Directed Acyclic Graph (CPDAG), denoted with GCPDAG, that repre-
sents the Markov equivalence class of the true DAG G. Constraint-based methods
apply CI tests to test whether X ⊥⊥Y |Z for X,Y ∈ V with dX = dY = 1, and
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Z ∈ V \ {X,Y } iteratively with increasing dZ given a nominal value α to esti-
mate the undirected skeleton of G and corresponding separation sets in the first
step. In a second step, orienting as many of the undirected edges through the
repeated application of deterministic orientation rules yields ĜCPDAG(α) [26,46].

Theorem 3 (Consistency of mCMIkNN-based Causal Discovery)
Let V be a finite set of variables with joint distribution PV and assume (A1) -
(A4) hold. Further, assume the general assumptions of the PC algorithm hold,
i.e., causal faithfulness and causal Markov condition, see [46]. Let ĜCPDAG,n(αn)
be the estimated CPDAG of the PC algorithm and GCPDAG the CPDAG of the
true underlying DAG G. Then, for αn = 1

1+Mperm,n
with Mperm,n → ∞ as n→ ∞,

lim
n→∞ PPV

(
ĜCPDAG,n(αn) = GCPDAG

)
= 1. (3)

The idea of the proof is to consider wrongly detected edges due to incorrect
CI decisions and show that they can be controlled asymptotically. For detailed
proof and more information on causal discovery, see Appendix C. As the upper
bound on the errors is general for constraint-based methods, the consistency
statement of Thm. 3 holds for modified versions of the PC algorithm, e.g., its
order-independent version PC-stable [8], too. Hence, mCMIkNN for constraint-
based causal discovery allows consistently estimating the GCPDAG for n→∞.

5 Empirical Evaluation

We consider the mixed additive noise model (MANM) (Sect. 5.1) to synthetically
examine mCMIkNN’s robustness (Sect. 5.2). Further, we compare mCMIkNN’s empir-
ical performance against state-of-the-art competitors regarding CI decisions
(Sect. 5.3), causal discovery (Sect. 5.4), and in a real-world scenario (Sect. 5.5).

5.1 Synthetic Data Generating

We generate synthetic data according to the MANM [24]. Hence, for all
X ∈ V, let X be generated from its J discrete parents Pdis(X) ⊆ V \ X,
where J := #Pdis(X), its K continuous parents Pcon(X) ⊆ V \ X, where
K := #Pcon(X), and (continuous or discrete) noise term NX according to
X = 1

J

∑
j=1,...,J fj(Zj) + (

∑
k=1,...,K fk(Zk)) mod dX + NX with appropriately

defined functions fj , fk between Z and R. Hence, by construction (A1) and (A2)
hold true for all combinations of X,Y,Z ⊆ V. For experimental evaluation, we
generate CGMs that either directly induce CI characteristics between variables
X and Y conditioned on Z = {Z1, . . . , ZdZ

}, dZ between 1 and 7, (see Sect. 5.2
- 5.3) or are randomly generated with between 10 to 30 variables and varying
densities between 0.1 and 0.4 (see Sect. 5.4). Moreover, we consider different
ratios of discrete variables between 0 and 1. We consider the cyclic model with
dX ∈ {2, 3, 4} for discrete X, and continuous functions that are equally drawn
from {id(·), (·)2, cos(·)}. Note that we scale the parents’ signals to reduce the
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noise for subsequent variables avoiding high varsortability [41], and max-min
normalize all continuous variables. For more information on the MANM and all
parameters used for synthetic data generation, see Appendix D.1.

5.2 Calibration and Robustness of mCMIkNN

We provide recommendations for calibrating mCMIkNN and show its robustness,
i.e., the ability to control type I and II errors in the finite case. Therefore,
we restrict our attention to two simple CGMs G with variables V = (X,Y,
Z1, . . . , ZdZ

}, where first, X and Y have common parents Z = {Z1, . . . , ZdZ
} in

G, i.e., H0 : X ⊥⊥ Y |Z, and second, there exists an additional edge connecting
X and Y in G, i.e., H1 : X �⊥⊥Y |Z. Accordingly, we generate the data using the
MANM model with parameters described in Sect. 5.1.

Fig. 1. Type I and II error rates of mCMIkNN for different dimensions dZ ∈ {1,3,5,7}
of Z (smaller better) given varying sample sizes n for settings with different discrete
variable ratios from dvr=0.0, i.e., continuous (left), to dvr=1.0, i.e., discrete (right).

Calibration: We evaluate the accuracy of CI decisions for different combina-
tions of kCMI and kperm by comparing the area under the receiver operating curve
(ROC AUC), as it provides a balanced measure of type I and type II errors. In
particular, we examine different combinations of kCMI and kperm in settings with
varying dZ ∈ {1, 3, 5, 7}, discrete variable ratios dvr ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
and sample sizes n ranging from 50 to 1 000. Note, we set α = 0.05 and
Mperm = 100, cf. [14]. We find that small values of kCMI and kperm are suf-
ficient to calibrate the CI test while not affecting accuracy much for the finite
case, such that we set kCMI = 25 and kperm = 5 in the subsequent experiments.
Note that Appendix D.2 provides detailed evaluation results. Moreover, for more
information on all parameters, see Appendix A.

Robustness: We evaluate mCMIkNN’s robustness regarding validity and power
in the finite case by examining the type I and II error rates as depicted in Fig. 1.
In particular, we see that mCMIkNN is able to control type I errors for all discrete
variable ratios dvr and sizes of the conditioning sets dZ (cf. Appendix D.3).
Moreover, the type II error rates decrease for an increasing number of samples
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n. Hence, mCMIkNN achieves non-trivial power, particularly for small sizes of the
conditioning sets dZ . In this context, higher type II errors in the case of higher
dimensions dZ point out that mCMIkNN suffers from the curse of dimensionality,
cf. Cor. 3. In summary, the empirical results are in line with the theoretical
results on the asymptotic type I and II error control, cp. Thm. 1 and Thm. 2.

5.3 Conditional Independence Testing

Next, we compare mCMIkNN’s empirical performance to state-of-the-art CI tests
valid for mixed discrete-continuous data. We chose a likelihood ratio test assum-
ing conditional Gaussianity (CG) [1], a discretization-based approach, where we
discretize continuous variables before applying Pearson’s χ2 test (discχ2), a
non-parametric CI test based upon adaptive histograms (aHistχ2) [36], and a
non-parametric kernel-based CI test (KCIT) [52]. In this experiment, we again
consider the two CGMs used for the calibration in Sect. 5.2 and examine the
respective ROC AUC scores from 20 000 CI decisions (α = 0.01) in Fig. 2.

Fig. 2. ROC AUC scores (higher better) of 20 000 CI decisions of the CI tests mCMIkNN,
CG, KCIT, discχ2, and aHistχ2 with varying sample sizes n (left), dimensions of the
conditioning sets dZ (center), and ratios of discrete variables dvr (right) (Note, we lim-
ited the execution time to 10min per CI test (Approx. 4 900 runs of aHistχ2 exceeded
this time. Thus, aHistχ2 is excluded for causal discovery).).

We compare the CI test’s performance for various sample sizes (Fig. 2 left),
sizes of conditioning sets dZ (center), and ratios of discrete variables (right).
While the ROC AUC scores of all CI tests increase as n grows (left), mCMIkNN
outperforms all competitors, particularly for small sizes, e.g., n ≤ 500. With
increasing sample sizes, the performance of KCIT catches up to ROC AUC scores
of mCMIkNN, cf. n = 1000. For an increasing size of the conditioning sets dZ

(center), we observe that all methods suffer from the curse of dimensionality,
while mCMIkNN achieves higher ROC AUC scores than the competitors. More-
over, mCMIkNN achieves the highest ROC AUC independent of the ratio of dis-
crete variables dvr (right), only beaten by KCIT for some dvr’s. For a detailed
evaluation and an examination of type I and II errors, see Appendix D.4.
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5.4 Causal Discovery

We evaluate the consistency of causal discovery using the PC-stable algorithm
from [8] (α = 0.05 with Mperm = 100) to estimate GCPDAG of the DAG G gener-
ated according to Sect. 5.1. We examine the F1 scores [7] of erroneously detected
edges in the skeletons of ĜCPDAG,n(0.05) estimated with PC-stable using the
respective CI tests in comparison to the true skeleton of G, see Fig. 3. While
F1 grows for all methods as n increases, mCMIkNN outperforms the competitors
(left). Further, mCMIkNN achieves the highest F1 scores for high discrete variables
ratios (center left). In this context, F1 scores are balanced towards type I errors,
crucial in causal discovery. Further, constraint-based causal discovery requires
higher sample sizes for consistency due to the multiple testing problem [17,46].
All methods suffer from the curse of dimensionality, i.e., a decreasing F1 score for
increasing densities (center right) and numbers of variables (right) which yields
larger conditioning sizes dZ . For more information, see Appendix D.6.

Fig. 3. F1 scores (higher better) of PC-stable with CI tests mCMIkNN, CG, KCIT, and
discχ2 computed over 3 000 CGMs for varying the sample sizes n, discrete variable
ratios dvr, densities of CGMs, and numbers of variables N (left to right)2.

5.5 Real-World Scenario: Discrete Manufacturing

Finally, we apply mCMIkNN in causal discovery on real-world manufacturing data.
Therefore, we consider a simplified discrete manufacturing process whose under-
lying causal structures are confirmed by domain experts. In particular, we con-
sider quality measurements Qcon and rejections Rcon within a configuration
phase used for adjustment of the processing speed Scon to reduce the num-
ber of rejected goods Rprod within a production phase. Besides these causal
structures for configuration, rejections within the production phase Rprod vary
given the corresponding locality within one of nine existing units U . In contrast
to commonly applied discretization-based approaches, cf. [20], an experimental
evaluation shows that mCMIkNN covers more of the CI characteristics present in
the mixed discrete-continuous real-world data, hence, yields better estimates of
causal structures when used in constraint-based causal discovery, F1 = 0.57 for
mCMIkNN vs. F1 = 0.4 for discχ2. For additional details, see Appendix E.
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6 Conclusion

We addressed the problem of testing CI in mixed discrete-continuous data and
its application in causal discovery. We introduced the non-parametric CI test
mCMIkNN, and showed its validity and power theoretically and empirically. We
demonstrated that mCMIkNN outperforms state-of-the-art approaches in the accu-
racy of CI decisions, particularly for low sample sizes.

While mild assumptions simplify the application of mCMIkNN in practice, we
cannot derive bounds on type I and II error control for the finite case as provided
in [28], but the empirical results show that mCMIkNN is robust in the finite case,
too. These bounds can be achieved by considering stronger assumptions, such
as lower bounds on probabilities for discrete values, cf. [2,28], or smoothness
assumptions for continuous variables, cf. [4,53]. Further, the current implemen-
tation of mCMIkNN is restricted to metric spaces. To extend the implementation to
categorical variables, an isometric mapping into the metric space can be exam-
ined, cf. [37]. Note that kNN methods are not invariant regarding the scaling of
variables, and their computational complexity yields long runtimes, particularly
for large sample sizes. For an evaluation of runtimes, see Appendix D.5. We
consider parallel execution strategies to speed up the computation, e.g., paral-
lelizing the execution of Mperm permutations in Algorithm 2, cf. [43], or using
GPUs [21].
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Abstract. Hate speech detection refers to the task of detecting hateful content
that aims at denigrating an individual or a group based on their religion, gen-
der, sexual orientation, or other characteristics. Due to the different policies of
the platforms, different groups of people express hate in different ways. Further-
more, due to the lack of labeled data in some platforms it becomes challenging
to build hate speech detection models. To this end, we revisit if we can learn a
generalizable hate speech detection model for the cross platform setting, where
we train the model on the data from one (source) platform and generalize the
model across multiple (target) platforms. Existing generalization models rely on
linguistic cues or auxiliary information, making them biased towards certain tags
or certain kinds of words (e.g., abusive words) on the source platform and thus not
applicable to the target platforms. Inspired by social and psychological theories,
we endeavor to explore if there exist inherent causal cues that can be leveraged
to learn generalizable representations for detecting hate speech across these dis-
tribution shifts. To this end, we propose a causality-guided framework, PEACE,
that identifies and leverages two intrinsic causal cues omnipresent in hateful con-
tent: the overall sentiment and the aggression in the text. We conduct extensive
experiments across multiple platforms (representing the distribution shift) show-
ing if causal cues can help cross-platform generalization.

Keywords: Causal Inference · Generalizability · Hate-Speech Detection

1 Introduction

Warning: this paper contains contents that may be offensive or upsetting.
Social media sites have served as global platforms for users to express and freely

share their opinions. However, some people utilize these platforms to share hateful con-
tent targeted toward other individuals or groups based on their religion, gender, or other
characteristics resulting in the generation and spread of hate speech. Failing to mod-
erate online hate speech has shown to have negative impacts in real world scenarios,
ranging from mass lynchings to global increase in violence toward minorities [19].
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Thus, building hate speech detection models has become a necessity to limit the spread
of hatred. Recent years have witnessed the development of these models across disci-
plines [2,13,27,39].

Hate speech varies based on the platform and the specific targets of the speech,
influenced by factors such as social norms, cultural practices, and legal frameworks.
Platforms with strict regulation policies may lead to users expressing hate in subtle ways
(e.g., sarcasm), while platforms with lenient policies may have more explicit language.
Collecting large labeled datasets for hate speech detection models is challenging due to
the emotional burden of labeling and the requirement for skilled annotators [21]. One
solution is to train a generalizable model under a cross-platform setting, leveraging the
labeled data from other platforms.

Recent works developed to improve the cross-platform performance utilize either
linguistic cues such as vocabulary [29] or Parts-Of-Speech (POS) tags [22]. Another
direction leverages datasets with auxiliary information such as implications of vari-
ous hate posts [17] or the groups or individuals attacked in the hate post [15]. Although
effective, these methods suffer from shortcomings, such as linguistic methods form spu-
rious correlations towards certain POS tags (e.g., adjectives and adverbs) or a particular
category of words (e.g., abusive words). In addition, methods that utilize auxiliary infor-
mation (e.g., implications of the post or the target(s)) are not extendable as the auxiliary
information may not be available for large datasets or different platforms.

In contrast to previous approaches, we contend that identifying inherent causal cues
is necessary for developing effective cross-platform hate speech detection models that
can distinguish between hateful and non-hateful content. Since causal cues are immune
to distribution shifts [5], leveraging them for learning the representations can aid in bet-
ter generalization. Various studies in social sciences and psychology verify the existence
of several cues that can aid in detecting hate [4,9,18,34,44] such as the hater’s prior
history, the conversational thread, overall sentiment, and aggression in the text. How-
ever, when dealing with a cross-platform setting, several cues may not be accessible. For
instance, not all platforms allow access to user history or the entire conversation thread.
Thus, we propose to leverage two causal cues namely, the overall sentiment and the
aggression in the text. Both these cues can be measured easily with the aid of aggres-
sion detection tasks [3] and sentiment analysis task [43]. Moreover, both aggression
and sentiment are tightly linked to hate speech. For instance, due to the anonymity on
online platforms, users adopt more aggressive behavior when expressing hatred towards
someone [31]. Thus, the aggression in the content could act as a causal cue to indicate
hate. Similarly, hateful content is meant to denigrate someone. Thus, the sentiment also
serves as a causal cue [30].

To this end, we propose a novel causality-guided framework, namely, Platform-
indEpendent cAusal Cues for generalizable hatE speech detection PEACE1, that lever-
ages the overall sentiment and the aggression in the text, to learn generalizable repre-
sentations for hate speech detection across different platforms. We summarize our main
contributions as follows:

– We identify two causal cues, namely, the overall sentiment and the aggression in the
text content, to learn generalizable representations for hate speech detection.

1 The code for PEACE can be accessed from: https://github.com/paras2612/PEACE.

https://github.com/paras2612/PEACE
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– We propose a novel framework, namely, PEACE consisting of multiple modules
to capture the essential latent features helpful for predicting sentiment and aggres-
sion. Finally, we utilize these features and the original content to learn generalizable
representations for hate speech detection.

– Experimental results on five different platforms demonstrate that PEACE achieves
state-of-the-art performance compared with vital baselines, and further experiments
highlight the importance of each causal cue and interpretability of PEACE.

2 Related Work

Social media provides a vast and diverse medium for users to interact with each other
effectively and share their opinions. Unfortunately, however, a large share of users
exploits these platforms to spread and share hateful content mainly directed toward
an individual or a group of people. Considering the massive volume of online posts,
it is impractical to moderate them manually. To address this shortcoming, researchers
have proposed various methods ranging from lexical-based approaches [14,22,38] to
deep learning-based approaches [24,32,36].

However, these models have been shown to possess poor generalization capabili-
ties. Hate speech on social media is highly volatile and is constantly evolving. A hate
speech detection model that fails to generalize well may exhibit poor detection skills
when dealing with a new topic of hate [10,26] or when dealing with different styles of
expressing hate [1,8], thus making it critical to develop generalizable hate speech detec-
tion models. Over recent years there has been an increase in developing generalizable
models.

Generalizable hate speech detection methods can be broadly classified into two
parts, namely models that leverage auxiliary information such as implications of hate
posts [17], information of the dataset annotators [41], or user attributes [36]. For
instance, the authors of the work [17] proposed a generalizable model for implicit hate
speech detection that utilizes the implications of hateful posts and learns contrastive
pairs for a more generalizable representation of the hate content. Similarly, the authors
of the work [41] argue that when dealing with subjective tasks such as hate speech
detection, it is hard to achieve agreement amongst annotators. To this end, they propose
leveraging the annotator’s characteristics and the ground truth label during the training
to learn better representations and improve hate speech detection. Unlike annotators’
information, the authors of [36] trained a bert model with users’ profiles and related
social environment and generated tweets to infer better representations for hate speech
detection. Although these models have improved generalizability, the auxiliary infor-
mation utilized may not be easily accessible and challenging to get when dealing with
cross-platform settings.

Since language models are trained on large corpora, they exhibit some generaliza-
tion prowess [35]. However, the generalization can be improved by finetuning these
models on datasets related to a specific downstream task. Thus, the second category
leverages language models such as BERT [11] and finetuning them on large hate speech
corpora [6,23]. For instance, the authors of [6] finetuned a BERT model on approxi-
mately 1.6 million hateful data points from Reddit and generated HateBERT, a state-of-
the-art model for hate speech detection. Similarly, the authors of [23] finetuned BERT
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for explainable hate speech detection. Aside from these works, some methods focus on
leveraging lexical cues such as vocabulary used [33], emotion words, and different POS
tags in the content [22], the target-specific keyphrases [12].

Although these methods have been shown to improve hate speech detection capa-
bilities, these require large labeled corpora for finetuning language models, which may
not be feasible in the real-world setting as the number of posts generated in a moment
is extremely large or rely on lexical features which may not aid as a lot of the social
media posts are filled with grammatical inconsistencies (such as misspelled words). In
this work, inspired by works in social and psychological fields, we leverage inherent
characteristics readily available in the text to learn generalizable representations, such
as the aggression and the overall sentiment of the text.

3 Methodology

This section describes the methodology behind our PEACE framework. As shown in
Fig. 1 the framework consists of two major components: (i) a cue extractor component
and (ii) a hate detector component. The cue extractor component extracts the proposed
innate cues, sentiment, and aggression. Moreover, this component is responsible for
navigating the hate detector component toward learning a cross-platform generalized
representation for hate speech detection. Consequently, the hate detector component
classifies a given input to hate or non-hate classes while attending to the causal guidance
of the cue extractor. In the subsequent sections, we discuss the cue extractor and hate
detector components in detail.

Fig. 1. Proposed framework architecture for PEACE. The pre-trained sentiment and aggression
modules guide the representation learning process to ensure generalizability.
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3.1 Causal Cue Extraction

We propose utilizing sentiment and aggression as two inherent causal cues for learn-
ing generalizable representations for better hate speech detection. Therefore, the cue
extractor consists of two modules, one for extracting sentiment and one for aggression.
Given an input text X = (x1, x2, ..., xk), the purpose of the cue extractor model is to
generate an attention vector Ck×1 where k is the input sequence length. And here, the
vector Ck×1 should represent an accumulation of sentiment and aggression score for
each token in the sequence X , i.e., for a given token in the input X , Ck×1 contains
how vital that token is towards the overall input’s sentiment and/or aggression. We will
first discuss the architecture of each cue module (sentiment and aggression) and then
elaborate on how the attention vector Ck×1 is generated.

Sentiment Module. The sentiment module is a transformer encoder stack with
n encoders that have learned a function sγ such that given an input text X =
(x1, x2, ..., xk), it can classify the sentiment of X , i.e., this module is a pre-trained
transformer-based large language model finetuned for the sentiment detection down-
stream task where given an input text X , it predicts the sentiment label y (positive,
neutral, negative), y = sγ(X).

Aggression Module. Similarly, the aggression module is also a transformer encoder
stack with n encoders that have learned a function aλ such that given an input textX =
(x1, x2, ..., xk), it can classify whether X contains aggressive speech, i.e., this module
is a pre-trained transformer-based large language model finetuned for the aggression
detection downstream task where given an input textX , it predicts the aggression label
y (aggressive, non-aggressive), y = aλ(X).

And it is essential to note here that the cue extraction module’s wights are frozen
when we conduct the end-to-end training of the hate detector component, i.e., we don’t
finetune the sentiment and aggression modules with the hate speech data.

Attention Extraction for Individual Causal Cues. As mentioned above, the cue
extractor component aims to integrate the two cue modules, sentiment, and aggression,
towards generating the final causal cue guidance as an attention vector Ck×1. The first
step towards this objective is extracting each individual attention vector from the cue
modules. Since both the sentiment and aggression cue modules are same-sized trans-
former encoder stacks (n-encoders), the attention extraction process is the same for
both modules. Let’s take the sentiment cue module; it contains n-encoder blocks and
thus consists of n multi-head attention layers. The multi-head attention layer of a given
encoder block can be defined as the Eq. 1.

MultiHead(Q,K, V ) = head1(Q,K, V ) ⊕ ...headn(Q,K, V )

where; headi(Q,K, V ) = softmax(
QKT

√
di

)V
(1)

Here Q,K, V are Query, Key, and Value vectors of the transformer block i, and di

is the hidden state size [37].
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Our goal in using the sentiment cue module attention is to figure out the
words/phrases in the input text that has particular importance towards the sentiment
of the text. Therefore, we need to consider an encoder block that gives comprehensive
attention to the whole input. Previous research shows that the attention heads in the
BERT model’s last encoder block have very broad attention - i.e., attending broadly to
the entire input [7]. The architecture we consider for the sentiment module is similar
to the BERT architecture (transformer encoder blocks); thus, we select the last (nth)
encoder block’s multi-head attention layer as the candidate to extract the final atten-
tion from the sentiment module. We take the mean pooling output of the nth block’s
multi-headed attention layer as a matrix Mk×k where k is the input sequence length.

Mk×k = Mean(MultiHeadn(Q,K, V )) (2)

Then the final attention vector Sk×1 for the input sequence is taken by selecting the
attention at CLS token of the matrixMk×k. Following the same process, we extract the
aggression attention vector Ak×1 from the aggression cue module.

Cue Integration. The final step towards creating the attention vector Ck×1 is to aggre-
gate each attention vector we get from cue modules. i.e., we need to weigh and aggre-
gate the token attentions from each cue module to get the final accumulated attention
vector Ck×1. Once the representative attention vectors from both sentiment and aggres-
sion modules are extracted, we input the concatenated vectors through the attention
selector head (gθ). The attention selector head is a fully connected neural network that
takes concatenated aggression and sentiment attention to map the final attention vector
Ck×1.

Ck×1 = gθ([Sk×1 ⊕ Ak×1]) (3)

The intuition behind the attention selector head is that we need our framework to
learn how to weigh the sentiment and aggression cues relevant to the context of the
given input. For example, there can be cases where aggression could be the stronger
cue towards hate speech than sentiment or vice versa.

3.2 Hate Detector

The hate detector component consists of a similar transformer encoder stack to learn
the semantic representation of the given input. However, the output of the cue detector
component, attention vector Ck×1, will be provided as an auxiliary signal. We select
the representation learned by the hate detector blocks as Rk×d where k is the sequence
length, and d is the hidden state size of an encoder block. Then the extracted attention is
used to navigate the hate detector to adjust the representation to incorporate the causal
cues. The final representation Fk×d is calculated as; Fk×d = Rk×d � Ck×1. Then
the representation corresponding to the end of the sequence token (FCLS

1×d ) is passed
through the classification head (fφ). The classification head (fφ) is a fully connected
neural network that takes the learned semantic embedding as the input and predicts the
hate label ŷ as ŷ = fφ(FCLS

1×d ). The overall framework is trained via the cross-entropy
loss for the classification, where y is the ground truth.
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L = −
∑

i

yi log(ŷi) (4)

4 Experiments

This section discusses the experimental settings used to validate our framework, includ-
ing the datasets and evaluation metrics used, and the baselines, followed by a detailed
analysis of the experiments. We conducted a series of experiments to understand
whether the identified causal cues, namely the sentiment and the aggression in the text,
can aid in learning generalizable representations for hate speech detection and answer
the following research questions.

– RQ.1 Does the identified causal cues, namely, sentiment and aggression, enhance
the generalization performance?

– RQ.2 What is the importance of each causal cue in improving the generalization
performance (ablation study)?

– RQ.3 Which features does the PEACE utilize in input and whether these features
are causal when compared to the other baselines?

Table 1.Dataset statistics of the experimental datasets with corresponding platforms and percent-
age of hateful comments or posts.

Datasets Description Number of
Posts/Comments

Hateful
Posts/Comments

Percent of Hateful
Posts/Comments

GAB [15] A collection of posts from the
GAB social media platform

31,640 7,657 24.2

Reddit [28] Conversation threads from the
Reddit platform

13,633 4,219 31

Wikipedia [40] A collection of comments on
Wikipedia website

1,13,728 22,796 20

Twi-Red-You Social media comments from
three sites, namely, Twitter,
Reddit, and YouTube

86,283 49,273 57.2

FRENK Social media comments from
Facebook targeting LGBT and
Migrants

10,034 3,592 35.8

4.1 Datasets and Evaluation Metrics

We perform binary classification of detecting hate speech on various widely used bench-
mark hate datasets. Since we aim to verify cross-platform generalization, for cross-
platform evaluation, we use four datasets from different platforms: Wikipedia, Face-
book, Reddit, GAB, and Twitter-Reddit-YouTube. All datasets are in the English lan-
guage. Wikipedia dataset [40] is a collection of user comments from the Wikipedia
platform consisting of binary labels denoting whether a comment is hateful. Reddit [28]
is a collection of conversation threads classified into hate and not hate. GAB [15] is a
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collection of annotated posts from the GAB website. It consists of binary labels indi-
cating whether a post is hateful or not. Finally, Twitter-Reddit-YouTube [16] is a col-
lection of posts and comments from three platforms: Twitter, Reddit, and YouTube. It
contains ten ordinal labels (sentiment, (dis)respect, insult, humiliation, inferior status,
violence, dehumanization, genocide, attack/defense, hate speech), which are debiased
and aggregated into a continuous hate speech severity score (hate speech score). We
binarize this data such that any data with a hate speech score less than 0.5 is consid-
ered non-hateful and vice-versa. Although Twi-Red-You and Reddit both contain data
from Reddit, these data do not necessarily have the same distribution. The distribution
of datasets from the same platform can still defer due to variations in the timestamps,
targets, locations, and demographic attributes. The FRENK dataset [20] contains Face-
book comments in English and Slovene covering LGBTQ and Migrant targets. We only
consider the English dataset. The dataset was manually annotated for different types of
unacceptable discourses (e.g., violence, threat). We use the binary hate speech classes
hate and not-hate. A summary of the datasets can be found in Table 1. For compari-
son with baseline methods, macro F-measure (F1) is used as an evaluation metric for
validation.

4.2 Baselines

– ImpCon (AugCon Variant) [17] - this baseline utilizes contrastive learning with
data augmentation to map similar posts closer to each other in the representation
space to enable better generalization.

– POS+EMO [22] - this baseline proposed to use linguistic cues such as POS tags,
stylometric features, and emotional cues derived by different words and the global
emotion lexicon named, NRC lexicon [25] to enhance the generalizable capabilities
for multilingual cross-domain hate speech detection.

– HateBERT [6] - finetune the BERT-base model using approximately 1.5 million
Reddit messages published by suspended communities for promoting hateful con-
tent. It results in a shifted BERT model that has learned language variety and hate
polarity (e.g., hate, abuse). We report the results of fine-tuned HateBERT for all the
datasets.

– HateXplain [23] - fine-tuned using hate speech detection datasets from Twitter and
Gab for a three-class classification task (hate, offensive, or normal). It combines
human-annotated rationales and BERT to improve performance by reducing unin-
tended bias toward target communities. For each dataset, we present the results of
fine-tuned HateXplain.

Both HateBERT and HateXplain are not explicitly designed for generalizability but
primarily for better hate speech detection. We include these baselines as they are state-
of-the-art hate speech detection methods, and due to the generalization capabilities of
large language models these baselines do possess better generalization [17,42].



PEACE 567

4.3 Implementation Details

Our framework PEACE is built using the Huggingface Transformers library. We uti-
lized existing RoBERTa-base models that were finetuned on social media posts for sen-
timent and aggression detection tasks. Additionally, a pre-trained RoBERTa-base model
with 12 encoder blocks was used for the hate detection module.

During training, we employed cross-entropy loss with class balancing and opti-
mized the framework using the Adam optimizer. The learning rate was set to 0.00002,
and a dropout rate of 0.2 was used for optimal performance. Training was conducted
on a NVIDIA GeForce RTX 3090 GPU with 40 GB VRAM, and the early-stopping
strategy was employed.

Table 2. Cross-platform and in-dataset evaluation results for the different baseline models com-
pared against PEACE. Boldfaced values denote the best performance and the underline denotes
the second-best performance among different baselines.

Platforms HateBERT ImpCon (AugCon variant) HateXplain POS+EMO PEACE

Source Target

Twi-Red-You GAB 0.58 0.58 0.60 0.54 0.63

Reddit 0.71 0.64 0.74 0.54 0.74

Wikipedia 0.71 0.70 0.70 0.60 0.78

Twi-Red-You 0.96 0.94 0.92 0.87 0.95

FRENK 0.46 0.44 0.48 0.45 0.53

GAB GAB 0.84 0.65 0.84 0.76 0.76

Reddit 0.69 0.64 0.70 0.56 0.71

Wikipedia 0.74 0.64 0.70 0.49 0.78

Twi-Red-You 0.61 0.71 0.61 0.59 0.70

FRENK 0.71 0.57 0.60 0.59 0.69

Reddit GAB 0.56 0.51 0.59 0.53 0.61

Reddit 0.88 0.84 0.89 0.59 0.88

Wikipedia 0.66 0.63 0.64 0.56 0.74

Twi-Red-You 0.73 0.70 0.77 0.65 0.78

FRENK 0.42 0.42 0.44 0.49 0.54

Wikipedia GAB 0.65 0.63 0.64 0.56 0.68

Reddit 0.73 0.71 0.74 0.58 0.72

Wikipedia 0.95 0.93 0.86 0.94 0.97

Twi-Red-You 0.73 0.72 0.74 0.69 0.78

FRENK 0.60 0.51 0.61 0.52 0.65

FRENK GAB 0.65 0.67 0.63 0.58 0.69

Reddit 0.62 0.66 0.66 0.55 0.71

Wikipedia 0.67 0.76 0.73 0.53 0.81

Twi-Red-You 0.65 0.65 0.64 0.62 0.78

FRENK 0.78 0.79 0.75 0.72 0.78
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4.4 RQ.1 Performance Comparison

Cross-Platform Generalization. We compare the different baseline models with
PEACE on five real-world datasets. To evaluate the generalization capabilities of the
models for each dataset, we split the data into train and test tests. We train all the
models on the training data for one platform and evaluate the test sets of all the plat-
forms. Table 2 demonstrates the performance comparison across the different test sets
for the macro-F1 metric. The column Platforms showcases the Source platform on
which the models were trained and the Target platforms used for evaluation. For each
source dataset, we show the Average Performance of each model in both in-platform
and cross-platform settings. As a result, we have the following observations regarding
the cross-platform performance w.r.t. RQ.1:

– Overall, PEACE consistently yields the best performance across cross-platform
evaluation for all the datasets while maintaining good in-platform macro F1. Com-
paring only the cross-platform performance, PEACE leads to a 5% improvement
when trained on the Twi-Red-You dataset, 3% improvement for the GAB dataset,
6% improvement for Reddit, 3% improvement for the Wikipedia dataset, and 4%
improvement for FRENK dataset.

– Among the four baselines, HateBERT serves as the strongest baseline in most cases,
followed by HateXplain. This result is justified as both HateBERT and HateXplain
are fine-tuned BERTmodels on large corpora of hateful content. We further fine-tune
both HateBERT and HateXplain for each dataset. ImpCon performs well for some of
the combinations, while for others, it cannot outperform HateBERT and HateXplain.
We believe this is because the AugCon variant utilizes simple data augmentation.
As a result, it might not be able to learn as good representations as the ImpCon
variant that leverages the implications of hate. Furthermore, the utilization of the
ImpCon variant is a challenging task in real-world scenarios, as the implications are
not readily available for large datasets.

– The linguistic feature-based baseline (POS + EMO) doesn’t generalize well to these
datasets. We argue this is because the posts in these datasets are highly unstructured
and grammatically incorrect. Even after pre-processing the inferred POS tags and
emotion words may not be reflective of the hate content. As a result, the reliance on
these features hurts the generalization performance.

– Majority of the baselines attain improved performance when trained on the
Wikipedia dataset. We argue this is because of the size of the dataset. Among the
four datasets, Wikipedia is the largest dataset indicating that a model can generalize
better when it’s trained on large datasets.

Cross-Target Generalization. Furthermore, we also conducted another experiment for
the FRENK dataset to evaluate how the different models generalize in a cross-target set-
ting, where the datasets belong to the same platform (i.e., have similar ways of express-
ing hate) but discuss different targets of hate. Along with the hate labels, the FRENK
dataset also provides the targets of hate in the dataset, namely, LGBTQ and Migrants.
Table 3 demonstrates the performance comparison for the macro-F1 metric.
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Table 3. Cross-target evaluation results for the different baseline models compared against
PEACE. Boldfaced values denote the best performance among different baselines.

targets HateBERT ImpCon (AugCon variant) HateXplain POS+EMO PEACE

Source Target

Migrants LGBTQ 0.74 0.68 0.65 0.61 0.78

LGBTQ Migrants 0.66 0.67 0.64 0.58 0.72

We had the following observations regarding the cross-target generalization perfor-
mance w.r.t. RQ.1:

– Comparing the cross-target generalization, we observe that C-Hate leads to an aver-
age gain of 4% improvement over the baselines. The results indicate that utilizing
causal cues such as the overall sentiment and the aggression aids in learning gener-
alizable representations and improve cross-target generalization performance.

– Across the different baselines HateBERT and ImpCon perform the best. The overall
performance of HateBERT indicate that the large language models such as BERT
when fine-tuned on a particular downstream task (fine-tuning BERT on hate content
resulted in generation of HateBERT) can lead to competitive generalization capabil-
ities. Furthermore, the ImpCon model performs well as it leverages data augmenta-
tion which results in more training data leading to better generalization.

Fig. 2. Comparison of cross-platform macro-F1 score to calculate the importance of each cue
compared with the final model for Reddit and GAB datasets.

4.5 RQ.2 Importance of Each Cue

To assess the individual importance of the different causal cues used in PEACE with
regard to the performance, we conduct the following experiments. We consider three
variants of PEACE, one which utilizes only sentiment as the causal cue, namely, Sen-
timent one which utilizes only aggression as the causal cue, namely, Aggression, and
one which utilizes a RoBERTa base classifier without any causal cues, namely, Base
Roberta. We conduct cross-platform experiments by training these three variants on the
Reddit and the GAB datasets. The results obtained can be seen in Fig. 2(a) for Reddit
and Fig. 2(b) for GAB. As observed, PEACE performs the best when both causal cues



570 P. Sheth et al.

are considered. The results can deteriorate by as little as 5% to as high as 13% with-
out the inclusion of causal cues. Among the three variants, it is observed that PEACE
mostly benefits from the aggression cue and for some datasets, it benefits from the sen-
timent cue. The main reason for aggression being a strong cue is because aggression
and hate are very similar tasks and earlier works have shown that aggression leads to
hatred [34]. However, the base model consistently does worst, indicating that the uti-
lization of causal cues is important to enhance the generalizability performance for hate
speech detection.

Table 4. Case study illustrating the different features/tokens chosen as important tokens to detect
hateful content across different models. Darker shades of the color represents the importance
level of the token.

Model Platform
Gab Reddit

HateXplain
you ’ re subscribed to the christianity subreddit for reasons other than
demanding the forced eradication of christian putridity . that in itself
makes you unworthy .

ImpCon
you ’ re subscribed to the christianity subreddit for reasons other than
demanding the forced eradication of christian putridity . that in itself
makes you unworthy .

Sentiment
You’re subscribed to the Christianity subreddit for reasons other than
demanding the forced eradication of Christian putridity. That in itself
makes you unworthy.

+ + +

Ours Aggression
You’re subscribed to the Christianity subreddit for reasons other than
demanding the forced eradication of Christian putridity. That in itself
makes you unworthy.

↓ ↓ ↓
Full Model

You’re subscribed to the Christianity subreddit for reasons other than
demanding the forced eradication of Christian putridity. That in itself
makes you unworthy.

4.6 RQ.3 Case Study

Here we provide a case study that verifies the importance of causal cues in identify-
ing the correct context for detecting hate speech Moreover, here we visually compare
PEACE token level attention with the baseline models HateXplain and ImpCon. In
order to visualize the token importance of a given model towards its prediction, we
followed a similar procedure as the cue extractor [7], where the final encoder block’s
attention layer was utilized to accumulate the token importance by visualizing the atten-
tion weights.

We randomly sampled hate speech text from Reddit and Gab platforms to select can-
didate examples for the case study. Table 4 shows a few such samples with the attention
token importance visualization. In the C-Hate’s row, we annotate the sentiment mod-
ule attention in violet and aggression module attention orange . The example from
the Gab platform is an instance of hate towards feminist liberals. The word “sheeple”
and phrase “get it one day” can be considered as the deciding components of the text
being hate speech. In contrast to the HateXplain and ImpCon, PEACE is attending to
the word “sheeple” correctly. And we see that both the sentiment and aggression mod-
ules are giving high importance to the “sheeple.” We have a similar observation about
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the phrase “get it one day” where PEACE is successful in giving more attention to
that phrase towards hate speech detection. A notable observation here is that the senti-
ment module is attending to the above phrase well, which could be the reason behind
C-Hate’s successfully identifying the correct context towards hate.

The next example from the Reddit platform was a complex sentence for hate speech
detection, given that hate is implied, not directly expressed. As we can see, both ImpCon
and HateXplain models tend to the word “putridity” but not to the critical contextual
components that signify implicit hate, such as “forced eradication” and “unworthy.”
This example illustrates the issue in vocabulary-based approaches to generalized hate
speech detection. On the contrary, we can see that the sentiment and aggression mod-
ules accurately attend to the “forced eradication” and “unworthy” phrases navigating
PEACE to correctly identify the hate speech context.

5 Limitations and Error Analysis

In this section, we conduct an error analysis to better understand our work’s limitations
and aid future work in cross-platform generalized hate speech detection. For this anal-
ysis, we select the FRENK dataset (Facebook) as the testing dataset, given it contains
fine-grained information about the data, such as hate targets (LGBTQ vs. migrants) and
hate types (offense vs. violence). We used the PEACE models trained on other plat-
forms (Twitter, Gab, Reddit, and Wiki) to run the test on the FRENK dataset mentioned
above. Finally, we analyze each model’s misclassification rate/error rate under dimen-
sions of hate target and hate type.

Fig. 3. Analysing error rate of PEACE under different Dimensions such as (a) hate targets
(LGBTQ vs. migrants) and (b) hate type (offense vs. violence).

As seen in Fig. 3(a), the model tends to have a higher error rate in detect-
ing migrants-related samples, particularly when trained on Reddit and Twi-Red-You
datasets. One notable characteristic we observed in the Reddit and Twi-Red-You
datasets is that the hate examples tend to include a majority of targeted hate towards par-
ticular individuals. Similarly, the LGBTQ target in FRENK dataset contains a majority
of hate examples towards individuals. However, in contrast, the migrant target contains
more generic hate examples towards a group of people. This mismatch in training and
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Table 5. Examples representing the different kinds of hate. The violence hate type is more explicit
and direct, whereas the offense hate type is more subtle and implicit.

Hate Type Examples

Violence
shoot them all, done!!! let the communists solve the problem!!!
coz i believe that these people wont stop, sooner or later, Ger-
many will have to use guns

Quick... Bomb it

Offensive

The annoying thing is that 75% of the migrants are Young men,
why aren’t they fighting for THEIR country? Or is it more a
case of they can get more from European countries (money,
house,education etc.)

Are there terrorists hidden in migration groups? Likely

testing platforms might be causing the high error rate in the migrants compared to the
LGBTQ.

The error analysis (Fig. 3(b)) reveals that the PEACE model exhibits a higher error
rate in the offensive hate type compared to the violence type. To further investigate
this, we examine the textual traits associated with each hate type. Representative sam-
ples from both categories are provided in Table 5. In the violence hate type, the hate
aspect is explicit and easily recognizable to both readers and the model. Sentiment and
aggression cues are also readily detectable in these instances. However, in the offensive
hate type, hate is inherently more implicit than explicit. Consequently, learning valuable
signals through causal cues becomes challenging when the expressed hatred is implicit.

6 Conclusions and Future Work

Social media platforms facilitate global opinion sharing but are often misused for
spreading targeted hate speech. Automatic hate speech detection is crucial but chal-
lenging due to evolving hate and limited labeled data. To address this, we propose
PEACE, a hate speech detection model that leverages aggression, sentiment, and causal
cues to learn generalizable representations. Our extensive experiments demonstrate that
PEACE outperforms state-of-the-art baselines on multiple platforms and targets. We
also emphasize the importance of each causal cue and perform case studies to identify
the features used by PEACE for hate speech detection. To enhance PEACE’s gener-
alization, we will explore automating the identification of causal cues and develop an
end-to-end system.
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Ethical Statement.
Freedom of Speech and Censorship. Our research aims to develop algorithms that can effec-
tively identify and mitigate harmful language across multiple platforms. We recognize the impor-
tance of protecting individuals from the adverse effects of hate speech and the need to balance this
with upholding free speech. Content moderation is one application where our method could help
censor hate speech on social media platforms such as Twitter, Facebook, Reddit, etc. However,
one ethical concern is our system’s false positives, i.e., if the system incorrectly flags a user’s text
as hate speech, it may censor legitimate free speech. Therefore, we discourage incorporating our
methodology in a purely automated manner for any real-world content moderation system until
and unless a human annotator works alongside the system to determine the final decision.

Use of Hate Speech Datasets. In our work, we incorporated publicly available well-established
datasets. We have correctly cited the corresponding dataset papers and followed the necessary
steps in utilizing those datasets in our work. We understand that the hate speech examples used
in the paper are potentially harmful content that could be used for malicious activities. However,
our work aims to help better investigate and help mitigate the harms of online hate. Therefore,
we have assessed that the benefits of using these real-world examples to explain our work better
outweigh the potential risks.

Fairness and Bias in Detection. Our work values the principles of fairness and impartiality. To
reduce biases and ethical problems, we openly disclose our methodology, results, and limitations
and will continue to assess and improve our system in the future.
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Abstract. Treatment effect estimation can assist in effective decision-
making in e-commerce, medicine, and education. One popular applica-
tion of this estimation lies in the prediction of the impact of a treatment
(e.g., a promotion) on an outcome (e.g., sales) of a particular unit (e.g.,
an item), known as the individual treatment effect (ITE). In many online
applications, the outcome of a unit can be affected by the treatments of
other units, as units are often associated, which is referred to as interfer-
ence. For example, on an online shopping website, sales of an item will be
influenced by an advertisement of its co-purchased item. Prior studies have
attempted to model interference to estimate the ITE accurately, but they
often assume a homogeneous interference, i.e., relationships between units
only have a single view. However, in real-world applications, interference
maybe heterogeneous, withmulti-view relationships. For instance, the sale
of an item is usually affected by the treatment of its co-purchased and co-
viewed items. We hypothesize that ITE estimation will be inaccurate if
this heterogeneous interference is not properlymodeled. Therefore, we pro-
pose a novel approach to model heterogeneous interference by developing
a new architecture to aggregate information from diverse neighbors. Our
proposed method contains graph neural networks that aggregate same-
view information, a mechanism that aggregates information from different
views, and attention mechanisms. In our experiments on multiple datasets
with heterogeneous interference, the proposed method significantly out-
performs existing methods for ITE estimation, confirming the importance
of modeling heterogeneous interference.

Keywords: Causal Inference · Treatment Effect Estimation ·
Heterogeneous Graphs · Interference

1 Introduction

In recent years, treatment effect estimation has been performed to enable effec-
tive decision-making in many fields, such as medicine [25], education [22], and
e-commerce [18,29,37]. For example, estimating treatment effects helps us under-
stand whether an advertisement affects the sales of the advertised products.
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Fig. 1. An example of the difference between interference on a homogeneous graph and
heterogeneous graphs. An edge in a co-purchased graph represents the relationship that
both items are bought together by many customers, while an edge in a co-viewed graph
represents the relationship that both items are viewed on an e-commerce platform
together by many customers. Edges in different views or graphs constitute multi-view
or heterogeneous edges.

The effect of a treatment (e.g., advertisement) for a particular unit (e.g., prod-
uct) is known as the individual treatment effect (ITE) [42], while that for a given
group is known as the average treatment effect (ATE) [42].

This study aims to estimate treatment effects from observational graph data,
which contain records of covariates of units, relationships between units (i.e.,
graph structure), and treatment assignments with their outcomes. For exam-
ple, data from an e-commerce platform typically include the logs of information
regarding assignments of advertisements, sales of items, item profiles, and rela-
tionships between items, e.g., a co-purchased relationship.

As units are associated in these graphs, the outcome for a unit will be influ-
enced by the treatments assigned to its neighboring units. This phenomenon is
referred to as interference [17,21], an example of which is shown in Fig. 1a. In a
co-purchased graph, many customers buy the Mouse when they buy the Com-
puter. In this case, advertising the Computer may also influence the sales of the
Mouse, whose sales can no longer be independent of the advertisement, making
it challenging to estimate the ITE accurately. Previous works have attempted
to accurately estimate ITE given graph data by modeling interference, such
as group-level interference [9,15,32], which is a partial interference and mod-
els interference within subgroups of units but ignores inter-group interference;
pairwise interference [1,3,21,36], which considers interference from immediate
neighbors only; and networked interference [17], which can model interference
from distant neighbors. All these methods assume single-view interference, such
that a graph is homogeneous and can only represent the same relationship among
units, such as a co-purchased graph.

However, real-world graphs are rarely homogeneous, e.g., YouTube
dataset [31], and Amazon dataset [8]. Therefore, we consider addressing interfer-
ence on heterogeneous graphs that have multi-view edges, such as co-viewed and
co-purchased item-to-item graphs of the Amazon dataset [8]. In this case, units
are influenced by treatments of their heterogeneous neighbors via the multi-view
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edges, which is referred to as heterogeneous interference and often leads to cross-
view interference, an example of which is shown in Fig. 1b. Although there is no
direct edge between the Computer and the Mouse 2, the advertisement of the
Computer still affects sales of the Mouse 2 via the edge between the Computer
and the Mouse 1 in the co-purchased graph and the edge between the Mouse 1
and the Mouse 2 in the co-viewed graph. Without properly modeling the het-
erogeneous interference, the cross-view interference cannot be addressed, which
will result in inaccurate ITE estimation.

To overcome the difficulty caused by heterogeneous interference, we pro-
pose a novel method called Individual Treatment Effects Estimator Under
Heterogeneous Interference (HINITE; see Fig. 2). The core idea of HINITE is
to model the propagation of heterogeneous interference across units and views.
To this end, inspired by Wang et al. [39], we design a heterogeneous informa-
tion aggregation (HIA) layer, as shown in Fig. 3. In the HIA layer, multiple
single-layered graph neural networks (GNNs) [12] are used to capture informa-
tion within the same views, and a view-level information aggregation mechanism
is then used to combine information from different views. To properly model het-
erogeneous interference, the HIA layer also infers importances of different edges
and views of heterogeneous graphs by applying attention mechanisms [34,35,39].
A single HIA layer can help units aggregate information from their 1-hop or
direct neighbors across all views of heterogeneous graphs, enabling the HINITE
to model the propagation of cross-view interference by stacking multiple HIA
layers. Other components of the HINITE are explained in Sect. 3.

The contributions of this study can be summarized as follows:

– This study describes a new issue of interference on heterogeneous (multi-
view) graphs. Moreover, we formalize the problem of estimating ITE under
heterogeneous interference.

– This study proposes a method to address interference on heterogeneous
graphs with multi-view edges.

– Results of extensive experiments reveal that the proposed method outper-
forms existing methods for estimating ITE under heterogeneous interference
while confirming the importance of modeling heterogeneous interference.

2 Problem Setting

In this study, we aim to estimate ITE from observational heterogeneous graphs.
Herein, we use xi ∈ R

d to denote the covariates of a unit i (e.g., brand), ti ∈
{0, 1} to denote the treatment assigned to a unit i (e.g., an advertisement),
yi ∈ R to denote the observed outcome of a unit i (e.g., the observed sales of
a unit i), and non-bold, italicized, and capitalized letters (e.g., Xi) to denote
random variables. Moreover, a unit with t = 1 is treated, and t = 0 is controlled.

Homogeneous Graphs. Homogeneous graphs have only a single view of edges.
We use an adjacency matrix A ∈ {0, 1}n×n to represent the structure of a
homogeneous graph, where n is the number of nodes (units). If there is an edge
between units j and i, Aij = 1; otherwise, Aij = 0. We let Aii = 0.
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Heterogeneous Graphs. This study considers heterogeneous graphs1 that have
multiple views of edges [30], which are called heterogeneous or multi-view edges.
We use the H = {Av}m

v=1 to denote all the multi-view graph structures, where
Av ∈ {0, 1}n×n denotes the adjacency matrix of the v-th view, and m is the
number of views. We use Nv

i to denote the set of neighboring units of the unit
i in the v-th view, Ni = {Nv

i }m
v=1 to denote the set of neighbors of the unit i

across all views. Here, the units in Ni are heterogeneous neighbors of the unit i.

ITE Estimation Without Interference. In traditional treatment effect estima-
tion [24,42], non-graph data are given and it is assumed that there is no inter-
ference between units [24,42]. In this case, the potential outcomes y1

i and y0
i of

a unit i are defined as the real value of outcome for a unit i with treatment
value t = 1 and t = 0,2 respectively [42]. Additionally, the ITE is defined as
τi = E[Y 1

i |Xi = xi] − E[Y 0
i |Xi = xi] [42].

ITE Estimation Under Heterogeneous Interference. This study aims to estimate
the ITE from observational heterogeneous graph data. The data can be denoted
by (X,T,Y,H), where X = {xi}n

i=1, T = {ti}n
i=1, and Y = {yi}n

i=1. We assume
that there exists interference between units in heterogeneous graphs. In this case,
the outcome of a unit is not only influenced by its own treatments and covariates
but also influenced by those of its neighbors [17,21]. In heterogeneous graphs,
every unit can receive interference from its heterogeneous neighbors through
multi-view edges, so the interference in heterogeneous graphs is referred to as
heterogeneous interference. Such heterogeneous interference contains two types
of interference: same-view interference and cross-view interference. The former
is that interference occurs within the same views, and the latter happens when
interference propagates across different views through multi-view edges. To for-
malize the ITE under heterogeneous interference, we use si to denote a sum-
mary vector of X−i and T−i on heterogeneous graphs H, where the subscript
−i denotes all other units except i. The potential outcomes of the unit i in het-
erogeneous graphs, denoted by y1

i (si) and y0
i (si), are real outcomes for the unit

i under si and treatment value t = 1 and t = 0, respectively. Then, we define
the ITE under heterogeneous interference as follows:

τi = E[Y 1
i (Si = si)|Xi = xi] − E[Y 0

i (Si = si)|Xi = xi]. (1)

Confounder. The existence of confounders is a well-known issue when estimat-
ing the ITE from observational data [26]. Confounders are parts of covariates,
which can simultaneously affect the treatment assignment and outcome [42],
resulting in an imbalance in the distributions of different treatment assignments.
For instance, we consider that the treatment is whether a product is adver-
tised. Famous brands have more promotion funds to advertise their products.
1 Heterogeneous graphs can be classified into two types: those with multiple types of

nodes and multiple types (views) of edges [30], and those with a single type of node
and multiple types of edges [30]. In this study, we focus on the latter type.

2 Outcomes with 1 − t are called counterfactual outcomes [42].
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Meanwhile, customers tend to buy a product (e.g., a computer) from a famous
brand (e.g., Apple). In this case, the brand is a confounder. Without accurately
addressing confounders, ITE estimation will be biased.

Assumption 1. Following the previous studies [16,17], we assume that there
exists an aggregation function that can aggregate information of other units on
heterogeneous graphs while outputting a vector s, i.e., si = AGG(T−i,X−i,H).
Here, we extend the neighbor interference assumption [3] to heteroge-
neous interference, for ∀i, ∀T−i,T′

−i,∀X−i,X′
−i, and ∀H,H′: when si =

AGG(T−i,X−i,H) = AGG(T′
−i,X

′
−i,H

′) = s′
i, Y t

i (Si = si) = Y t
i (Si = s′

i)
holds.

Assumption 2. We extend consistency assumption [3] to heterogeneous interfer-
ence setting. We assume Yi = Y ti

i (Si = si) on the heterogeneous graphs H for
the unit i with ti and si.

Assumption 3. To address confounders, we extend the unconfoundedness
assumption [3,16] to the heterogeneous interference setting. For any unit i, given
the covariates, the treatment assignment and output of the aggregation function
are independent of potential outcomes, i.e., Ti, Si ⊥⊥ Y 1

i (si), Y 0
i (si)|Xi.

Theoretical Analysis. To model potential outcomes using observed data under
heterogeneous interference, we prove the identifiability of the expected potential
outcome Y t

i (si) (t = 1 or t = 0) based on the above assumptions as follows:

E[Yi|Xi = xi, Ti = t,X−i = X−i, T−i = T−i,H = H]
=E[Yi|Xi = xi, Ti = t, Si = si] (Assumption 1)

=E[Y t
i (si)|Xi = xi, Ti = t, Si = si] (Assumptions 1 and 2)

=E[Y t
i (si)|Xi = xi] (Assumption 3)

Based on the above proof, once we aggregate X−i and T−i on heterogeneous
graphs H into si, we can estimate the potential outcomes Y 1

i (si) and Y 0
i (si).

This enables us to estimate the ITE using Eq. (1).

3 Proposed Method: Individual Treatment Estimator
Under Heterogeneous Interference

This study proposes HINITE, a method that can estimate the ITE from observed
data (X,T,Y,H) under heterogeneous interference. Figure 2 shows the archi-
tecture of HINITE. As can be seen, HINITE consists of three components to
address confounders, model heterogeneous interference, and predict outcomes,
respectively. Specifically, the first component addresses confounders by learning
balanced representations of covariates with the Hilbert-Schmidt Independence
Criterion (HSIC) regularization [6]. The second component aggregates interfer-
ence by modeling the propagation of interference across units and views, and
generates representations of units, which are referred to as interference repre-
sentations. The last component consists of two outcome predictors that infer
potential outcomes using the covariate and interference representations.
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Fig. 2. An example of the model architecture of HINITE. In this case, there are two
views, i.e., v1 and v2.

3.1 Learning Balanced Covariate Representations

To address the imbalance in distributions of different treatment groups caused by
confounders, HINITE learns balanced covariate representations using an existing
approach [17]. The key idea is to find a representation space in which the treat-
ment assignments and covariate representations become approximately indepen-
dent [17]. This goal can be achieved by applying the HSIC regularization [6],
which is an independence test criterion of two random variables. The value of
HSIC is 0 when two random variables are independent. Thus, minimizing the
HSIC can achieve the abovementioned goal.

Specifically, we learn a balanced covariate representation ui for the xi using
a map function φ that consists of multiple feed-forward (FF) layers, i.e., ui =
φ(xi), resulting in covariate representations for all units, denoted as U. We
train φ by minimizing the HSIC between u and t, which is denoted as HSICφ

and designed as follows:

HSICφ(U,T) =
1

N2
tr(KMLM), M = IN − 1

N
1N1�

N , (2)

where N is the number of training units, ·� represents the transposition oper-
ation, IN is the identity matrix, and 1N is the vector of all ones. K and L
represent the Gaussian kernel applied to U and T, respectively, i.e.,

Kij = exp
(

−‖ui − uj‖22
2

)
, Lij = exp

(
− (ti − tj)2

2

)
. (3)

3.2 Learning Heterogeneous Interference Representations

To properly model heterogeneous interference, it is necessary to capture both
same-view and cross-view interference. To this end, we model the propagation of
the same-view and cross-view interference. Inspired by Wang et al. [39], we design
an HIA layer, as shown in Fig. 3, which contains node-level and view-level aggre-
gation mechanisms. The node-level aggregation mechanism aggregates same-
view interference received by units. It utilizes m single-layered GNNs [12,35] to
perform aggregations within each view. The view-level aggregation mechanism
combines (i.e., sums up) the results aggregated by the node-level aggregations
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Fig. 3. The architecture of the HIA layer. This layer consists of node-level and view-
level aggregation mechanisms with their attention mechanisms.

to generate new representations of units. Therefore, by employing an HIA layer,
units are able to aggregate interference received from their one-hop heteroge-
neous neighbors. This enables capturing cross-view interference by stacking HIA
layers. Similarly, same-view interference from multi-hop neighbors can also be
captured by stacking HIA layers.

Consider again the co-purchased and co-viewed graphs in Fig. 1b. Suppose
that we feed units and their co-purchased and co-viewed graphs to a network
stacked by two HIA layers. For the Mouse 1, the first HIA layer performs two
node-level aggregations. One aggregation helps the Mouse 1 aggregate interfer-
ence within the co-purchased graph, while the other helps the Mouse 1 aggregate
interference within the co-viewed graph, resulting in two aggregated results.
Then, the view-level aggregation mechanism combines these results obtained
by node-level aggregations to generate the Mouse 1’s new representation, while
updating the new representation in all views. This enables the Mouse 1 to aggre-
gate interference from the Computer. Similarly, the first HIA layer also generates
new representations for other units. Then, by taking these new representations
of all units as inputs of the second HIA layer, the second HIA layer enables the
Mouse 2 to capture interference from the Mouse 1, which contains interference
from the Computer. Therefore, the cross-view interference from the Computer
to the Mouse 2 can be captured by stacking two HIA layers.

Apart from cross-view interference, another challenge is that the importance
of edges and views may differ in heterogeneous graphs [39]. For example, in a
co-viewed graph, the importance of products in the same category tends to be
higher than that of products in different categories. Here, the weights of edges
in the same view can be different. Furthermore, a co-purchased graph may have
more significant importance than a co-viewed graph in terms of interference,
leading to different importance for each view. To overcome these difficulties and
properly model the propagation of interference, we infer different weights for
every edge via a graph attention mechanism [35] (called node-level attention)
before node-level aggregations, and learn different importance for every view via
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an attention mechanism [34,39] (called view-level attention) before view-level
aggregations.

More specifically, given covariate representations U, treatment assignments
T, and structures of heterogeneous graphs H, we aim to obtain interference
representations G using a function ψ that consists of multiple HIA layers, i.e.,
G = ψ(U,T,H). For a unit i, its interference representation gi is supposed to
capture the interference from its heterogeneous neighbors. Let p be a represen-
tation of a unit, which is the input of the current HIA layer and the output of
the previous HIA layer. For the first HIA layer, p is the concatenation of u and
t. Let z denote a new representation for the unit i computed by the current HIA
layer, αv

ij denote the inferred weight of the edge between units j and i at the
v-th view, wv

i denote the learned importance of the v-th view for the unit i, and
βv

i denote the normalized value for wv
i .

Now, we describe the architecture of the HIA layer in detail. First, the HIA
layer infers the edge weight αv

ij by the node-level attention mechanism as follows:

αv
ij =

exp(LeakyReLU(a�[Wpi‖Wpj ]))∑
k∈Nv

i

⋃ {i} exp(LeakyReLU(a�[Wpi‖Wpk]))
, (4)

where a and W represent a learnable parameter vector and matrix, respectively,
and ‖ represents the concatenation operation. Next, it performs node-level aggre-
gations. The node-level aggregation at the v-th view is computed as follows:

pv′
i = σ

⎛
⎝ ∑

j∈Nv
i

⋃ {i}
αv

ijWpj

⎞
⎠ , (5)

where σ is an activation function, such as ReLU. Next, the view-attention mech-
anism is applied to learn the importance of different views as follows:

wv
i =

1
n

n∑
i=1

q�LeakyReLU(Wpv′
i + b), βv

i =
exp (wv

i )∑m
v=1 exp (wv

i )
, (6)

where b is a bias vector, and q is a learnable parameter vector. Finally, the view-
level aggregation is applied to aggregate the information from different views as
follows:

zi =
m∑

v=1

βv
i p

v′
i . (7)

3.3 Outcome Predictions and ITE Estimation

Given the covariate representations U, interference representations G, and treat-
ment assignments T, we train two predictors that consist of multiple FF layers
to infer the outcomes with different t. Specifically, let fy0 and fy1 denote the
predictor for t = 0 and t = 1, respectively. We optimize the two predictors by
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minimizing the following mean square error (MSE) between prediction outcomes
and observed outcomes with the HSIC regularization:

L =
1
N

N∑
i=1

(
fyti

(ui, gi) − yi

)2 + γHSICφ, (8)

where the γ is a regularization hyperparameter.
Finally, we can estimate the ITE using τ̂i = fy1(ui, gi) − fy0(ui, gi).

4 Experiments

4.1 Datasets

We used three heterogeneous graph datasets: Amazon Software (AMZ S) [8],
Youtube [31], and Flicker [40]. Following prior studies on ITE/ATE [16,17,26],
we simulated outcomes3 as the ground-truth values for counterfactual outcomes
are not available.
Outcome Simulation: Similar to the outcome simulation in Ma et al. [16], we
used available data and heterogeneous graph structures to simulate outcomes
under heterogeneous interference of the unit i:

yi = f0(xi) + ft(ti,xi) + fs(T,X,Ni) + εi, (9)

where f0(xi) = w�
0 xi simulates the outcome of a unit i under treatment ti = 0

without interference, and every element of w0 follows a Gaussian distribution
or uniform distribution (i.e., N (0, 1) or U(0, 1)). ft(ti,xi) = ti × w�

1 xi simu-
lates the ITE of the unit i, where w1 ∼ N (0, I) or U(0, I). In the literature,
the effect caused by interference is known as spillover effect [21]. We simu-
late it through fs(T,X,Ni) = o

(1)
i + o

(2)
i , where o

(1)
i = Agg(Concat(X,T),Ni)

represents a spillover effect from 1-hop heterogeneous neighbors for the unit
i, o

(2)
i = Agg(O(1),Ni) represents the spillover effect of 2-hop heterogeneous

neighbors, and O(1) represents the spillover effects from 1-hop heterogeneous
neighbors for all units. Here, the aggregation function is defined as Agg(C,Ni) =∑m

v=1 ev
(

1
|Nv

i |
∑

j∈Nv
i
w�

ijcj

)
, where ev and every element of wij follow N (0, 1)

or U(0, 1). Lastly, εi ∼ N (0, 1) is a random noise.
Amazon Software Dataset [8]: The Amazon dataset [8] is collected from
Amazon4. In the graphs of the Amazon dataset, each node is a product. To
study causal effects, we chose the co-purchased and co-viewed graphs from the
software category of the Amazon dataset. After removing nodes with missing
values, there are 11,089 items with 11,813 heterogeneous edges. The covariates
consist of reviews and the number of customer reviews of items. We put reviews

3 The simulated outcomes and the codes of the HINITE are available at https://
github.com/LINXF208/HINITE.

4 https://www.amazon.com/.

https://github.com/LINXF208/HINITE
https://github.com/LINXF208/HINITE
https://www.amazon.com/
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into the SimCSE [5] model to generate 768-dimensional sentence embeddings.
The review rating of items is considered as a treatment: an item is treated (t = 1)
when the average review rating is at least 3, and an item is controlled (t = 0)
when the average review rating is less than 3. The causal problem in this dataset
is whether review rating has a role in influencing the sales of items. Due to the
heterogeneous edges among items, the sales of an item might be influenced by
its heterogeneous neighbors’ treatments.
YouTube Dataset [31]: Tang et al. [31] used YouTube Data API5 to crawl the
information of contacts, subscriptions, and favorites of users from YouTube6,
while extending them to a contact graph, co-subscription graph, co-subscribed
graph, and favorite graph. Every node in the graphs is a user of YouTube. In this
case, we consider a causal problem: “how much recommendation of a video (treat-
ment) to a user will affect the user’s experience of this video (outcome)?” More-
over, users might share the recommended video with heterogeneous neighbors,
which constitutes heterogeneous interference. We took 5,000 users with their
heterogeneous graphs containing 3,190,622 heterogeneous edges to simulate out-
comes and study heterogeneous interference. As detailed information about each
user is missing, we simulated the covariates via xi ∼ N (0, I) (100-dimensional
vector), and simulated treatment ti as follows, following most existing works,
such as Ma et al. [16]:

ti ∼ Ber(sigmoid(x�
i wt) + εti), (10)

where Ber(·) represents a Bernoulli distribution, wt is a 100-dimensional vector
in which every element follows U(−1, 1), and εti is random Gaussian noise.
Flicker Dataset [40]: Flicker7 is an online social website where users can share
their images. Qu et al. [19] constructed a dataset with multi-view graphs, i.e.,
friendship view and similarity view, from the Flicker dataset [40]. Every node
in the graphs is a user of Flicker. Following Qu et al. [19], we also consider
friendship-view and similarity-view graphs that have 7,575 users with approxi-
mately 1,236,976 heterogeneous edges. Here, the causal question is: “how much
recommending a hot photo (treatment) to a user will affect the user’s experience
(outcome) of this photo?” In this case, users might share recommended photos
with their heterogeneous neighbors, which constitutes heterogeneous interfer-
ence. We used the 1206-dimensional embeddings that are provided by Guo et
al. [7], generated using a list of users’ interest tags, and simulated the treatments
using Eq. (10).

4.2 Baselines

BNN [11]: Balancing Neural Network [11] (BNN) addresses confounders by
minimizing the discrepancy of distributions of units belonging to different groups,
without considering interference. Following Johansson et al. [11], we considered
5 https://developers.google.com/youtube/?csw=1.
6 https://www.youtube.com/.
7 https://www.flickr.com/.

https://developers.google.com/youtube/?csw=1
https://www.youtube.com/
https://www.flickr.com/
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two structures: BNN-4-0 and BNN-2-2. The former has four representation layers
but no prediction layers, and the latter has two representation layers and two
prediction layers. Both have one linear output layer.
CFR [26]: Counterfactual Regression (CFR) [26] minimizes the maximum mean
discrepancy (MMD) and Wasserstein distance between different distributions
of two groups. Similar to BNN, it also ignores interference. Following Shalit et
al. [26], we considered two different schemes: CFRMMD and CFRWass. The former
minimizes the MMD of two different distributions, while the latter minimizes the
Wasserstein distance.
TARNet [26]: TARNet consists of the same model architecture as the CFR
model but removes the balance term (MMD or Wasserstein distance).
GCN-Based Methods [17]: Ma et al. [17] proposed methods to address
interference on a homogeneous graph using graph convolutional networks
(GCNs) [41]. The GCN-based method can use only a single view rather than
all views of heterogeneous graphs. To overcome it, we consider two schemes. The
first scheme is to replace heterogeneous graphs with a projection graph AProj

and apply the GCN-based method to the AProj, denoted as GCNProj. If two
units have an edge in either of the original heterogeneous graphs, there will be
an edge in this projection graph. The second scheme is to augment the GCN-
based method with mixing operations, which includes two variants: MGCNC and
MGCNM. The MGCNC concatenates interference representations from different
views into a single vector, while the MGCNM computes the mean vector of these
interference representations.

4.3 Experiment Settings

For all datasets, we calculated εPEHE/εATE to evaluate the error on ITE/ATE
estimations as follows:

εPEHE =
1
n

n∑
i=1

(τi − τ̂i)2, εATE =

∣∣∣∣∣
1
n

n∑
i=1

τi − 1
n

n∑
i=1

τ̂i

∣∣∣∣∣ . (11)

Following Ma et al. [17], the entire X, T, and heterogeneous graph structures
were given during the training, validation, and testing phases. However, only
the observed outcomes of the units in the training set were provided during the
training phase.

We randomly split all datasets into training/validation/test splits with a ratio
of 70%/15%/15%. Results on the Youtube and Flicker datasets were averaged
over ten realizations, while the results on the AMZ S dataset were averaged over
three repeated executions. We trained all models with the NVIDIA RTX A5000
GPU. All methods utilized the Adam optimizer with 2,000 training iterations
for all datasets. In addition, dropout and early stopping were applied for all
methods to avoid overfitting.

For all datasets, we set the learning rate to 0.001 with a weight decay
of 0.001, set the training batch size to 512, and searched γ in the range of
{0.01, 0.1, 0.5, 1.0, 1.5} using the validation sets. We used ReLU as activation
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Table 1. Results (mean ± standard errors) of performance of ITE and ATE estimation.
Results in bold indicate the lowest mean error. HINITE is our method.

Method Youtube Flicker AMZ S

εPEHE εATE εPEHE εATE
√

εPEHE εATE

TARNet 40.75 ± 7.95 0.51 ± 0.23 24.20 ± 6.79 0.30 ± 0.26 112.37 ± 11.54 103.91 ± 12.78

BNN-2-2 93.03 ± 16.02 0.26 ± 0.23 27.91 ± 7.53 0.13±0.07 199.37 ± 0.20 196.36 ± 0.20

BNN-4-0 105.38 ± 22.50 0.26 ± 0.23 29.22 ± 7.53 0.13±0.07 206.03 ± 0.08 203.12 ± 0.08

CFRMMD 42.02 ± 9.96 0.43 ± 0.36 24.44 ± 7.49 0.29 ± 0.17 103.18 ± 25.02 89.76 ± 32.13

CFRWASS 39.36 ± 8.76 0.51 ± 0.41 24.02 ± 6.71 0.35 ± 0.17 109.91 ± 24.49 99.40 ± 30.40

GCNProj 42.37 ± 7.45 0.61 ± 0.39 24.59 ± 5.11 0.21 ± 0.13 139.14 ± 20.63 135.57 ± 22.86

MGCNC 53.10 ± 11.83 0.29 ± 0.27 26.87 ± 6.43 0.25 ± 0.20 95.14 ± 8.25 72.08 ± 13.47

MGCNM 53.99 ± 13.46 0.37 ± 0.33 29.48 ± 7.17 0.29 ± 0.25 87.33 ± 3.40 60.81 ± 3.27

HINITE 14.43±3.27 0.21±0.20 18.45±4.42 0.15 ± 0.11 76.16±3.82 15.21±3.89

function for φ, fyti
, and node-level aggregations. The hidden layers of φ were

set to (128, 64, 64)-dimensions, ψ are set to (64, 64, 32)-dimensions, fyti
are set

to (128, 64, 32)-dimensions, and the dimensions of view-level attention were set
to (128, 128, 64)-dimensions. Moreover, we searched for hyperparameters for all
baseline methods from the search range suggested in the corresponding litera-
ture.

4.4 Results

Treatment Effect Estimation Performance. Table 1 lists the results of ITE and
ATE estimations on test sets of all datasets. It can be seen that the HINITE out-
performs all baseline methods in ITE estimation, while there are significant gaps
(p-values of the t-test are far less than 0.05) in ITE estimation between the pro-
posed and baseline methods. It can also be seen that HINITE outperforms most
baseline methods in ATE estimation, at least, achieving comparative perfor-
mance of ATE estimation to those of the baseline methods. These results reveal
that HINITE has a powerful ability to address heterogeneous interference. More-
over, the GCNProj and MGCN with some simple mixers cannot always achieve
better performance than other baseline methods. This implies that modeling
cross-view interference using the HIA layers is important.

Ablation Study. To further investigate the importance of each component of
HINITE, we conducted ablation experiments. Let us start by introducing some
variants of HINITE: (i) HINITE-PG applies the HINITE to the projection
graph AProj, which was described when introduced the GCN-based method.
(ii) HINITE-NHG replaces the HIA layers with GCN layers [12] while using the
AProj. (iii) HINITE-NB removes the HSIC regularization by setting γ to 0.

Figure 4 presents the results of the ablation experiments. A clear performance
gap can be seen in ITE and ATE estimation between the HINITE-PG/HINITE-
NHG and HINITE. This implies that it is important to model the heterogeneous
interference using the information of heterogeneous graphs and the proposed HIA
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Fig. 4. Results (mean and standard error) of ablation experiments. We set γ to 1.5 for
HINITE-PG, HINITE-NHG, and HINITE in the ablation experiments.

Fig. 5. Performance changes on Filker and Youtube datasets with different γ (in the
range of {0.01, 0.1, 0.5, 1.0}) . Results are averaged over ten realizations with a fixed
value of γ.
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layer. Comparing the results of HINITE and HINITE-NB, we can also observe
that removing the HSIC regularization results in performance degradation. This
reveals that it is also important to balance the different distributions.

Sensitivity analysis. To investigate whether HINITE is sensitive to γ, we con-
ducted experiments with different γ and present the results in Fig. 5. No signifi-
cant change in performance was observed with different values of γ. This reveals
that HINITE is not particularly sensitive to the value of γ.

5 Related Work

In the literature, efforts have been made to estimate treatment effect without
interference [2,7,11,13,23,24,26,42,43] and with interference on homogeneous
graphs [1,3,9,15,17,32,33,36] or hyper-graphs [16]. A few studies have consid-
ered heterogeneous graphs. For example, Qu et al. [20] assumed a partial inter-
ference and could only estimate ATE. Zhao et al. [46] proposed a method to
construct a heterogeneous graph from a homogeneous graph by learning a set
of weights for each edge using an attention mechanism, but their method can-
not capture interference between multi-view graph structures. We offer the first
approach for handling interference on multi-view graphs.

Meanwhile, heterogeneous graphs have been the subject of recent graph anal-
ysis studies, focusing on tasks such as node classification, link prediction, and
graph classification [4,10,14,27,28,38,39,44,45]. The proposed HINITE shares
some similarities with the heterogeneous graph attention network (HAN) [39].
However, HAN aggregates information from each view at the end of forward
propagation only once, while the proposed HINITE does aggregation layer-by-
layer, which is essential for capturing cross-view interference. In addition, we use
LeakyReLU (for view-level attention) instead of the tanh function as an acti-
vation function to address the vanishing gradient issue, and we use single-head
instead of multi-head attention for better efficiency.

6 Conclusion

In this paper, we described the problem of heterogeneous interference and the
difficulty of treatment effect estimations under heterogeneous interference. This
paper proposed HINITE to model the propagation of heterogeneous interference
using HIA layers that contain node-level aggregation, view-level aggregation,
and attention mechanisms. We conducted extensive experiments to verify the
performance of the proposed HINITE, where the results validate the effectiveness
of the HINITE in ITE and ATE estimation under heterogeneous interference.
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sity fellowships towards the creation of science technology innovation, Grant Number
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Abstract. We address the problem of regularization of linear regres-
sion models in uplift modeling and heterogeneous treatment effect esti-
mation. We consider interaction models which are commonly used by
statisticians in medicine and social sciences to estimate the causal effect
of a treatment, and introduce a new type of such a model. We demon-
strate the equivalence of all interaction models when no regularization is
present, and that this is no longer the case when the model is regularized.
Interaction terms introduce implicit correlations between treatment and
control coefficients into the regularizer, a fact which has not been previ-
ously noted. The correlations depend on the type of interaction model,
and by interpreting the regularizer as a prior distribution we were able to
pinpoint cases when a given regularized interaction model is most appro-
priate. An interesting property of the proposed new interaction type is
that it allows for smooth interpolation between two types of uplift regres-
sion models: the double model and the transformed target model. Our
results are valid for both ridge (L2) and Lasso (L1) regularization. Exper-
iments on synthetic data fully confirm our analyses. We also compare the
usefulness of various regularization schemes on real data.

Keywords: uplift modeling · heterogeneous treatment effect ·
regularization · linear models · Lasso

1 Introduction

Uplift modeling is a method of selecting targets for an action, such as a marketing
campaign or a medical treatment. To clarify the problem, consider the following
example. We administer a factory which produces a certain kind of product i.e.
skis. In order to increase our income we send discounts to potential customers.
Consider three kinds of customers. The first kind decides to buy skis, because
they received a discount (without the discount they wouldn’t have bought).
The second kind decides to not buy skis and sending the discount had no effect.
Customers of the third kind bought the skis but would have bought even without
the discount. For us it is profitable to send the discount only to the customers
of the first kind, but not to the second (no profits) and especially not to the
third (lost income due to sale at a lower price). A typical approach to solving
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the problem of choosing appropriate targets for an action is to predict results
after conducting a pilot campaign on a sample of the customers. If the predicted
income is above a given threshold, the observation is classified as suitable for
the action. However this approach in not correct because it doesn’t take into
consideration the counterfactual response in case the action would not have
been taken. The three groups of customers cannot be distinguished.

In uplift modeling our goal is to predict, for the i-th observation, the dif-
ference of responses yT

i when action was taken on it, and yC
i when the action

was not taken. Unfortunately we cannot directly compare those two outcomes,
because we observe only one of them. This is known as the Fundamental Problem
of Causal Inference [10].

Uplift modeling offers a solution of this problem. In this method we divide our
population into two groups: treatment on which the action is taken, and control,
which is not subjected to the action. Thanks to this we may decompose the effect
observed in the treatment group into two parts. The first is the background
(control) outcome and the second is the influence of the action which is only
observed in the treatment group. Using this decomposition we may construct a
model which will estimate the true effect of an action on an individual.

1.1 Related Work

Uplift modeling is a part of a broader problem of causal discovery, concentrating
not on predicting future responses, but on effects of interventions, which may be
dependent on the values of other variables [23]. Causal discovery has two major
branches. The first uses purely observational data [23,30]. In the second, the
action being analyzed has to be actively applied to a subgroup of individuals.
Those methods have many applications in social science and medicine [12].

Methods presented in this paper are relevant to the second approach. Most
research in this area focuses on cases when the treatment group is not selected
randomly, i.e. the treatment assignment mechanism is biased [7,12]. Those meth-
ods typically come under the name of Heterogeneous Treatment Effect esti-
mation [1,9]. Unfortunately those approaches (e.g. propensity score matching
or weighting) are based on untestable assumptions like ‘no unmeasured con-
founders’. The main focus of those methods is to correct the assignment bias
not on the estimation problem itself. Uplift modeling, in contrast, concentrates
on finding the best possible estimator under random assignment assumptions,
which guarantee that the causal effect of the action is identified correctly.

Most of publications on uplift modeling concentrate on the classification
problem. First works were based on decision trees [25,29]. They modified split-
ting criteria in order to maximize difference in responses between two groups.
Similar methods have been invented under the name of estimating heteroge-
neous treatment effect [1,9]. Several publications use modified response vari-
able [13,14,18] with linear models with such as logistic regression or Support
Vector Machines [17,31,32]. Estimators for regression problem where analyzed
in [27], where basic double regression approach is confronted with some new
ideas. Another way of improving on double regression is using shrinkage estima-
tors such as those proposed in [28].
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Regression models with interaction terms have been used for causal predic-
tion for decades, see [12, Chap. 7.6] or [7, Chap. 15]. The majority of works use
treatment interaction models described in the next section.

There are currently few works devoted specifically to the problem of regu-
larization in uplift modeling or heterogeneous treatment effect estimation. The
main textbook on causal effect modeling [12] only discusses the Lasso method for
variable selection on one page, and another [7] mentions the term ‘regularization’
only twice.

There are a few papers which introduce regularized uplift models but do not
thoroughly analyze the problem. Imai et al. [11] proposed an SVM model for
treatment effect estimation which used the Lasso penalty. This is in fact a vari-
ant of a regularized treatment interaction model, frequently used in literature.
In [5] a Lasso style model for uplift regression has been introduced, inspired by
multitask learning. The proposed model is similar to the models analyzed in this
work but includes interaction terms for both treatment and control making it
overparametrized which may lead to estimation problems. A similar approach
called Shared Data Representation was presented in [3].

The problem of regularization has been addressed by several authors working
on nonrandomized treatment assignment. In [22] fused lasso was applied to reg-
ularize propensity scores. Hahn et al. [6] discussed pitfalls of regularizing causal
models under non-random treatment assignment. Chernozhukov [2] addressed
the problem of variable selection for instrumental variables and confounding
controls. The goals of those works are different from ours, since we focus on
predictive accuracy in the case of randomized treatment assignment.

1.2 Notation

In the text, lowercase Latin and Greek letters denote vectors, uppercase letters:
matrices. Let ′ denote matrix transpose, Ip a p× p identity matrix, 0 the matrix
of zeros of appropriate size, and ⊗ the Kronecker product of matrices. All vectors
will be assumed to be column vectors, except the feature vectors, denoted with
letter x, assumed to be row vectors.

We assume to have a training set of n samples, with i-th sample being a
triple (xi, yi, ti), where xi ∈ R

p is a p-dimensional feature vector, yi ∈ R the
response, and ti ∈ {0, 1} the treatment indicator, where ti = 1 means that the
i-th case is in the experimental group (was subjected to the action) and ti = 0
indicates a control case.

Quantities related to the treatment group will be denoted with superscript
T and to the control group with superscript C. The superscript U will indicate
quantities related to the estimated uplift, i.e. the effect of the action. For exam-
ple, nT (nC) denotes the number of cases in the treatment (control) group. We
will make the usual assumptions taken when working with linear models, namely,
that the treatment and control responses are linear functions of the predictors [8]

yi =

{
xiβ

C + εi if ti = 0
xiβ

T + εi = xiβ
C + xiβ

U + εi if ti = 1,
(1)
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where βT and βC are the true coefficient vectors for treatment and control cases,
and εi are independent random error terms with equal variances and E εi = 0.

Notice that for treatment cases the response is the sum of control response
xiβ

C and the effect of the action xiβ
U . Clearly, βU = βT − βC is the parameter

of interest we want to estimate. We also introduce a vector βS = βT + βC such
that 1

2xiβ
S is the average of treatment and control responses for a case xi.

Finally, let us introduce a matrix XT ∈ R
nT ×p whose rows are feature vectors

of treatment cases, and a vector yT ∈ R
nT

of corresponding responses. For the
control group, XC and yC are defined analogously. The pairs (XT , yT ), (XC , yC)
can be interpreted as two separate treatment and control training sets.

2 Linear Models of Causal Influence

In this section we describe basic types of linear models used to estimate causal
effects and demonstrate their equivalence. Here we assume that the models do
not use regularization, which will be discussed in the next section.

2.1 The Double Model

The most common approach to uplift regression is the so called double model [27],
denoted as D. The model is also known as the T -learner [16]. To estimate βU ,
the model simply subtracts the coefficient vectors estimated separately on the
treatment and control samples: β̂U = β̂T − β̂C , where both sub-estimators are
obtained by minimizing some loss function �, such as square loss:

β̂T = arg min
β

nT∑
i=1

�(yT
i , xT

i β), β̂C = arg min
β

nC∑
i=1

�(yC
i , xC

i β). (2)

Let us rewrite the double model as a single regression model. Define an n × 2p
matrix X̃ and coefficient vector β̃ ∈ R

2p as

X̃ =
[
XT 0
0 XC

]
, β̃ =

[
βT

βC

]
, (3)

and let x̃i denote the i-th row of X. It is easy to see that estimating β̃ by
minimizing

n∑
i=1

�(yi, x̃iβ̃) (4)

is equivalent to Eq. 2.

2.2 Interaction Models

In medicine and social sciences casual effects are often estimated using so called
interaction models. A single regression model is build on combined treatment
and control data. The model includes a special interaction term which allows
for estimating the causal effect’s coefficients βU . We now discuss several such
models.
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Treatment Interaction Model (TI). The most common approach [11] is to use
an interaction between treatment indicator and all predictor variables, resulting
in a model based on the following assumption

yi = tixiβ
U + xiβ

C + εi. (5)

The coefficient βC describes the responses in the control group. Since xiβ
C is

also present in the treatment group, xiβ
U has to represent the effect of the treat-

ment. We call this model the treatment interaction model because the interaction
involves the treatment indicator. Later in the text the model will be denoted with
abbreviation TI.

It is easy to see that the model can be represented with a single regression
model whose design matrix and coefficient vector are[

XT XT

0 XC

]
,

[
βU

βC

]
, (6)

respectively. While this is the most common interaction model, other approaches
are also possible.

Symmetric Interaction Model (SI). Let us now introduce another interaction
model which is one of the contributions of this paper

yi =
(
ti − 1

2

)
xiβ

U + 1
2xiβ

S + εi. (7)

The model uses so called effect or deviation coding of the categorical treat-
ment variable, see [8, Sect. 10.8] or [4, Sect. 2.3.2]. The interpretation is that
1
2xiβ

S is the average of treated and control outcomes for case xi, and ± 1
2xiβ

U is
the difference from the mean for control/treatment response. The design matrix
and coefficient vector for the corresponding single regression model are

1
2

[
XT XT

−XC XC

]
,

[
βU

βS

]
. (8)

Some advantages of this model, such as lack of correlations in the prior and
a relationship with a model based on target variable transformation will be
discussed in the following sections.

The model is called the symmetric interaction model since the indicators for
treatment and control groups are treated in a symmetric fashion.

Table 1. Summary of linear interaction models analyzed in the paper

Model Double (D) Treatment Interaction (TI) Symmetric Interaction (SI) Control Interaction (CI)

Form
tiβ

Txi

+ (1 − ti)β
Cxi

tiβ
Uxi + βCxi

(
ti − 1

2

)
xiβ

U

+ 1
2
xiβ

S

− (1 − ti)β
Ux

+ βTx

Design matrix

[
XT 0

0 XC

]

,

[
βT

βC

] [
XT XT

0 XC

]

,

[
βU

βC

]
1
2

[
XT XT

−XC XC

]

,

[
βU

βS

] [
0 XT

−XC XC

]

,

[
βU

βT

]

Matrix Ã

[
1 0

0 1

] [
1 1

0 1

]
√

2

[
1
2

1
2

− 1
2

1
2

] [
0 1

−1 1

]

Regularizer λ1‖βT ‖ + λ2‖βC‖ λ1‖βU‖ + λ2‖βC‖ λ1‖βU‖ + λ2‖βS‖ λ1‖βU‖ + λ2‖βT ‖
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Control Interaction Model (CI). For completeness we also introduce a model
with interaction between the control group indicator and x’s, although we have
never seen this model used in literature:

yi = βT xi − (1 − ti)βUxi + εi. (9)

Here we estimate the treatment response for all cases, and correct for the strength
of causal influence in the control group.

All proposed models are summarized in Table 1. The first row displays the
models’ names and abbreviations. The following rows provide the models’ formu-
las, design matrices and coefficient vectors. The remaining rows will be explained
in the next section.

2.3 Unified Representation of Interaction Models

In this section we aim to unify all interaction models and demonstrate their
equivalence. The theorem below shows that when no regularization is present
all interaction models are in fact statistically equivalent with the double model
and, as a consequence, with each other.

Theorem 1. There is a one-to-one mapping between treatment interaction mod-
els and double models such that the corresponding models have identical values
of the training set losses and provide the same estimates of βU . An analogous
result holds for symmetric and control interaction models.

Proof. Recall that the double model (Eq. 2) can be recast as a single model
(Eq. 2) trained on the matrix X̃ given in Eq. 3, leading to an optimization prob-
lem given in Eq. 4. For any nonsingular 2p × 2p matrix A we have

n∑
i=1

�(yi, x̃iβ̃) =
n∑

i=1

�
(
yi, (x̃iA)(A−1β̃)

)
. (10)

So, for a given double model, multiplying the feature vectors and the coefficient
vector respectively by A and A−1 does not change the predicted value and thus
yields a model with the same empirical risk. This is a direct consequence of the
so called affine equivariance of classic least squares linear models [26, p. 116].

Take A to be [
1 1
0 1

]
⊗ Ip =

[
Ip Ip

0p Ip

]
,

and apply Eq. 10 to each row of the design matrix. We have

X̃A =
[
XT 0
0 XC

] [
Ip Ip

0p Ip

]
=

[
XT XT

0 XC

]
,

and after left-multiplying β̃ by A−1

A−1β̃ =
([

1 −1
0 1

]
⊗ Ip

)[
βT

βC

]
=

[
βT − βC

βC

]
=

[
βU

βC

]
,
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which is the design matrix and coefficient vector defining the treatment inter-
action model (Eq. 6). Thus, the matrix A defines a linear mapping between the
double and treatment interaction models such that the corresponding models
have the same empirical risk. The fact that the correspondence is one-to-one
follows from nonsingularity of matrix A. As a result, both types of models lead
to the same empirical risk minimizer and the same estimate of βU .

To obtain an analogous mapping for symmetric interaction model use the

matrix A =
[

1
2

1
2− 1

2
1
2

]
⊗ Ip, and for the control interaction model, the matrix

A =
[

0 1
−1 1

]
⊗ Ip.

To show the equivalence between two types of interaction models, consider
mapping models of the first type to the double model and than to the interaction
model of the second type. Equivalence follows from the fact that the composition
of one-to-one mappings is one-to-one. �

A consequence of the theorem is that, when no regularization is used, all
interaction models and the double model are essentially equivalent from the
statistical perspective: they provide identical estimates and the same predictions
on future data. A generic estimation procedure for interaction models can thus
be implemented conceptually as follows

1. Form the matrix X̃
2. Compute the matrix X̃A
3. Obtain an estimate β̂ based on X̃A and y

4. Compute β̂U = [Ip| − Ip]A−1β̂

In the last step above, we first transform β̂ into (β̂T , β̂C) and then multiply it
by [Ip| − Ip] to obtain β̂U = β̂T − β̂C .

Notice that all transformation matrices used in the proof have the form

A = Ã ⊗ Ip

for some 2 × 2 matrix Ã. The third row of Table 1 lists the matrices Ã for all
considered interaction models. The matrix for the symmetric interaction model
has an additional

√
2 factor. This factor cancels out in Eq. 10 and in step 4 of

the above procedure, so it will not affect the final estimate. The reason for its
introduction is explained in the next section.

3 Regularized Interaction Models

In the previous section we showed that all unregularized interaction models are
equivalent. We will now show that when regularization is present, this will no
longer be the case. Our analysis will be valid for all regularizers based on Lq

norms raised to the power q, but later we will focus on L1 and L2 norms.
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The most obvious way to regularize the double model is to separately regu-
larize the estimators for βT and βC thus minimizing the following cost function

n∑
i=1

�(y, x̃iβ̃) + λ1‖βT ‖q
q + λ2‖βC‖q

q =
n∑

i=1

�(y, x̃iβ̃) +
∥∥∥∥
[

q
√

λ1 0
0 q

√
λ2

]
β̃

∥∥∥∥
q

q

. (11)

For the interaction models, all approaches in literature apply regularization
directly to coefficient vectors present in the model. The fourth row of Table 1
lists the form of the regularizer for each type of model considered in the paper.

For example, in the treatment interaction model we separately regularize βU

and βC . This scheme looks appealing since we directly regularize the quantity of
interest, which is βU . However, this type of regularization introduces unexpected
interactions between the two regularized vectors. For example, letting λ2 → ∞
does not just influence the estimate of βC . The estimate of βU is also affected:
regularization will force βC → 0 and, as a result, βU will tend towards βT .

We will now analyze those issues further and provide guidelines on the sce-
narios where different types of regularized interaction models are most useful.

As we have seen above in Eq. 10, every interaction model can be expressed
as a linear transformation of the double model with an appropriately chosen
nonsingular matrix A. Using this fact and Eq. 11, every regularized interaction
model can be expressed as

n∑
i=1

�
(
y, (x̃iA)(A−1β̃)

)
+

∥∥∥ΛqA
−1β̃

∥∥∥q

q
, (12)

where Λq =
[

q
√

λ1 0
0 q

√
λ2

]
. Here the regularization is applied to the transformed

coefficient vector A−1β̃. Since A−1 does not cancel within the regularization
term, the model is no longer invariant under linear transformations, and therefore
different interaction models will lead to different regularization terms.

The equation demonstrates one of the main claims of the paper: regularized
interaction models are equivalent to the double model regularized with a penalty
based on a linear transformation of a unit sphere determined by the type of
interaction model used.

Indeed, let us now analyze the generic regularizer by looking at the shape of
the contours of its regularization regions. The contours are the sets of points{

β̃ :
∥∥∥ΛqA

−1β̃
∥∥∥

q
= r

}
, (13)

where r > 0 is a positive constant defining the contour. Substituting β = ΛqA
−1β̃

the contour equation becomes{
AΛ−1

q β : ‖β‖q = r
}

. (14)

Therefore the contour is a linear transform of an Lq norm sphere of radius
r. The shape of the contour will depend on the transformation matrix AΛ−1

q .
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Before providing a detailed analysis of the regularizers, let us first address the
question of scaling of the regularization parameters λ1, λ2. It would be desirable
if the same values of those parameters led to regularization regions of identical
size regardless of the type of interaction model used. Here, we chose to measure
the size of regularization contours by the volume they enclose. Let Vq(r, p) be the
volume of an Lq norm p-dimensional sphere of radius r. Since the regularization
regions are linear transformations of such spheres their volume is∣∣det

(
AΛ−1

q

)∣∣ Vq(r, p) = |det(A)|det
(
Λ−1

q

)
Vq(r, p). (15)

The equation follows since the Jacobian matrix of a linear transformation is
constant. Notice that the type of interaction only affects the matrix A which
has the form Ã ⊗ Ip, and whose determinant is detp(Ã) det(Ip)2 = detp(Ã) [24].
Notice that |det(Ã)| = 1 for all matrices Ã given in Table 1, so the volume of
the regularization regions will not depend on the type of interaction model used,
only on the values of λ1, λ2. To ensure this property, an additional

√
2 factor

was added to the symmetric interaction model’s design matrix.

3.1 Interpretation of Regularized Interaction Models

In order to give an intuition and visualize those contours we restrict ourselves
to the one variable case p = 1. The two coefficient vectors now become scalars
which can be visualized on a two dimensional plot. Figure 1 shows regularization
regions for r = 1 (unit sphere being transformed) and selected values of λ1 and
λ2 parameters for the four types of models given in Table 1. The corresponding
figure for the L2 norm is given in the supplementary materials1: it gives the same
overall picture with polygons replaced by ellipses. Supplementary materials also
include an illustrative figure with superimposed regions for different methods.

The main axes of the plots correspond to coefficients βT and βC . Additionally
we introduce two more diagonal axes corresponding to βU and βS respectively,
such that it is possible to see how the parameter of interest βU is regularized.
It can be seen (supplementary material) the for the L2 norm, the regularization
regions are ellipsoids whose main axes do not necessarily align with the main
axes of the plot. For the L1 norm the shapes are analogues of ellipsoids in that
norm.

Equivalently, we can view the regularizers from a Bayesian perspective as
prior distributions. For the L2 norm the prior will be Gaussian but with a non-
spherical covariance matrix; that is we assume a-priori, that parameter vectors
are correlated. In other words we assume some combinations of values of param-
eters vectors to be more likely than others. For the L1 norm the prior is a form
of multivariate Laplace distribution which, to the best of our knowledge, has
not been analyzed in literature.2 Nevertheless, correlation patterns are clearly
visible. Let us now discuss the priors of the four types of regularized models.
1 https://github.com/RudasKAP/ECML PKDD 2023 supplementary.
2 The most popular definition of the multivariate Laplace distribution is based on the

square root of a quadratic form, see e.g. [15].

https://github.com/RudasKAP/ECML_PKDD_2023_supplementary
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Fig. 1. Regularization regions in L1 norm, for different types of estimators and different
parameters λ1, λ2 for p = 1

Table 2. Scenarios in which different interaction models match the true coefficients

Scenario Condition Estimator

D SI TI CI

1. βS ≈ 0; βT , βC large βT ≈ −βC

2. βT ≈ 0; βU , βC large βU ≈ −βC

3. βC ≈ 0; βU , βT large βU ≈ βT

4. βU ≈ 0; βT , βC large βT ≈ βC

First, it can be seen that the regularized double model does not assume
a-priori correlation between βT and βC . More interestingly the symmetric inter-
action model does not assume correlation between βU and βS . We believe this
property to be important in practice, since the parameter of interest βU is not
affected by the other regularization term. In other words the average response
βS can be regularized with arbitrary strength without affecting βU . Out of all
four models, this is the only one possessing this property.

On the other hand the TI and CI models assume a-priori correlations between
the true uplift βU and other coefficients. For example, in the TI model βU is
assumed to be positively correlated with βT and βS .
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3.2 Applicability Scenarios for Regularized Interaction Models

Let us now examine scenarios in which various types of regularized interaction
models are likely to yield the most accurate predictive models. We confirm those
arguments experimentally in the next section.

We assume that the regularization (or equivalently prior distribution) gives
the best results if it corresponds to the true values of the estimated parameters.
Table 2 lists several such scenarios and indicates which models are appropriate
for them. The third column gives the condition describing the region to which
the parameters belong.

For example, in Scenario 1, the average of treatment and control responses
for a given feature vector x is close to zero, while treatment and control responses
are relatively large. This implies βT ≈ −βC and the true parameters lie in the
upper left and lower right corners in the plots in Fig. 1. Looking at the figure it
can be seen that only the symmetric interaction model (SI) is able to provide a
prior matching those areas (the first chart in the second row in the figure). Other
models can only achieve this by significantly decreasing the overall regularization
strength.

Similar arguments can be used to pinpoint models most suitable in other
scenarios in Table 2. From the practical point of view the most important are
Scenarios 3 and 4, which correspond, respectively, to low control response and
small effect of the action. The treatment interaction model is able to cover both
those cases which may explain its popularity in literature.

Notice also that when both βT , βC ≈ 0 all models should provide effective
regularization.

3.3 Relationship Between Symmetric Interaction Model and
Transformed Target Variable Regression

In [27] a different estimator for treatment effect coefficients has been proposed,
which works by concatenating the treatment and control training sets and build-
ing a single regression model on a transformed target variable

ȳi =

{
2yi if ti = 1,

−2yi if ti = 0.

Theorem 2. When nT = nC , the square loss is used, and λ2 → ∞ with λ1 held
fixed, the symmetric interaction model (SI) tends to the variable transformation
model regularized with 4λ1‖βU‖q

q.

The proof can be found in the supplementary material.

4 Experimental Evaluation

In this section let ntest denote the number of test cases, xtesti the feature vector
of i-th test case and τi the true uplift for the i-th test case, i.e. the difference
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between potential outcome has case i been subjected to the action and the
potential outcome has case i been a control. This value is available only for
synthetic data since in real data only one of the outcomes is observed [10].

4.1 Evaluation of Uplift Regression Models

We first need to discuss the issue of evaluation of uplift regression models. A nat-
ural choice is the Mean Squared Error MSE(β̂U ) = 1

ntest

∑ntest

i=1

(
τi −xtesti β̂

U
)2.

Unfortunately, τi is unknown for real data so there is a need for an alternative
measure. We therefore propose a measure for evaluating uplift regression models
which we call by quantile MSE or QMSE for short. This measure is similar to
expected uplift calibration error (EUCE) proposed in [21], except that squared
loss is used instead of absolute value. The measure is calculated as follows.

Let XT
test and XC

test be the treatment and control test sets. Compute the
corresponding vectors of model predictions XT

testβ̂
U , XC

testβ̂
U . The vectors are

sorted and split into J quantiles (10 in our case). Let QT
j and QC

j denote the
indices of, respectively, treatment and control test records in the j-th treatment
or, respectively, control quantile. Compute the MSE within j-th quantile as

MSEj(β̂U ) =
1

nT
j

∑
i∈QT

j

(
xtesti β̂

U −
(

1
nT

j

∑
i∈QT

j

yi − 1
nC

j

∑
i∈QC

j

yi

))2

,

where nT
j and nC

j are the number of treatment and control records in the j-th
quantile. The final QMSE measure is QMSE(β̂U ) = 1

J

∑J
i=1 MSEj(β̂U ).

Fig. 2. MSE of estimators with L1 penalty under different simulation scenarios

4.2 Synthetic Data

In this section we evaluate regularized uplift regression estimators on synthetic
data. We begin by describing the experimental procedure.



Regularization for Uplift Regression 605

For a given number of columns (p = 160) we generated random predictor
matrices X with increasing number of rows. For L1 regularization we used n ∈
{60, 80, 100, 120} and for L2 regularization n ∈ {180, 200, 250, 500}. The reason
was that L1 regularization is supposed to work better when p > n and L2

regularization when n > p. Each row xi of X is generated from the multivariate
normal distribution with zero mean and unit covariance matrix. Each sample
is assigned to the treatment or control group at random but with fixed group
proportions nT

n = nC

n = 1
2 . The outcome variables are then generated based on

Eq. 1 with εi ∼ N (0, 1). ntest = 10 000 was used with identical data generation
mechanism.

Regularized models require the choice of regularization parameter values. In
our case we use 3-fold crossvalidation and select all regularization parameters
from the set {10−3, 10−2, 10−1, 1, 10} for both λ1 and λ2.

Since τi is known for simulated data, we use the classic MSE criterion to assess
model performance. Parameter selection is still performed based on QMSE for
consistency with experiments on real data.

In our simulations we use vectors βC and βU corresponding to the four scenar-
ios presented in Table 2. The actual coefficient vectors are given in supplementary
materials. We include five estimators in the comparison: the nonregularized dou-
ble model (UNREG), the regularized double model (D), and three regularized
interaction models: treatment interaction (TI), symmetric interaction (SI) and
control interaction (CI). Note that all unregularized models are equivalent so
only one of them is included.

Results for L1 regularization are presented in Fig. 2. We observe that for the
first scenario the best results are achieved by the symmetric interaction method.
This is consistent with Table 2 and discussion in Sect. 3 which suggest the SI
method is most suitable when values of βS are small. Interestingly the double
regularized model also performed well.

The second and third plots correspond to the situation when βT ≈ 0 and
βC ≈ 0 respectively. In both cases double regularized method performs well.
When βT ≈ 0 the control interaction model also attains good results, but treat-
ment interaction model behaves badly. For βC ≈ 0 we have the opposite situa-
tion. Again, those results are in line with theoretical predictions.

The fourth plot presents the case when the action’s impact (βU ) is small.
All regularized methods, except the double regularized model achieve good and
comparable results. This observation is again consistent with the fact that reg-
ularization regions with small values of uplift occur naturally in those methods.

Similar conclusions could be drawn from the results for L2 regularization,
which are shown in the supplementary material due to lack of space. Overall we
conclude that experiments on synthetic data fully confirm theoretical analysis
from Sect. 3 for both L1 and L2 regularized models.

4.3 Experiments on Real Data

Description of datasets. The first dataset we use is the IHDP dataset [20]. The
dataset describes the results of a program whose target groups were low birth-



606 K. Rudaś and S. Jaroszewicz

weight infants. A randomly selected subset of them received additional support
such as home visits and access to a child development center. We want to identify
infants whose IQ (the target variable) increased because of the intervention pro-
gram. There are 377 treatment and 608 control cases. We also ran experiments
on the well known Lalonde dataset [19], see supplementary materials.

Results. During experiments each dataset was split into training (70%) and
test parts (30%), stratified by treatment. Models are built and tuned on the
training part (λ1 and λ2 are chosen form the same set {10−5, 10−4, 10−3, 10−2,
10−1, 1, 10}) and their QMSE’s are computed on the test part. To make the
results easier to understand for each model we compute the difference δ QMSE
from the best model, i.e. for a model m

δ QMSEm = |QMSEm −min
i

QMSEi |,

where QMSEm is the QMSE of model m. The train/test split is repeated 100
times and box plots of δ QMSEm are shown for each model. This way we can
visualize in a single plot how well, each model performed relative to others.

Fig. 3. Results for the IHDP dataset

Results for the IHDP dataset are presented in Fig. 3. All regularizers perform
very well and beat unregularized models by a wide margin. We notice that sym-
metric interaction method achieves the best results out of all of L2 regularizers.
For L1 regularization the smallest values of δ QMSEm were obtained by the reg-
ularized double model. While all methods perform well in general, it is worth
trying different interaction models since there is a possibility that some of them
may better match true coefficient vectors.

5 Conclusions

We have analyzed the problem of regularizing uplift regression models. We have
shown that the type of interaction term used has a strong influence on the
corresponding prior in unexpected ways. As a result, we were able to describe
scenarios where each regularized model is most useful. Experiments on simulated
data fully confirm our analyses, and experiments on real data demonstrate the
usefulness of regularizing interaction models.
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Abstract. The Dirichlet process is one of the most widely used priors
in Bayesian clustering. This process allows for a nonparametric estima-
tion of the number of clusters when partitioning datasets. The “rich-get-
richer” property is a key feature of this process, and transcribes that the
a priori probability for a cluster to get selected dependent linearly on
its population.
In this paper, we show that such hypothesis is not necessarily optimal. We
derive the Powered Dirichlet Process as a generalization of the Dirichlet-
Multinomial distribution as an answer to this problem. We then derive
some of its fundamental properties (expected number of clusters, conver-
gence). Unlike state-of-the-art efforts in this direction, this new formu-
lation allows for direct control of the importance of the “rich-get-richer”
prior. We confront our proposition to several simulated and real-world
datasets, and confirm that our formulation allows for significantly better
results in both cases.

Keywords: Dirichlet processes · Rich-get-richer · Discrete
mathematics · Clustering · Bayesian prior

1 Introduction

The Bayesian clustering approach received a broad attention over the last
decades. A non-exhaustive list of application includes medicine, [13], natural
language processing [4,33], genetics [16,20,23], recommender systems [1,10,22],
sociology [6,12], etc. The key idea is to generate a set of independent obser-
vations according to a set of latent variables (clusters). Given a set of existing
observations, the prior probability that the next one is generated by any cluster
depends on the number of observations they already generated. A very popular
prior on clusters distributions that allows this is the Dirichlet distribution. It
can be expressed as a process, the Dirichlet process, which allows new observa-
tions to be generated by yet unobserved clusters (that have not generated any
observations).
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However, the Dirichlet process’ (and the related Pitman-Yor process’) under-
lying hypothesis is that the prior probability depends linearly on the number of
existing observations from a cluster: the rich-get-richer property [7]. While this
seems a reasonable hypothesis in the complete absence of additional information
on the generative process, it fails to describe situations where data is available
beforehand. Depending on the data, there might not be any reason for clusters
growth to rely linearly on their population, if at all [23,30] In most cases, an
ad-hoc solution is to fine-tune the Dirichlet process’ concentration parameter
α. However, this practice makes the resulting model unable to consider new
data without fine tuning the α parameter again. This is a major problem due
to most Dirichlet processes being used for online inference, where data is con-
sidered sequentially. Any new observation thus requires fitting the whole model
once again. The need for alternatives to vanilla Dirichlet processes has already
been pointed out in earlier works [31]. This problem is especially visible in the
case of imbalanced data and scale-dependent clustering.

As an example of the imbalance problem, consider a case where data is treated
sequentially –which is often the case when it comes to Dirichlet process. A new
observation would have a much larger a priori probability to belong to a popu-
lated but irrelevant cluster, than to open a new one (this probability decreases
as 1

Nobs
in vanilla Dirichlet processes). In most situations where it is used, the

“rich-get-richer” hypothesis does not transcribe the reality of a situation. For
instance, when sampling topics from news streams [30,32], there is no reason for
a new topic to appear in the feed at a rate α log N as in Dirichlet processes.

As for scale-dependent clustering, similar problems arise. Consider clus-
tering people pinpointed on a map. Tiny clusters (at the scale of cities, for
instance) might go unnoticed if clusters are created for larger scales (countries,
for instance). The problem can be avoided by fine-tuning the α parameter so that
city-scale clusters are found. But then, adding new observations would break the
so-found balance on the clusters’ scale, because of the rich-get-richer property.
In vanilla Dirichlet processes, the number of clusters grow logarithmically with
the number of observations; for instance, if the number of cities grows subloga-
rithmically with the population instead, adding new observations would require
fine-tuning α and fitting the whole model again to get relevant results. In this
case, the “rich-get-richer” assumption as is may be too strong a hypothesis, but a
“rich-get-no-richer” [30] might as well fail to capture any density-related effect;
the optimal solution would be in-between these two priors, depending on the
clustering objective. We explore such a case in Fig. 4.

We design a method to bridge the variety of possible priors between the
Dirichlet process (DP) and the Uniform process (UP), in a continuous fash-
ion. By generalizing these works, we show the existence of an unexplored class
of behaviours, such as “rich-get-less-richer”, “rich-get-more-richer” and “poor-
get-richer”. Little has been done in exploring alternative forms of priors for
nonparametric Bayesian modeling. In the present work, we propose to explicitly
tune the importance of the “rich-get-richer” assumption. The resulting Powered
Dirichlet Process (PDP) generalizes state-of-the-art works such as UP [30] and
DP. We show that controlling the “rich-get-richer” prior allows for better results
on both synthetic and real-world datasets.
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2 Background

2.1 Motivation

This work is motivated by the need to control the “rich-get-richer” assumption’s
importance in Dirichlet process priors. The “rich-get-richer” property of the DP
may not always make it the suitable prior for modeling a given dataset. The
usual motivation for using a DP prior is that a new observation has a prior
probability of being assigned to any cluster proportional to its population. This
leads to a prior probability of opening a new cluster decreasing as the inverse of
the number of observations, which makes little sense in a number of real-world
situations.

Most state-of-the-art works rely on tuning a parameter α (see Eq. 1) to get
the “right” number of clusters. This parameter shifts the distribution of the
number of clusters as E(K|N) ∝ α log N with K the number of clusters and N
the number of observations. However, we argue this is a bad practice in some
cases, typically when clusters size Nc grows sublinearly with the number of
observations N [3]. For instance, tackling entity resolution problems need such
sublinear growth [26,27]. When data is treated sequentially, the α parameter has
to be fine-tuned after the fit has been performed; because its value depends on
the number of observations, it makes the model unsuitable to train on new data
without fitting and fine-tuning α again.

To alleviate this problem, we derive a more general form of the DP process
that allows for natural control of the “rich-get-richer” property.

2.2 Previous Works

Dirichlet Process. A well-known metaphor for the Dirichlet process is referred
to as “Chinese restaurant”. The corresponding process is named “Chinese
Restaurant Process” (CRP): if a nth client enters a Chinese restaurant, they
will sit at one of the K already occupied table with a probability proportional
to the number of persons already sat at this table. They can also go to a new
table and be the first client to sit there with a probability inversely proportional
to the total number of clients in the restaurant. It can be written formally as:

CRP (Ci = c|α,C1, C2, ..., Ci−1) =

{
Nc

α+N if c = 1, 2, ..., K
α

α+N if c = K+1
(1)

where c is the cluster chosen by the ith customer, Nk is the population of cluster
k, K is the number of already occupied tables and α the concentration parameter.
When the number of clients goes to infinity, this process is equivalent to a draw
from a Dirichlet distribution over an infinite number of clusters with a uniform
concentration parameter α. It can be shown that the expected number of clusters
after N observations evolves as log N [2].

The two best-known variations of the regular Dirichlet process that address
the “rich-get-richer” property control are the seminal Pitman-Yor process and
the Uniform process. Each of them can be expressed in a similar form as Eq. 1.
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Uniform Process. The Uniform process has been used in some occasions [16,
23] without proper definition. More recently, it has been formalized and studied
in comparison with the regular Dirichlet and Pitman-Yor processes [30]. It reads:

UP (Ci = c|α,C1, C2, ..., Ci−1) =

{
1

α+K if c = 1, 2, ..., K
α

α+K if c = K+1
(2)

Its formulation completely gets rid of the “rich-get-richer” property. The
probability of a new client joining an occupied table is a uniform distribution
over the number of occupied tables; it does not depend on the tables’ population.
In [30], it has been shown that the expected number of tables evolves with N as√

N . Removing the “rich-get-richer” property leads to a flat prior. As we show
later, our formulation allows to retrieve such flat priors and thus generalizes the
Uniform Process.

The authors also address the non-exchangeability of this process; they argue
that it plays a minor role in inference tasks when using Gibbs sampling algo-
rithms. A recent extension of the Uniform process that guarantees its exchange-
ability has been proposed in [18]. In this work, the a priori probability of opening
a new cluster is a constant anymore, and the a priori probability to belong to
either cluster is constant as in [30]. However, it does not allow for direct control
of the “rich-get-richer” property, which is absent of the proposed process.

Pitman-Yor Process. Following the Chinese Restaurant process metaphor,
the Pitman-Yor process [15,21] proposed to incorporate a discount β when a
client opens a new table. Mathematically, the process can be formulated as:

PY (Ci = c|α, β,C1, C2, ..., Ci−1) =

{
Nc−β
α+N if c = 1, 2, ..., K
α+βK
α+N if c = K+1

(3)

The introduction of the discount parameter increases the probability of cre-
ating new clusters. A table with fewer customers has significantly less chances
to gain new ones, while the probability of opening a new table increases signif-
icantly. It can be shown that the number of tables evolves with the number of
clients N as Nβ [11,28]. However, this process does not control the arguable
“rich-get-richer” hypothesis [31], since the relation to the population of a table
remains linear; it only scales the linear dependence of a value β. The Pitman-Yor
process thus comes with two limitations. First, since β > 0, it cannot be tuned
to generate fewer clusters. Second, the discount parameter does not affect the
linear dependence on previous observations for cluster allocations—rich still get
richer.

Other Rich-Get-Richer Priors. Another similar prior, the Power-law Indian
Buffet Process, has been proposed so that a realization would yield a number of
clusters obeying a power-law as the number of observations increases [29]. This
formulation can be seen as a generalization of the Pitman-Yor process; it adds an



Powered Dirichlet Process 615

additional parameter that sums with the number of observations. However, the
posterior probability for a new customer to belong to a cluster depends linearly
on each cluster’s size, and the “rich-get-richer” hypothesis is preserved.

Finally, the Generalized Gamma Process proposed a similar discount idea to
increase the probability of opening new clusters in [19]. The proposed prior [19]-
Eq. 4 modifies a cluster’s probability to get chosen by subtracting a constant
term to each cluster’s population. Thus, the “rich-get-richer” property is not
alleviated in their approach either, since the dependence on cluster’s population
is still linear. As for the PY process, this formulation only allows to increase the
number of clusters and does not alleviate the “rich-get-richer” hypothesis.

2.3 Contributions

In the present work, we derive the Powered Dirichlet Process (PDP) that
allows controlling the “rich-get-richer” property while generalizing state-of-the-
art works. This allows to define new classes of a priori hypotheses: poor-get-
richer, rich-get-no-richer (Uniform process), rich-get-less-richer, rich-get-richer
(DP), and rich-get-more-richer. We detail some key-properties of the Powered
Dirichlet Process (convergence, expected number of clusters). Finally, we show
that controlling the “rich-get-richer” prior of simple models yields better results
on synthetic and real-world datasets.

3 The Model

3.1 The Dirichlet-Multinomial Distribution

We recall:

Dir(p|α) =
∏

k pαk−1
k

B(α)
Mult(N |N,p) =

Γ (n + 1)∏
k Γ (Nk + 1)

∏
k

pNk

k (4)

With N = (N1, N2, ..., NK) where Nk is the integer number of draws assigned
to cluster k, N =

∑
k Nk the total number of draws, Γ (x) = (x − 1)! and

B(x) =
∏

k Γ (xk)/Γ (
∑

k xk).
The regular Dirichlet process can be derived from the Dirichlet-Multinomial

distribution. The Dirichlet-Multinomial distribution is defined as follows:

DirMult(N |α, n) =
∫

p

Mult(N |p, n)Dir(p|α)dp

=
B(α + N)Γ (n + 1)
B(α)

∏
k Γ (Nk + 1)

∫
p

∏
k pNk+αk−1

k

B(α + N)︸ ︷︷ ︸
Dir(p|α+N )

dp

=
Γ (

∑
k αk)Γ (n + 1)

Γ (
∑

k αk + Nk)

K∏
k=1

Γ (Nk + αk)
Γ (Nk + 1)Γ (αk)

(5)
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In Eq. 5, we sample n values over a space of K distinct clusters each with
probability p = (p1, p2, ..., pK), using a Dirichlet prior with parameter α =
(α1, α2, ..., αK).

Now to express this as a Dirichlet Process, we need the probability for a new
observation to belong to either cluster given the history of draws. Given Eq. 5,
it is equivalent to drawing from a Categorical distribution with a Dirichlet prior
with concentration parameter α + N .

3.2 Powered Conditional Dirichlet Prior

In the standard Dirichlet-Multinomial posterior predictive, the categorical distri-
bution is coupled with a Dirichlet prior Dir(p|α+N). We propose to modify this
prior by defining the Powered Dirichlet prior that has a nonlinear dependence
on the history of draws:

Dirr(p|α,N) =
1

B(α + Nr )

∏
k

p
αk+Nr

k−1
k (6)

where Nr = (Nr
1 , ..., Nr

K) still represents the population of each cluster, but
at the power r. The parameter r ∈ R controls the intensity of the shift on the
concentration parameter. It is straightforward to demonstrate that the Powered
Dirichlet distribution is a conjugate prior of the Multinomial distribution.

3.3 Posterior Predictive

We are looking for the probability of the nth draw belonging to cluster k. Let c =
(c1, ..., cK) where ck = 1 if the observation belongs to cluster k, and 0 otherwise.
The probability of a draw from the Categorical distribution Cat(c|p) =

∏
k pck

k

given a Powered Dirichlet prior as defined Eq. 6 reads:

DirCatr(c|α,N) =
∫

p

Cat(c|p)Dirr(p|α,N)dp

=
∫

p

1
B(α + Nr )

∏
k

p
ck+αk+Nr

k−1
k dp =

B(c + α + Nr )
B(α + Nr )

(7)

3.4 Powered Dirichlet Process

We finally derive an expression for the Powered Dirichlet Process from Eq. 7.
Taking back the conditional probability for the nth observation to belong to
cluster c (Eq. 7), we have:

DirCatr(c|N ,α) =B(c + α + Nr )/B(α + Nr )

=
(Nr

c + αc)
∏

k Γ (Nr
k + αk)

(
∑

k Nr
k + αk)Γ (

∑
k Nr

k + αk)
· Γ (

∑
k Nr

k + αk)∏
k Γ (Nr

k + αk)

=
Nr

c + αc∑
k Nr

k + αk

(8)
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Now that we have the probability for each draw to belong to any cluster,
we can iterate Eq. 8 as a process over K clusters. Finally, we assume an infinity
of available clusters (K → ∞). When considering a new observation, we must
associate it to one of these clusters, that can be empty (Nk = 0) or non-empty
(Nk > 0).

From Eq. 8, the probability of choosing a non-empty cluster c linearly depends
on Nr

c + αc; the probability of choosing one empty cluster linearly depends on
αc. However, all empty clusters are rigorously interchangeable, because they
are fully characterized by their (null) population. We can therefore describe
the initial probability of choosing any cluster with a single value α :=

∑∞
k αk.

Because the number clusters is infinite, it follows that
∑K

k αk → 0 for any finite
set of K clusters. Therefore, for the finite set of non-empty clusters, αk = 0. On
the other hand, for the infinite set of empty clusters, the sum of their αk goes
to α.

In the following, we rewrite K the number of non-empty clusters, and K + 1
any of the empty clusters. This transition between the finite Dirichlet-Categorical
distribution and the infinite Dirichlet Process is standard in the literature [8,17].
From these considerations and Eq. 8, the Powered Dirichlet Process follows:

PDP (Cn = c|α,C1, C2, ..., Ci−1) =

⎧⎨
⎩

Nr
c

α+
∑K

k Nr
k

if c = 1, 2, ..., K
α

α+
∑K

k Nr
k

if c = K+1
(9)

This formulation generalizes the Uniform process when r = 0 and the Dirich-
let process when r = 1.

We illustrate the change on prior probability for an existing cluster to get
chosen due to the Powered Dirichlet Process in Fig. 1. This figure plots the

Fig. 1. Illustration of the effect of r on the Powered Dirichlet Process prior probability.
Populations have been randomly sampled from a uniform distribution.
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population of clusters (grey bars) and their associated prior probability of being
selected. When r > 1, the most populated clusters are associated with a higher
prior probability than in the standard CRP, whereas the less populated ones
have even less chances to get chosen; rich-get-more-richer. When r < 1, the exact
opposite is observed; rich-get-less-richer. In the limit case r = 0, we recover the
Uniform Process; rich get-no-richer.

4 Properties of the Powered Dirichlet Process

4.1 Convergence

Proposition 1. For N → ∞, the Powered Dirichlet Process converges to a
stationary distribution. When r < 1, it converges to a uniform distribution, and
when r > 1, it converges to a Dirac distribution.

Proof. We start with a simple situation where only 2 clusters are involved. The
generalization to the case where K → ∞ clusters are involved is straightfor-
ward. When clusters’ population is large enough, we make the following Taylor
approximation:

(Ni + 1)r = Nr
i (1 +

1
Ni

)r = Nr
i + rNr−1

i + O(Nr−2) (10)

Since the population of a cluster Ni is a non-decreasing function of N , we
assume that first order Taylor approximation holds when N → ∞. Given clusters
population at the N th observation, we perform a stability analysis of the gap
between probabilities Δp(N) = p1(N) − p2(N). We recall that the probability
for cluster i to get selected at step N is pi(N) = Nr

i /(
∑

k Nr
k ). Either cluster is

selected with this probability at step N + 1: Δp(N + 1) = p1(N + 1) − p2(N)
with probability p1(N), and Δp(N + 1) = p1(N) − p2(N + 1) with probability
p2(N)). Explicitly, the variation of the gap between probabilities when N grows
is written as:

p1(N)(p1(N + 1) − p2(N)) + p2(N)(p1(N) − p2(N + 1)) − Δp(N)

Δp(N)

Eq. 10≈ 1

p1(N) − p2(N)
×

(
p1(N)

Nr
1 − Nr

2 + rNr−1
1

Nr
1 + Nr

2 + rNr−1
1

+ p2(N)
Nr

1 − Nr
2 − rNr−1

2

Nr
1 + Nr

2 + rNr−1
2

)

=
2rNr

1Nr
2

(Nr
1 + Nr

2 + rNr−1
1 )(Nr

1 + Nr
2 + rNr−1

2 )

(
Nr−1

1 − Nr−1
2

Nr
1 − Nr

2

) (11)

We see in Eq. 11 that the sign of the variation of the gap between probabili-
ties depend only on the term Nr−1

1 −Nr−1
2

Nr
1 −Nr

2
. We can therefore perform a stability

analysis of the Powered Dirichlet Process using only this expression.
— For 0 < r < 1 the following relation holds: Nr−1

1 − Nr−1
2 < 0 ⇔ Nr

1 −
Nr

2 > 0 ∀N1, N2, and conversely. That makes right hand side of Eq. 11 negative.
Therefore adding a new observation statistically reduces the gap between the



Powered Dirichlet Process 619

probabilities of the two clusters. We could forecast this prediction from Eq. 10.
We see that the more a cluster is populated, the less a new observation increases
its probability at the next step – rich-get-less-richer. Moreover, we see from Eq. 10
that a crowded cluster (such as Nr

1 	 Nr
2 ) see its probability evolve as Nr−1.

Asymptotically, the only fixed point of Eq. 11 when N → ∞ is N1 → N2, which
implies a uniform distribution. We verify this result numerically in Fig. 2-left.

— For r > 1 the following relation holds: Nr−1
1 − Nr−1

2 > 0 ⇔ Nr
1 − Nr

2 >
0 ∀N1, N2; that makes right hand side of Eq. 11 positive. Adding a new obser-
vation statistically increases the gap between probabilities. From Eq. 10, we see
that the more a cluster is populated, the more a new observation increases its
probability at the next step – rich-get-more-richer. In this case, Eq. 11 has K +1
fixed points, with K the number of clusters. The uniform distribution is an unsta-
ble fixed point, while K Dirac distributions (each on one cluster) are stable fixed
points of the system. It means the gap converges to 1, that is a probability of 1
for one cluster and a probability of 0 for the others.

— For r = 1, the right hand side of Eq. 11 is null. It means the gap remains
statistically constant ∀Ni, which is a classical result for the regular Dirichlet
process. This convergence has already been studied on many occasions [2,7].

— For r → 0, Eq. 11 is not defined anymore. That is because the probability
for a cluster to be chosen does not depend on its population anymore. In this
case, p1(N)−p2(N) ∝ N0

1 −N0
2 = 0: the probability for any cluster to be chosen

is equal at all times, hence the Uniform process – “rich-get-no-richer”.

4.2 Expected Number of Tables

Proposition 2. When N is large,
∑

k Nr
k varies with N as N

r2+1
2 when r < 1,

and with Nr when r ≥ 1.

Proof. Taking back Eq. 9, we are interested in the variation of pi = Nr
i∑

k Nr
k

according to N when Nr
i is large. Since Ni is either way a non-decreasing func-

tion of N , we reformulate the constraint Nr
i large into Nr large:

pi(N + 1) − pi(N) =

{
rNr−1

i +O(Nr−2)
∑

k Nr
k

if Ni grows

0 otherwise
(12)

— For r < 1, the larger Ni the slower the variation of pi. It means that for
large Nr

i , we can write Ni ∝ Npi, with pi being now independent N .
— For r > 1, the probability pi varies greatly with N and quickly converges to

1 for large N (see Proposition 1), and so Ni ≈ N for cluster i and Nj �=i � Ni ∀j.
Because the sum

∑
k Nr

k mostly varies according to large Nk, we approximate∑
k Nr

k ≈ Nr
∑

k pr
k for large Nr.

Besides, we showed in Proposition 1 that for large N the process converges
to a uniform distribution for r < 1 and to a Dirac distribution when r > 1.
Therefore, we can express

∑K
k pr

k as:

K∑
k

pr
k

N�1≈
{

K · ( 1
K )r = K1−r for r < 1

1 for r ≥ 1
(13)
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Based on the demonstration of Eq. 4 in [30], we assume that K evolves with
N as N

1−r
2 when r < 1. We verify that this assumption holds in the Experiment

section, Fig. 2-middle.
Therefore, we can write:

∑
k

Nr
k ≈ Nr

K∑
k

pr
k ≈

⎧⎨
⎩Nr

(
N

1−r
2

)1−r

= N
1+r2

2 for r < 1

Nr for r ≥ 1
(14)

Proposition 3. For N 	 1, the expected number of tables of the Powered
Dirichlet Process grows with N as H r2+1

2
(N) for r < 1 and as Hr(N) when

r ≥ 1, where Hm(n) is the generalized harmonic number.

Proof. In general, the expected number of clusters at the N th step can be written
as:

E(K|N, r) =
N∑
1

α∑
k Nr

k + α

Nr�1∝
N∑
1

1∑
k Nr

k

(15)

We showed in Proposition 2 that we can rewrite
∑

k Nr
k ∝ N

r2+1
2 when r < 1

and
∑

k Nr
k ∝ Nr when r ≥ 1. Injecting this result in Eq. 15, we get:

E(K|N, r)
Nr�1∝

⎧⎪⎪⎨
⎪⎪⎩

∑N
1 N− r2+1

2 = H r2+1
2

(N) for r < 1

∑N
1 N−r = Hr(N) for r ≥ 1

(16)

This result is verified numerically in Fig. 2-right.

— For r = 1, E(K|N, r = 1) ∝ H1(N) ≈ γ + log(N) where γ is the Euler-
Mascheroni constant, which is a classical result for the regular Dirichlet process.

Fig. 2. Numerical validation of Propositions 1 (left), 2 (middle), 3 (right). In the first
plot, K is the number of non-empty clusters. In the second and third plots, the theoret-
ical results are the solid lines and the associated numerical results are the transparent
lines of same color. Except for small N , the difference between theory and experiments
is almost indistinguishable.
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— For r > 1 and N → ∞, the term H r2+1
2

(N) converges towards a finite

value and the sum
∑

k pr
k goes to 1 (see Proposition 1). By definition E(K|N, r >

1)
N→∞∝ ζ( r2+1

2 ), where ζ is the Riemann Zeta function.
— For r < 1, we need to approximate the harmonic number in a continuous

setting. We rewrite Eq. 16 as:

N∑
n=1

n− r2+1
2

Nr�1≈
∫ N

1

n− r2+1
2 dn =

2
1 − r2

(N
1−r2

2 − 1) (17)

One can show that N1−x−1
1−x = Hx(N) + O( 1

Nx ). Therefore, the number
of expected clusters in the Powered Dirichlet Process exhibits a power-law
behaviour, similar to the Pitman-Yor process for r =

√
1 − 2β for 0 < r < 1.

For values of r > 1 ⇔ β < 0, the equivalent Pitman-Yor process is not defined.
Note that there is no a priori reason for r to be constrained in the domain of
positive real number. Complex and negative analysis of the process might be an
interesting lead for future works.

5 Experiments

5.1 Use Case: Infinite Gaussian Mixture Model

We consider a classical infinite Gaussian mixture model coupled with a Powered
Dirichlet Process prior. We choose this application to ease visual understanding
of the implications of the PDP, but the argument holds for other models using
DP priors as well (text modeling, gene expression clustering, etc.). We fit the
data using a standard collapsed Gibbs sampling algorithm for IGMM [24,30,33],
with a Normal Inverse Wishart prior on the Gaussians’ parameters. The order
in which input data is processes is set at random at each iteration, so that we
reduce the ordering bias from the dataset [30]. Note that we cannot completely

Fig. 3. Application on synthetic data. (Top) Original datasets used for the experiments
(Density, Diamond and Grid). (Bottom) Results for various values of r; the x and y
axes all the same. The dashed line indicates the regular DP prior as r = 1. The error
correspond to the standard error of the mean over all runs.
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get rid of it because the Powered Dirichlet Process is not exchangeable for all r.
The problem has been addressed on numerous occasions (Uniform process [30],
distance-dependent CRP [5,9], spectral CRP [25], balance-neutral partition [18])
and shown to induce negligible variations of results in the case of Gibbs sampling.
We stop the sampler once the likelihood reaches stability; we perform 100 runs
for each value of r. Finally, the parameter α is set to 1.1

Note that we choose not to compare to other types of clustering algorithms.
This section aims to demonstrate the usefulness of a generalized form of the
Dirichlet process with respect to the vanilla one. The argument on a simple
model (here a regular DP combined with IGMM) extends to other priors built on
Dirichlet processes (Hierarchical and Nested Dirichlet processes). Comparison of
DP-based priors to other clustering methods (KNN, DBScan, Spectral clustering,
etc.) has already been done numerous times and is out of our scope.

Synthetic Data. Synthetic datasets are represented in Fig. 3-top, and comprise
N = 1000 observations each, that have been generated by sampling from 2D
Gaussian distributions. We present the results on synthetic data in Fig. 3-bottom
and in Table 1. We consider standard metrics in clustering evaluation with a non-
fixed number of clusters: mutual information score and rand index both adjusted
for chance (Adj.MI and Adj.RI, higher is better), normalized variation of
information (Norm.VI, lower is better), Fowlkes-Mallow score (higher is better),
marginal likelihood (normalized for visualization, higher is better) and absolute
relative variation of the inferred number of clusters according to the number
used in the generation process (Kinf−Ktrue

Ktrue
, lower is better). The datasets are

designed to investigate the effect varying r when clustering can take place on
different scales.

Real-World Data. In Table 1, we report the results for the 20Newsgroup (20-
NG) real-world dataset, which is a collection of 18 000 users posts published
on Usenet, organized in 20 Newsgroup (which are our target thematic clusters).
As a model, we consider a modified version of LDA [4] that uses a PDP prior
instead of DP in the words sampling step. Note that because the number of
clusters must be provided to LDA, we do not compute Kinf−Ktrue

Ktrue
. We also run

additional experiments on well known real-world datasets from sklearn: Iris (4
attributes, 3 classes), Wines (13 attributes, 3 classes), and Cancer (30 attributes,
2 classes). We see PDP allows for improved performances on every dataset.

We now illustrate the interest of using an alternate form of prior for the
IGMM on real-world data. We consider a dataset of 4.300 roman sepulchral
inscriptions comprising the substring “Antoni” that have been dated between
150AC and 200AC and assigned with map coordinates. The dates correspond
to the reign of Antoninus Pius over the Roman empire. The dataset is available
on Clauss-Slaby repository2. It was common to give children or slaves the name

1 Codes and datasets available at https://github.com/GaelPouxMedard/PDPs.
2 http://www.manfredclauss.de/fr/index.html.

https://github.com/GaelPouxMedard/PDP
http://www.manfredclauss.de/fr/index.html
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Table 1. Numerical results of the various priors coupled to a standard IGMM. PDP
allows to outperform the baselines consistently. The standard error on the last digit(s)
over 100 runs is given in shorthand notation (0.123(12) ⇔ 0.123 ± 0.012).

Adj.MI (↑) Adj.RI (↑) Norm.VI (↓)
Kinf−Ktrue

Ktrue
(↓)

D
e
n
si
ty

PDP (r=0.60) 0.992(1) 0.980(2) 0.006(1) 0.045(5)

DP (r=1.00) 0.951(4) 0.797(17) 0.037(3) 0.128(10)

UP (r=0.00) 0.939(2) 0.854(4) 0.050(1) 0.548(1)

D
ia
m
o
n
d

PDP (r=0.50) 0.982(2) 0.956(5) 0.011(1) 0.063(7)

DP (r=1.00) 0.909(7) 0.731(19) 0.053(4) 0.202(12)

UP (r=0.00) 0.927(2) 0.844(6) 0.051(2) 0.544(2)

G
ri
d

PDP (r=0.85) 0.997(1) 0.990(2) 0.003(1) 0.014(2)

DP (r=1.00) 0.995(1) 0.977(4) 0.004(1) 0.018(3)

UP (r=0.00) 0.811(1) 0.517(3) 0.154(1) 2.120(1)

Ir
is

PDP (r=0.90) 0.868(4) 0.866(7) 0.057(2) 0.000(0)

DP (r=1.00) 0.843(6) 0.820(12) 0.065(2) 0.030(10)

UP (r=0.00) 0.544(2) 0.295(3) 0.303(2) 2.777(32)

W
in
e
s

PDP (r=0.10) 0.712(15) 0.637(20) 0.102(5) 0.157(17)

DP (r=1.00) 0.589(19) 0.461(16) 0.128(4) 0.327(13)

UP (r=0.00) 0.713(17) 0.657(21) 0.103(5) 0.147(17)

C
a
n
c
e
r

PDP (r=0.10) 0.254(17) 0.278(21) 0.118(1) 0.000(0)

DP (r=1.00) 0.085(16) 0.094(19) 0.108(2) 0.000(0)

UP (r=0.00) 0.271(17) 0.300(21) 0.118(1) 0.000(0)

2
0
-N

G

PDP (r=0.80) 0.421(4) 0.119(3) 0.477(3) -

DP (r=1.00) 0.404(4) 0.105(4) 0.491(3) -

UP (r=0.00) 0.000(4) 0.000(0) 0.830(3) -

of the emperor; the dataset gives a global idea of the main areas of the roman
empire at that time [14]. The task is to discover spatial clusters of individuals
named after the emperor. We present the results in Fig. 4.
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Fig. 4. Application to spatial clustering on geolocated data for r = 0.8 (left), r = 1
(right) and r = 0.9 (middle). We see that the model using a PDP prior for r = 0.9 and
r = 0.8 describes the data better than the same model using a DP prior (r = 1).

We see that when r = 1, the classical DP prior is not fit for describing
this dataset, as it misses most of the clusters. The problem could be solved by
fine-tuning the α parameter, but such model would not be hold if we added
new observations. On the other hand, when r = 0.9, the infinite Gaussian mix-
ture model retrieves relevant clusters. It also finds some clusters that were not
expected, such as the north Italian cluster or the long cluster going through
Spain and France that corresponds to roman roads layout (via Augusta and via
Agrippa; it was common to bury the dead on roads edges). Finally, when r = 0.8,
some of the main clusters are broken into smaller ones (Italy breaks into Rome,
North Italy, and South Italy; Britain becomes an independent cluster, etc.). In
this case, tuning r controls the level of details of the clustering.

6 Conclusion

We discussed the need for controlling the “rich-get-richer” property that arises
from the usual Dirichlet Process. We then derived the Powered Dirichlet Process
to allow for its control. This formulation allows reducing the expected number
of clusters, which is not possible with existing processes, while generalizing two
of them. We derived elementary results on convergence and expected number of
clusters of the PDP. Finally, we showed that it yields better results on both syn-
thetic and real-world data. For future works, it might be interesting to investigate
cases where r takes non-positive values (which might lead to a “poor-get-richer”
kind of process), and to develop a procedure to infer this parameter based on
data (by minimizing a dispersion criterion, for instance).

The regular Dirichlet Process has been used for decades as a powerful prior
in many real-world applications. However, alternate forms for this prior have
been little explored. It would be very interesting to study the changes brought
to state-of-the-art models based on Dirichlet priors by varying the importance
of the “rich-get-richer” assumption as proposed in this paper.
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Abstract. Deep clustering has been dominated by flat models, which
split a dataset into a predefined number of groups. Although recent meth-
ods achieve an extremely high similarity with the ground truth on popu-
lar benchmarks, the information contained in the flat partition is limited.
In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clus-
tering model based on deep neural networks, which can be applied to
typical image data. By employing a self-supervised learning approach,
CoHiClust distills the base network into a binary tree without access to
any labeled data. The hierarchical clustering structure can be used to
analyze the relationship between clusters, as well as to measure the sim-
ilarity between data points. Experiments demonstrate that CoHiClust
generates a reasonable structure of clusters, which is consistent with our
intuition and image semantics. Moreover, it obtains superior clustering
accuracy on most of the image datasets compared to the state-of-the-
art flat clustering models. Our implementation is available at https://
github.com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.

Keywords: Hierarchical clustering · Contrastive learning · Deep
embedding clustering

1 Introduction

Clustering, a fundamental branch of unsupervised learning, is often one of the
first steps in data analysis, which finds applications in anomaly detection [2], per-
sonalized recommendations [45] or bioinformatics [22]. Since it does not use any
information about class labels, representation learning becomes an integral part
of deep clustering methods. Initial approaches use representations taken from
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pre-trained models [13,30] or employ autoencoders in joint training of the repre-
sentation and the clustering model [14,26]. Recent models designed to image data
frequently follow the self-supervised learning principle, where the representation
is trained on pairs of similar images generated automatically by data augmen-
tations [9,23]. Since augmentations used for image data are class-invariant, the
latter techniques of ten obtain a very high similarity to the ground truth classes.
However, we should be careful when comparing clustering techniques only by
inspecting their accuracy with ground truth classes because the primary goal of
clustering is to deliver information about data and not to perform classification.

root

soccer ball: 89% orange: 99%

snow leopard: 99% maltese dog: 100%

king penguin: 99%

trailer truck: 97% sports car: 99%

container ship: 86% airship: 90% airliner: 98%

Fig. 1. A hierarchy generated by CoHiClust for ImageNet-10. As can be seen,
CoHiClust reliably reflected the ground-truth classes in leaf nodes. In addition to infor-
mation delivered by flat partition, in hierarchical models neighbor leaves contain images
sharing similar characteristic. It is evident that images with soccer ball are similar to
pictures with oranges because of their shapes. Dogs are more similar to leopards than
to penguins, which is reflected in the constructed hierarchy. The same hold when ana-
lyzing the leafs representing cars, trucks and ships. Looking at the first hierarchy level,
we observe a distinction on the right sub-tree representing machines and left-sub-tree
dominated by animals. Moreover, balls and oranges are separated from the animal
branch.

Most of the works in the area of deep clustering focus on producing flat
partitions with a predefined number of groups. Although hierarchical clustering
has gained considerable attention in classical machine learning and has been
frequently applied in real-life problems [32,47], its role has been drastically
marginalized in the era of deep learning. In the case of hierarchical clustering,
the exact number of clusters does not have to be specified because we can inspect
the partition at various tree levels. Moreover, we can analyze the clusters’ rela-
tionships, e.g. by finding superclusters or measuring the distance between groups
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in the hierarchy. These advantages make hierarchical clustering an excellent tool
for analyzing complex data. However, to take full advantage of hierarchical clus-
tering, it is necessary to create an appropriate image representation, which is
possible due to the use of deep neural networks. To our knowledge, DeepECT
[26,27] is the only hierarchical clustering model trained jointly with the neural
network. However, this method has not been examined for larger datasets of
color images.

To fill this gap, we introduce CoHiClust (Contrastive Hierarchical
Clustering), which creates a cluster hierarchy and works well on typical color
image databases. CoHiClust uses a neural network to generate a high-level rep-
resentation of data, which is then distilled into the tree hierarchy by applying
the projection head, see Fig. 2. The whole framework is trained jointly in an end-
to-end manner without labels using our novel contrastive loss and data augmen-
tations generated automatically following the self-supervised learning principle.

The constructed hierarchy uses the structure of a binary tree, where the
sequence of decisions made by the internal nodes determines the final assignment
to the clusters (leaf nodes). In consequence, similar examples are processed longer
by the same path than dissimilar ones. By inspecting the number of edges needed
to connect two clusters (leaves), we obtain a natural similarity measure between
data points. By applying a pruning strategy, which removes the least informative
leaf nodes, we can restrict the hierarchy to a given number of leaves and fine-tune
the whole hierarchy.

The proposed model has been examined on various image datasets and com-
pared with hierarchical and flat clustering baselines. By analyzing the con-
structed hierarchies, we show that CoHiClust generates a structure of clusters
that is consistent with our intuition and image semantics, see Figs. 1 and 3 for
illustration and discussion. Our analysis is supported by a quantitative study,
which shows that CoHiClust outperforms the current clustering models on 5 out
of 7 image datasets, see Tables 1 and 6.

Our main contributions are summarized as follows:

– We introduce a hierarchical clustering model CoHiClust, which converts the
base neural network into a binary tree. The model is trained effectively with-
out supervision using our novel hierarchical contrastive loss applied to self-
generated data augmentations.

– We conducted an extensive experimental study, which confirms that CoHi-
Clust is very competitive with current state-of-the-art flat clustering models.
Moreover, we show that it builds hierarchies based on well-defined and intu-
itive patterns retrieved from the data.

– Since CoHiClust is the first deep hierarchical clustering model applied to color
image datasets, we provide a benchmark, which can be used to compare hier-
archical clustering methods.

2 Related Work

In this section, we briefly introduce some recent developments on three related
topics: contrastive learning, deep clustering, and hierarchical methods.
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Contrastive Learning. The basic idea of contrastive learning is to learn a feature
space in which similar pairs stay close to each other, while dissimilar ones are
far apart [8]. In recent works, it was observed that in selected domains, such as
computer vision, positive (similar) pairs can be generated automatically using
adversarial perturbations [28] or data augmentation [16], giving rise to a new
field called self-supervised learning [7]. Fine-tuning a simple classifier on self-
supervised representation allows for obtaining the accuracy comparable to a
fully supervised setting. SimCLR [16] applies NT-Xent loss to maximize the
agreement between differently augmented views of the same sample. Barlow
Twins [41] learns to make the cross-correlation matrix between two distorted
versions of the same samples close to the identity. BYOL [12] claims to achieve
new state-of-the-art results without using negative samples. Other works use
memory banks to reduce the cost of computing the embeddings of negative
samples in every batch [16,37].

Deep Clustering. A primary focus in deep embedded clustering has merely been
on flat clustering objectives with the actual number of clusters known a priori.
DEC [38] is one of the first works, which combines the auto-encoder loss with a
clustering objective to jointly learn the representation and perform clustering.
This idea was further explored with some improvements in IDEC [14], JULE
[39] and DCEC [15]. IMSAT [17] and IIC [19] use perturbations to generate
pairs of similar examples and apply information-theoretic objectives for training.
PICA [18] maximizes the global partition confidence of the clustering solution
to find the most semantically plausible data separation. Following progress in
self-supervised learning, CC [23] and DCSC [44] perform contrastive learning by
generating pairs of positive and negative instances through data augmentations.

Hierarchical Methods. Hierarchical clustering algorithms are a well-established
area within classical data mining [29], but have rarely been studied in deep
learning. DeepECT [26,27] is the only method that jointly learns deep represen-
tation using autoencoder architecture and performs hierarchical clustering in a
top-down manner. Unfortunately, no comparative study has been conducted on
large image data. The experimental study of objective-based hierarchical clus-
tering methods performed on the embedding vectors of pre-trained deep learning
models is presented in [30]. In the case of classification, there is a growing inter-
est in deep hierarchical methods, which in our opinion should also be reflected
in the area of unsupervised learning. SDT [10] is one of the first models that
distills the base neural networks into a soft decision tree. More advanced meth-
ods automatically generate deep networks with a tree structure in a multistep
or end-to-end manner [1,33,35].

3 CoHiClust model

The proposed CoHiClust builds a hierarchy of clusters based on the output of
the base neural network. There are three key components of CoHiClust:
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– The base neural network that generates the representation used by the tree.
– The tree model, which assigns data points to clusters by a sequence of deci-

sions.
– The regularized contrastive loss, which allows for training the whole frame-

work.

We discuss the above components in detail in the following parts.

3.1 Tree Hierarchy

We use a soft binary decision tree to create a hierarchical structure, where leaves
play the role of clusters (similar to [10]). In contrast to hard decision trees, every
internal node defines the probability of taking a left/right branch. The final
assignment of the input examples to clusters involves partial decisions made by
the internal nodes. Aggregating these decisions induces the posterior probability
over leaves.

Let us consider a complete binary tree with T levels, where the root is located
at the level 0 and the leaves are represented at the level T . This gives us 2t

nodes at the level t denoted by tuples (t, i), for i = 0, 1, . . . , 2t − 1, see Fig. 2.
The path from root to node (t, i) is given by the sequence of binary decisions
y = (y1, . . . , yt) ∈ {0, 1}t made by the internal nodes, where ys = 0 (ys = 1)
means that we take the left (right) branch that is at the node at the level s.
Observe that we can retrieve the index j of the node at the level s from y by
taking j = bs(y) =

∑s
m=1 ym2s−m. In other words, the first s bits of y are a

binary representation of the number j.
We consider the path induced by the sequence of decisions y = (y1, . . . , yt) ∈

{0, 1}t, which goes from the root to the node (t, i), where i = bt(y). We want
to calculate the probability P i

t (x) that the input example x ∈ R
D reaches node

(t, i). If p
bs(y)
s (x) is the probability of going from the parent node (s−1, bs−1(y))

to its descendant (s, bs(y)), then

P i
t (x) = p

b1(y)
1 (x) · p

b2(y)
2 (x) · . . . p

bt(y)
t (x).

Observe that Pt(x) = [P 0
t (x), P 1

t (x), . . . , P 2t−1
t (x)] defines a proper probability

distribution, i.e.
∑2t−1

j=0 P j
t (x) = 1. As a consequence, the probability distribution

on the clusters (leaves) is equal to PT (x), see Fig. 2.

3.2 Tree Generation

To generate our tree model, we need to parameterize the probabilities pit(x) of
taking the left/right branch in every internal node. To this end, we employ a
neural network g : RD → R

N with an additional projection head π : RN → R
K ,

where K = 2T − 1 and T is the height of the tree. The number K of output
neurons equals the number of internal tree nodes.

The neural network g is responsible for extracting high-level information from
the data. It can be instantiated by a typical architecture, such as ResNet, and
is used to generate embeddings z = g(x) of the input data.
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Fig. 2. Illustration of CoHiClust. The output neurons of the projection head π
(appended to the base network g) model decisions made by the internal tree nodes.
The final assignment of the input example to the cluster (leaf node) is performed by
aggregating edge probabilities located on the path from the root to this leaf.

The projection head π operates on the embeddings z and parameterizes the
decisions made by the internal tree nodes. In our case, π is a single layer net-
work with the output dimension equal to the number of internal nodes. To
model binary decisions of internal nodes, we apply the sigmoid function σ. Con-
sequently, the projection head is given by π(z) = [σ(wT

1 z+b1), . . . , σ(wT
Kz+bK)],

where wn ∈ R
N and bn ∈ R are trainable parameters of π. By interpreting the

output neurons of π as the internal nodes of the decision tree, we obtain the
probabilities of the left edges in the nodes:

p2it+1(x) = σ(wT
n z + bn) , for n = 2t + i.

Note that p2i−1
t+1 (x) = 1 − p2it+1(x) always corresponds to the probability of the

right edge.

3.3 Contrastive Hierarchical Loss

To train CoHiClust, we introduce the hierarchical contrastive loss function
designed for trees. Our idea is based on maximizing the likelihood that simi-
lar data points will follow the same path. The more similar data points, the
longer they should be routed through the same nodes. Since we work in an
unsupervised setting, we use a self-supervised approach and generate similar
images using data augmentations.

Let us consider two data points x1, x2 and their posterior probabilities
Pt(x1), Pt(x2) at the level t. The probability that x1 and x2 reach the same node
at this level is given by the scalar product Pt(x1) ·Pt(x2) =

∑2t−1
i=0 P i

t (x1)P i
t (x2).

This term is maximal if both probabilities are identical one-hot vectors. In a
training phase, we do not want to force hard splits in the nodes (binary proba-
bilities), because in this way the model quickly finds a local minimum by assign-
ing data points to fixed leaves with high confidence. Instead of sticking to hard
assignments in a few training epochs, we want to let the model explore possi-
ble solutions. To this end, we take the square root before applying the scalar
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product, which corresponds to the Bhattacharyya coefficient [4]:

st(x1, x2) =
√

Pt(x1) · Pt(x2) =
2t−1∑

i=0

√
P i
t (x1)P i

t (x2). (1)

Observe that st(x1, x2) = 1, if only Pt(x1) = Pt(x2) (probabilities do not have
to binarize), which leads to the exploration of possible paths. By aggregating
the similarity scores over all tree levels, we arrive at our final similarity function
s(x1, x2) =

∑T−1
t=0 st(x1, x2).

In a training phase, we take a minibatch {xj}Nj=1 of N examples and gen-
erate its augmented view {x̃j}Nj=1. Every pair (xj , x̃j) is considered positive,
which means that we will maximize their similarity score. As a consequence, we
encourage the model to assign them to the same leaf node. To avoid degenerate
solutions, where all points end up in the same leaf, we treat all other pairs as
negative and minimize their similarity scores. Finally, the proposed hierarchical
contrastive loss is given by:

CoHiLoss =
1

N(N − 1)

N∑

j=1

∑

i�=j

s(xj , x̃i) − 1
N

N∑

j=1

s(xj , x̃j).

By minimizing the above loss, we maximize the likelihood that similar data
points follow the same path (second term) and minimize the likelihood that
dissimilar ones are grouped together.

3.4 Regularization

The final cluster assignments are induced by aggregating several binary decisions
made by the internal tree nodes. In practice, the base neural network may not
train all nodes and, in consequence, use only a few leaves for clustering. While
selecting the number of clusters in flat clustering is desirable, here we would like
to create a hierarchy, which is not restricted to a given number of leaves. To
enable end-to-end training of the base neural network with an arbitrary number
of leaves, we consider two regularization strategies.

The first regularization (dubbed R1) explicitly encourages the model to use
both left and right sub-trees equally [10]. We realize this postulate by minimiz-
ing the cross-entropy between the desired distribution [0.5, 0.5] and the actual
distribution to choose the left or right path in a given node.

The second regularization (dubbed R2) does not directly influence the routing
in the tree, but focuses on improving the output representation of the base
network g. For this purpose, we use a projection head φ : RN → R

M , which
transforms the embeddings z = g(x) of the input data, and apply the NT-Xent
loss [7] to z̃ = φ(z). With the NT-Xent loss, we maximize the cosine similarity
for all positive pairs and minimize the cosine similarity for all negative pairs. For
simple datasets, such as MNIST or F-MNIST, φ is an identity function, while
for more complex color images, it is a two-layer network.
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Table 1. Comparison with flat clustering methods on datasets of color images.

Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means [25] 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020

SC [43] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013

AC [11] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021

NMF [5] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016

AE [3] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073

DAE [34] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078

DCGAN [31] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078

DeCNN [42] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073

VAE [20] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079

JULE [39] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028

DEC [38] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079

DAC [6] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111

DCCM [36] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182

PICA [18] 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201

CC [24] 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274

CoHiClust 0.779 0.839 0.731 0.467 0.437 0.299 0.584 0.613 0.474 0.907 0.953 0.899 0.411 0.355 0.232

Taking together the contrastive loss CoHiLoss with two regularization func-
tions R1 (for entropy) and R2 (for NT-Xent), we arrive at our final loss:

Loss =CoHiLoss + β1R1 + β2R2, (2)

where β1, β2 are the hyperparameters that define the importance of the reg-
ularization terms R1 and R2, respectively. To generate a complete hierarchy
(complete tree with assumed height), we set β1 proportional to the depth of the
tree β1 = 2−T [10] and β2 = 1 [24].

3.5 Training

CoHiClust can be trained end-to-end by minimizing (2). We verified that training
is even more effective when we introduce a pre-training phase of the base neural
network. To this end, we perform self-supervised representation learning of the
base network g using R2 regularization (it corresponds to the SimCLR model
[7]). In Section 4.2, we show that pre-training allows us to reduce the number of
training epochs and leads to a better overall performance of CoHiClust.

The proposed model builds a complete tree with 2T leaves. Although such
a structure is useful for analyzing the hierarchy of clusters, in some cases we
are interested in creating a tree with the requested number of groups. For this
purpose, we apply a pruning step that reduces the least significant leaf nodes.
Namely, we reduce leaves with the lowest expected fraction of data points:
P i
T = 1

|X|
∑

x∈X P i
T (x). Pruning is realized after a few first training epochs of

CoHiClust (after the pre-training phase). We remove one leave per epoch. Next,
CoHiClust is trained with the final number of leaves.
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4 Experiments

First, we evaluate our method on several datasets of color images of various
resolutions and with a diverse number of classes. In addition to reporting sim-
ilarity scores with ground-truth partitions, we analyze the constructed hierar-
chies, which in our opinion is equally important in practical use-cases. Next, we
perform an ablation study and investigate the properties of CoHiClust. Finally,
we compare CoHiClust with existing hierarchical methods. Details of the exper-
imental settings and additional results are included in [46, Appendix].

4.1 Clustering Color Images

Benchmark. We perform the evaluation on typical bemchmark datasets: CIFAR-
10, CIFAR-100, STL-10, ImageNet-Dogs, and ImageNet-10, see [46, Appendix]
for their summary. We process each data set at its original resolution. Since none
of the previous hierarchical methods have been examined on these datasets, we
use the benchmark that includes the flat clustering methods reported in [24].
According to previous works in contrastive clustering, CoHiClust uses ResNet
architectures as a backbone network. To measure the similarity of the con-
structed partition with the ground truth, we apply three widely-used clustering
metrics: normalized mutual information (NMI), clustering accuracy (ACC), and
adjusted rand index (ARI). In [46, Appendix], we also show the DP (dendrogram
purity) of the hierarchies generated by CoHiClust.

The results presented in Table 1 show that CoHiClust outperforms the com-
parative methods in 3 out of 5 datasets. It gives extremely good results on
CIFAR-10 and ImageNet-10, but is notably worse than CC on STL-10. We sus-
pect that lower performance on STL-10 can be caused by inadequate choice of
the backbone architecture to process images at resolution 96 × 96. Nevertheless,
one should keep in mind that CoHiClust is the only hierarchical method in this
comparison, and constructing a clustering hierarchy, which resembles ground
truth classes, is more challenging than directly generating a flat partition.

Analyzing Clustering Hierarchies. To better analyze the results returned by
CoHiClust, we plot the constructed hierarchies. Figures 1 and 3 present and
discuss the results obtained for ImageNet-10 and CIFAR-10, respectively (we
refer the reader to [46, Appendix] for more examples). In both cases, CoHiClust
was able to accurately model ground-truth classes as leaf nodes. In addition to
the information contained in a flat partition, CoHiClust allows us to find relations
between clusters. In particular, we observe that similar classes are localized on
neighboring nodes.

The hierarchy also allows us to define the distance d(a, b) between two exam-
ples a, b using the number of edges that connect them. We use the average of
this score to calculate the similarity between the ground truth classes A and
B as d(A,B) = 1

Z

∑
a∈A

∑
b∈B d(a, b), where Z is the number of all pairs. The

distance is small if examples from classes A and B are located in nearby leaf
nodes (on average).
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root

Horse: 97% Deer: 78%

Bird: 73%
Horse: 18%

Frog: 91%

Dog: 58%
Cat: 36%

Cat: 58%
Dog: 33%

Truck: 96% Car: 95% Ship: 97% Plane: 90%

Fig. 3. A tree hierarchy generated by CoHiClust for CIFAR-10. There is an
evident distinction into animals (left branch) and machines (right branch). Moreover,
all neighbor leaves represent visually similar classes (horses and deers, dogs and cats,
trucks and cars, ships and planes). Images with frogs seem to be visually similar to cats
and dogs, which leads to their placement in the neighbor leaves (however cats and dogs
are connected by a stronger relationship). Interestingly, a small portion of images with
horses’ heads are grouped together with birds because of their similar shapes. Although
there is a slight mismatch between dogs and cats classes, the left leaf contains pets with
bright fur photographed in front, while the right leaf includes animals with dark fur
presented from the side, which coincides with our intuition.

Analysis of the distance matrix in Figure 4 confirms that objects represent-
ing the same class have the strongest relationship in the hierarchy (the diagonal
entries contain the smallest values in the matrix). We also see high similari-
ties between classes representing dogs and cats (1.8 jumps), cars and trucks
(2 jumps), etc. In general, the distance matrix supports our previous findings
quantitatively.

4.2 Analysis of the CoHiClust model

We analyze selected properties of CoHiClust including the choice of the back-
bone network, the influence of regularization functions, the initial depth of the
tree, and the training curves. Additionally, we demonstrate that training typical
hierarchical methods on top of self-supervised learning models is sub-optimal.
All experiments were carried out on the CIFAR-10 dataset.
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Fig. 4. Distance matrices retrieved from the constructed hierarchies for ground truth
classes of CIFAR-10 dataset, see text in the paper for the interpretation.

Reliance on Backbone Network. In Table 2, we show how the selection of the
architecture of the base network g influences the clustering results. As can be
seen, CoHiClust gradually improves its performance with the depth of the archi-
tecture, suggesting that CoHiClust adapts well to deeper networks. In contrast,
CC seems to be resistant to the selection of architecture and obtains optimal
results on a medium-sized network.

Table 2. The importance of architecture choice.

Method CoHiClust CC [24]

Backbone NMI ACC ARI NMI ACC ARI

ResNet18 0.711 0.768 0.642 0.650 0.736 0.569

ResNet34 0.730 0.788 0.667 0.705 0.790 0.637

ResNet50 0.767 0.840 0.720 0.663 0.747 0.585

Analysis of Loss Function Next, we explain the influence of particular compo-
nents of the CoHiClust loss function. Additionally, we verify the role of pre-
training phase. As shown in Table 3, regularization functions have a significant
impact on the results of CoHiClust boosting the NMI score by 0.2. It is also
evident that pre-trainig is an essential ingredient of CoHiClust, which allows
selecting a better starting point for building a clustering tree.

Selecting Depth of the Tree. We investigate the choice of the initial depth of
the clustering hierarchy. In Table 4, we observe a slight increase in performance
by changing depth from 4 to 5. However, adding one more level does not lead
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Table 3. Ablation study of CoHiClust loss function performed on CIFAR-10.

NMI ACC ARI

CoHiLoss 0.567 0.569 0.457

CoHiLoss + R1 0.629 0.726 0.549

CoHiLoss + R1 + R2 0.767 0.84 0.72

CoHiClust w/o pre-training 0.59 0.657 0.50

to further improvement. In our opinion, using deeper trees allows for better
exploration and leads to more fine-grained clusters. On the other hand, increasing
the number of nodes makes optimization harder, which might explain the lower
results for depth 6.

Table 4. Influence of tree depth on the clustering results.

Depth NMI ACC ARI

4 0.767 0.840 0.720

5 0.779 0.839 0.731

6 0.689 0.713 0.581

Learning Curves. To illustrate the training phases of CoHiClust, we show the
learning curves in Figure 5. Up to epoch 1000, we only trained the backbone
model. Since in the pre-training phase, the clustering tree returns random deci-
sions, we get a very low NMI value. After that, we start optimizing the CoHiLoss,
and the NMI rapidly grows. In epoch 1050, we have a pruning phase, which
results in further improvement of the NMI score. As can be seen, the model

Fig. 5. Learning curves on the validation set of CIFAR-10. Pre-training is performed
until epoch 1000 and pruning is applied in epoch 1050. The model stabilizes its perfor-
mance quickly after pruning.
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stabilizes its performance just after the pruning stage, which suggests that we
can stop the training in epoch 1100. In conclusion, CoHiClust requires less than
100 epochs to obtain an optimal clustering score given a pre-trained model.

Comparison with Agglomerative Clustering. We show that our top layer respon-
sible for constructing a decision tree is an important component of CoHiClust
and cannot be replaced by alternative hierarchical clustering methods. For this
purpose, we first train a backbone network with a typical self-supervised SimCLR
technique. Next, we apply agglomerative clustering to the resulting representa-
tion. As can be seen in Table 5, agglomerative clustering gets very low results,
which means that joint optimization of the backbone network and clustering tree
using the proposed CoHiLoss is a significantly better choice. In consequence, the
representation taken from a typical self-supervised learning model does not pro-
vide a representation, which can be clustered accurately using simple methods.

Table 5. Comparison with agglomerative clustering trained on the representation gen-
erated by the self-supervised learning model.

NMI ACC ARI

Agglomerative clustering 0.265 0.363 0.147

CoHiClust 0.767 0.84 0.72

4.3 Comparison with Hierarchical Clustering Methods

To our knowledge, DeepECT [26] is the only hierarchical clustering method
based on deep neural networks. Following their experimental setup, we report
the results on two popular image datasets, MNIST and F-MNIST, and consider
classical hierarchical algorithms evaluated on the latent representation created
by the autoencoder and IDEC [14]. In addition to the previous clustering met-
rics, we also use dendrogram purity (DP) [21,40], which directly compares the
constructed hierarchy with the ground-truth partition. It attains its maximum
value of 1 if and only if all data points from the same class are assigned to some
pure sub-tree.

The results summarized in Table 6 demonstrate that CoHiClust outperforms
all baselines on both MNIST and F-MNIST datasets in terms of all metrics. Inter-
estingly, DeepECT benefits from data augmentation in the case of MNIST, while
on F-MNIST it deteriorates its performance. All methods except CoHiClust and
DeepECT failed completely to create a hierarchy recovering true classes (see the
DP measure), which confirms that there is a lack of powerful hierarchical cluster-
ing methods based on neural networks. The disproportion between the results
obtained on MNIST and F-MNIST demonstrates that recovering true classes
of clothes is a significantly more challenging task than recognizing handwritten
digits.
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Table 6. Comparison with hierarchical models in terms of DP, NMI and ACC (higher
is better).

Method MNIST F-MNIST

DP NMI ACC DP NMI ACC

DeepECT 0.82 0.83 0.85 0.47 0.60 0.52

DeepECT + Aug 0.94 0.93 0.95 0.44 0.59 0.50

IDEC (agglomerative complete*) 0.40 0.86 0.85 0.35 0.58 0.53

AE + k-means (bisecting*) 0.53 0.70 0.77 0.38 0.52 0.48

CoHiClust 0.97 0.97 0.99 0.52 0.62 0.65

* To report DP for flat clustering models, we use (optimally selected) typical
hierarchical algorithms to build a hierarchy on the obtained data representa-
tion.

5 Conclusion

We proposed a contrastive hierarchical clustering model CoHiClust, which suits
well to clustering of large-scale image databases. The hierarchical structure con-
structed by CoHiClust provides significantly more information about the data
than typical flat clustering models. In particular, we can inspect the similarity
between selected groups by measuring their distance in the hierarchy tree and,
in consequence, find super-clusters. Experimental analysis performed on typical
clustering benchmarks confirms that the produced partitions are highly simi-
lar to ground-truth classes. At the same time, CoHiClust allows us to discover
important patterns that have not been encoded in the class labels.
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Abstract. Graph contrastive learning has attracted considerable atten-
tion and made remarkable progress in node representation learning and
clustering for attributed graphs. However, existing contrastive-based
clustering methods separate the processes of node representation learn-
ing and graph clustering into two stages, making it difficult to ensure
good clustering. Therefore, it remains a challenge to design an effective
contrastive learning method that jointly optimizes node representations
and graph clustering. Moreover, existing random augmentation strate-
gies to generate contrastive views may destroy the original topological
structures of clusters in graphs. So it is crucial to construct an aug-
mented graph that preserves the cluster structure of a given graph while
benefitting graph clustering. To address these problems, we propose a
contrastive learning method with cluster-preserving augmentation for
attributed graph clustering. Specifically, we construct a contrasting view
based on the generated kNN graph and edge betweenness centrality to
preserve the inherent cluster structure of a graph. Then, a multilevel con-
trastive mechanism is proposed to maximize the agreement between node
representations in multiple latent spaces. Finally, the objective of node
representation learning is jointly optimized with the self-supervised clus-
tering objective to obtain cluster distributions and discriminative node
representations simultaneously. Extensive experiments on seven widely
used real-world graphs demonstrate that the proposed model consistently
outperforms existing state-of-the-art methods on clustering tasks.

Keywords: Augmentation · Contrastive learning · Attributed graph ·
Clustering

1 Introduction

Graphs or networks are widely used to model complex relationships between
objects in various fields, including computer vision [26], natural language process-
ing [20], and complex network analysis [2,33]. In many scenarios, these graphs not
only contain topological relationships but also features characterizing the prop-
erties of each node, known as attributed graphs or attributed networks. One of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 644–661, 2023.
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the fundamental yet challenging tasks in complex attributed network analysis is
deep graph clustering, which involves partitioning the nodes into several disjoint
clusters in an unsupervised manner with the help of deep neural network archi-
tectures to reveal the underlying structures and semantics of graphs. Moreover,
identifying clusters in attributed graphs can be utilized for many tasks in reality,
such as recommendation [24] and anomaly detection [10].

Graph neural networks (GNNs) [4,12,29,35,37] follow a message-passing
scheme and process graphs by aggregating features from neighborhood nodes.
They have been proven to be an effective way to utilize both the topology and
node attribute information in attributed networks and possess powerful graph
representation learning capabilities. Taking GNNs as the backbone, graph con-
trastive learning has attracted more and more attention from researchers and
has achieved promising improvement in node representation learning and clus-
tering [5,30,47,48]. The core idea behind existing methods is to generate two
augmentations of an input graph and utilize a specific contrastive loss to make
the representations of positive pairs as similar as possible, while those of negative
pairs are far away from each other. With the learned powerful representations, a
typical clustering method, such as K-means [17] or spectral clustering [25], can
be applied to obtain node clusters.

As we know, a critical challenge in graph contrastive learning is how to
design effective augmentation schemes to construct contrasting views. Existing
random or specific augmentation strategies that are applied to graph topology
and node attributes, such as dropping edges and masking nodes, may introduce
additional noise or even destroy the intrinsic graph structure [43]. Moreover,
they take less account of the cluster structure during augmentation, thereby
potentially affecting the performance of downstream clustering tasks. Another
main issue with existing contrastive-based graph clustering methods is that the
representation learning and clustering processes are separated. We refer to these
as two-stage deep graph clustering methods. They aim to learn discriminative
representations under the self-supervision of contrastive mechanisms. However,
the cluster distribution cannot benefit from joint optimization, which may result
in the learned representations that are suboptimal for node clustering [5,19].

Recently, many methods have proposed the idea of deep embedded clustering
(DEC) [1,31] to jointly learn node representations and cluster graphs in a unified
model based on autoencoder frameworks. Correspondingly, we call them one-
stage deep graph clustering methods. They introduce a specific clustering loss
and train in conjunction with the reconstruction loss of autoencoders to optimize
the cluster iteratively. Specifically, their cluster distribution can be calculated
according to the encoded representations directly, avoiding the issue of two-
stage clustering. Although these autoencoder-based methods are simple and easy
to implement, some existing studies argue that their representational learning
ability and development lag behind recent emerging contrastive learning methods
[7]. Therefore, it is worth investigating whether the contrastive mechanism can be
used to replace the autoencoder framework in DEC to obtain more discriminative
node representations and clearer clusters during joint optimization.
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To address the above challenges, we propose a Contrastive learning method
with Cluster-preserving Augmentation for Attributed Graph Clustering (CCA-
AGC for abbreviation). In detail, we first generate a k-nearest neighbor graph
from node features and remove its edges that are more likely to connect different
clusters according to the introduced edge betweenness centrality. That is, instead
of perturbing the original graph, we construct another feature structural graph
as a high-quality contrasting view while fully exploiting the inherent cluster
structure in the original graph. We utilize a GCN encoder and a nonlinear pro-
jection layer to learn encoding and projecting representations of nodes from both
topology and feature attributed graphs. A multilevel contrast mechanism is then
proposed to maximize the similarity between positive pairs in these two latent
spaces enabling us to capture more discriminative representations that are useful
for clustering. Finally, we conduct soft clustering on encoding representations to
learn cluster distributions and design a distribution consistency constraint based
on KL divergence to ensure the consistency of the clusters learned from differ-
ent views. Overall, CCA-AGC integrates the contrast and clustering objectives
into a unified framework and obtains clusters directly by jointly optimizing node
representations and cluster distributions.

In summary, we make the following contributions:

– We propose a novel generative augmentation strategy to construct a com-
plementary contrast graph based on the kNN graph and edge betweenness
centrality, which effectively captures the cluster structure hidden in node fea-
tures while preserving the original graph structure.

– We integrate multilevel contrast and clustering into a unified framework to
jointly optimize node representations and cluster distributions.

– Extensive experiments on real-world datasets demonstrate the superiority of
the proposed model in clustering compared with state-of-the-art methods.

2 Related Work

2.1 Graph Augmentation

Graph augmentation is a crucial technique to enhance the generalization ability
of graph learning and is also a vital component of graph contrastive learning
[28,44,46]. For example, GAUG [45] leverages the class-homophilic structure
encoded by GAE [11] predictors to remove “noisy” edges and add “missing”
edges that may exist in the original graph, thus improving the performance of
GNNs. Recently, various graph augmentation techniques, such as attribute mask-
ing, edge perturbation, node dropping, subgraph extracting, and graph diffusion,
are commonly used in existing graph contrastive learning methods [13,40]. How-
ever, these methods are not universally applicable since graph topology and
semantics vary greatly across different domains. Furthermore, some random per-
turbations may destroy the inherent graph structure completely, even if they are
weak. To alleviate these problems, JOAO [39] and LP-Info [41] propose to select
augmentation pairs automatically on specific graphs for contrastive learning.
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However, they still rely on human prior knowledge to construct and configure
the augmentation pool for selection. In contrast, our generative augmentation
strategy combines attribute similarity and edge betweenness centrality to gener-
ate a cluster-aware augmented graph that can improve the quality of the graph
while preserving its inherent graph structure and cluster information.

2.2 Graph Contrastive Learning

Graph contrastive learning has gained increasing popularity in self-supervised
graph representation learning and has shown competitive performance [15,34,
47]. DGI [30] first extends the idea of DIM [6] from images to graphs by maximiz-
ing mutual information (MI) between patch representations and the correspond-
ing graph representations. Since then, many subsequent methods [9,21,27] focus
on defining MI between local-level and global-level representations of different
granularities. MVGRL [5] generates a correlated view by performing diffusion on
a graph and contrasts node representation from one view with graph represen-
tation from another view. Other methods aim to perform contrast at the same
scale. For example, GraphCL [3] and GRACE [48] randomly drop edges and
mask node features to generate different views and maximize the agreement of
learned node representations. GCA [49] further introduces adaptive augmenta-
tion to obtain different views. MERIT [8] employs cross-view and cross-network
contrast to maximize the agreement between node representations across differ-
ent views and networks. While we perform contrast on both encoded-level and
projected-level representations to capture information in multiple latent spaces
of different views, improving the representation learning ability of the model.

2.3 Deep Graph Clustering

Inspired by the success of contrastive learning, several contrastive-based
attributed graph clustering methods have been proposed. For example, HSAN
[16] and CCGC [38] introduce high-confidence clustering pseudo labels to explic-
itly influence the construction of positive and negative samples during contrast-
ing. Although these methods have achieved good performance in graph cluster-
ing, they still rely on an additional K-means algorithm to obtain final clusters.
Instead, deep embedded clustering (DEC) models jointly optimize node repre-
sentation and clustering, avoiding the above shortage. Wang et al. [31,32] gen-
erate a soft cluster distribution based on node representations learned by GAT
and GCN encoders and achieve self-training through KL-based clustering loss.
Furthermore, SDCN [1] combines a GCN encoder with a DNN autoencoder via
a delivery operator and designs a dual self-supervised mechanism for cluster-
ing. AGCN [22] and DAGC [23] design the attention-driven graph clustering
network that merges numerous features and enhances representation learning
through an adaptive mechanism. Compared to the former two-stage clustering
methods, these one-stage DEC methods are more effective due to their spe-
cific clustering loss term. However, the autoencoder frameworks may limit their
discriminative representation ability when compared to the latest contrastive
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mechanism. Therefore, our goal is to investigate whether the contrastive mecha-
nism can replace the autoencoder framework in DEC models to obtain clusters
directly.

3 Methodology

3.1 Notations and Problem Definition

An undirected attributed network can be represented as a graph G = (V ;E;X),
where V = {v1, v2, . . . , vn} consists a set of n nodes, and E = {eij} represents a
set of edges. The topological structure of G is specified by an adjacency matrix
A ∈ R

n×n. If there is an edge between node vi and vj (i.e., eij = (vi, vj) ∈
E), then aij = 1, otherwise aij = 0. Furthermore, X ∈ R

n×m represents the
attribute matrix, where m is the dimension of attributes. Each row xi describes
the attributes of node vi.

In this study, given an attributed graph G, we aim to learn low-dimensional
node representations while clustering the graph into clusters in a unified frame-
work, where the two tasks can boost each other during training. Specifically, we
will learn a map function f : (A,X) �→ H ∈ R

n×d, where hi is the i-th row of
H, representing the latent representation of node vi. Meanwhile, the attributed
graph is partitioned into K disjoint clusters (C1, C2, . . . , CK), so that not only
are the nodes in the same cluster more closely connected than nodes outside the
cluster, but the attribute similarity of a pair of nodes within the same cluster is
higher than that of only one in the cluster.

3.2 Overall Framework

In the following subsections, we will provide a detailed introduction to our pro-
posed Contrastive learning method with Cluster-preserving Augmentation for
Attributed Graph Clustering (CCA-AGC), as shown in Fig. 1. The entire model
begins with generative augmentation, which constructs a cluster-aware contrast-
ing view. Then, we propose a multilevel contrast mechanism that maximizes
agreement between node representations in multiple latent spaces. Furthermore,
the learned encoding representations are utilized to generate cluster assignments.
Finally, we formulate a self-supervised clustering objective with the help of a
distribution consistency constraint and integrate it with the contrastive repre-
sentation learning process for joint optimization.

3.3 Generative Augmentation

In an attributed graph G, nodes with similar features are more likely to belong
to the same cluster. To capture this similarity, we generate a k-nearest neigh-
bor (kNN) graph based on the node features X. Specifically, we use Euclidean
distance to measure the similarity sij between attribute vectors xi and xj of
two nodes vi and vj , obtaining the similarity matrix S ∈ R

n×n. Then, we select
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Fig. 1. The overall framework of the proposed CCA-AGC model. It contains three main
strategies: generative augmentation, multi-level contrast, and distribution consistency
constraint.

the top-k most similar node pairs based on S and connect them with edges to
form an undirected kNN attributed graph Gf = (Af ,X), where Af ∈ R

n×n

is the corresponding adjacency matrix for the kNN graph, and the attribute
matrix X ∈ R

n×m remains unchanged. It should be noticed that Gf captures
the underlying topology structure reflected by node features, which complements
the original graph G and provides additional information for clustering.

To fully exploit the inherent cluster structure present in the feature space,
we introduce the concept of edge betweenness centrality (EBC) [2] to update
and filter the connection relationships in the kNN graph Gf .

Definition 1. Edge Betweenness Centrality (EBC). The number of the shortest
paths that run along an edge between pairs of nodes in a graph, where the shortest
path is the path with the smallest distance between any two nodes. EBC can be
formalized as follows:

cB(e) =
∑

s,t∈V

σ(s, t|e)
σ(s, t)

,

where V is the set of nodes in the graph, σ(s, t) is the number of the shortest
(s, t)-paths, and σ(s, t|e) is the number of those paths passing through edge e.

In the generated kNN attributed graph Gf , we can calculate the EBC for
each edge. An edge with a high score indicates that it is more likely to connect
different clusters in the graph, and its removal will divide the graph into two
densely connected groups. Inspired by this, we find the top-τ edges with the
highest EBC and remove them, where τ = pe ×|Ef |, |Ef | is the number of edges
in the kNN graph, and pe is the removal probability. Then, the filtered feature
graph can be represented as G′

f = (A′,X), where A′ is the new adjacency matrix
formed from the remaining edges. By reducing the number of inter-cluster edges
in G′

f , the clusters are separated from each other and the underlying cluster
structure is revealed more clearly.
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We refer to the above strategy as a generative augmentation to generate
contrasting views. Without perturbing the structure of the original graph, we
generate another graph that fully utilizes the feature information and preserves
the cluster structure. This approach provides us with richer information to learn
more discriminative representations and achieve better clusters. In addition to
graph topology, we adopt the general way [3,48] of randomly masking a fraction
(pm) of dimensions in node attributes with zeros to construct the feature matrix
X′ of the contrastive view. Finally, the constructed contrastive view is formalized
as G′ = (A′,X′) as input.

3.4 Multilevel Contrast

With the obtained contrasting pairs G = (A,X) and G′ = (A′,X′), we employ a
GCN as an encoder fθ to aggregate information from neighbors in a given graph.
Then the encoding representations H = fθ(X,A) and H′ = fθ(X′,A′) of both
the original topology and the generated feature attributed graphs are obtained
based on shared parameters. In addition, we also use a multilayer perceptron
(MLP) as a projection head gϕ following the encoder to improve the quality of
the learned representations. The projecting representations of nodes in graphs G
and G′ are represented as Z = gϕ(H) and Z′ = gϕ(H′), respectively.

We argue that the encoding representation H contains more view-specific
information about the input attributed graph, while the projecting representation
Z contains more fine-grained information after transformation. Therefore, to
capture more comprehensive information in multiple latent spaces, we propose a
multilevel contrast strategy to perform contrast on both encoding and projecting
representations simultaneously. Following the most popularly used InfoNCE [18]
loss, we formalize the contrastive loss for encoding representation as follows:

�(hi, h
′
i) = − log

exp(sim(hi, h
′
i))

exp(sim(hi, h′
i)) +

∑
k �=i

exp(sim(hi, hk)) +
∑
k �=i

exp(sim(hi, h′
k))

,

(1)
where sim(·, ·) is the cosine similarity. (hi, h

′
i) is a positive sample pair, hi is the

encoding representation of node vi in the original graph G, and h′
i corresponds

to that of the constructed graph G′. Naturally, we treat all other nodes different
from node vi as negative samples, which come from the same graph G and
another contrastive graph G′, expressed by the second and third terms in the
denominator of Eq. (1). Since the two views are symmetric, the loss of another
view is defined similarly by �(h′

i, hi). Thus, we maximize the agreement of node
representations in encoding space by optimizing the following contrastive loss:

Lenc =
1
2n

n∑

i=1

[�(hi, h
′
i) + �(h′

i, hi)] . (2)
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Correspondingly, the optimization objective for representation in the pro-
jecting space takes a similar form, as shown below:

Lpro =
1
2n

n∑

i=1

[�(zi, z
′
i) + �(z′

i, zi)] . (3)

Overall, combining the contrastive loss of encoding and projecting represen-
tations, we formalize the following multilevel contrast objective, where λ > 0 is
a trade-off parameter to balance them.

Ltra = λ ∗ Lenc + Lpro (4)

3.5 Attributed Graph Clustering

Once we obtain the encoding representations H,H′ ∈ R
n×d, we introduce a

clustering head to achieve clustering. Specifically, we use Student’s t-distribution
as a kernel to measure the similarity between node embeddings hi, h

′
i and cluster

center, generating soft cluster assignments Q,Q′ ∈ R
n×K for the two contrastive

views. The generation of Q for the original graph can be expressed as follows
(and Q′ of the other view is similar):

qik =
(1 + ‖hi − μk‖2)−1

∑
j(1 + ‖hi − μj‖2)−1

, pik =
qik

2/
∑

i qik∑
j(qij

2/
∑

i qij)
, (5)

where qik represents the probability that node vi is assigned to cluster k. The
cluster centers μk (k = 1, 2, · · · ,K) are trainable parameters, which are initial-
ized by employing K-means on the pre-trained node representations and updated
throughout training. Moreover, if a node vi is closer to a particular cluster center
μk, then qik has a larger value, and vice versa.

As formulated in Eq. (5), we follow previous studies [31,36] and construct
an auxiliary target distribution P by emphasizing the confident part with large
values and weakening the relatively unimportant part in Q. In this way, the
obtained assignment is more reliable and can be used to refine clusters. Therefore,
we achieve self-supervised clustering by forcing the current assignment Q,Q′ to
approach that of target P, i.e., by minimizing the KL divergence between them:

LKL = KL(P‖Q) + KL(P‖Q′) =
∑

i

∑

k

pik log
pik

qik
+

∑

i

∑

k

pik log
pik

q′
ik

. (6)

Recalling the assumption that the cluster distribution of network topology
and that of node attributes should be consistent for an attributed graph, we pro-
pose a distribution consistency constraint to make the soft cluster assignments
Q,Q′ learned from the original and augmented graphs as consistent as possi-
ble. This is because the two contrasting views are used to learn the information
contained in the network topology and node features, respectively. Similarly, we
achieve this by minimizing the KL divergence between Q and Q′. Therefore, the
overall clustering optimization process can be expressed as follows:

Lclu = LKL + Lcon = KL(P‖Q) + KL(P‖Q′) + KL(Q‖Q′). (7)
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3.6 Joint Training

In summary, our proposed CCA-AGC model aims to learn node representations
and cluster assignments simultaneously by jointly optimizing the multilevel con-
trastive learning and deep embedded clustering objectives. The loss function for
the model is given below:

L = Ltra + Lclu. (8)

The entire learning process of the CCA-AGC model is shown in Algorithm
1 of the supplementary material. Moreover, the final clustering result is directly
obtained from the cluster assignment Q of the original attributed graph G.
Namely, the cluster ci for node vi can be estimated as ci = arg max

k
qik.

4 Experiments

In this section, we present extensive experiments and detailed analyses that illus-
trate the performance of our proposed CCA-AGC model1 and the effectiveness
of each component.

4.1 Experimental Setups

Datasets. We evaluate the clustering performance of our proposed model
on seven widely used real-world attributed graphs, including Cora, CiteSeer,
PubMed, WikiCS, Amazon-Photo, Amazon-Computers (AmazonCom), and
Coauthor-CS. Detailed descriptions and statistics of these datasets are sum-
marized in the supplementary material.

Baselines. To verify the effectiveness of the proposed CCA-AGC model, we
compare it with eleven state-of-the-art self-supervised baselines, including two-
stage deep graph clustering methods and one-stage deep embedded cluster-
ing methods based on autoencoder (SDCN [1] and AGCN [22]). Furthermore,
two-stage methods can be further divided into contrastive-based representation
learning methods (DGI [30], MVGRL [5], GRACE [48], GCA [49], MERIT [8],
CCA-SSG [42], and AFGRL [14]), cluster-guided contrastive clustering method
(CCGC [38]), and autoencoder-based representation learning method (Graph-
MAE [7]).

Evaluation Metrics. In our experiments, clustering performance is evaluated
using four popular metrics. Accuracy (ACC), Normalized Mutual Information
(NMI), Average Rand Index (ARI), and F1-score (F1). For these metrics, a
larger value indicates a better clustering result.

1 The code is available at https://github.com/Zhengymm/CCA-AGC.

https://github.com/Zhengymm/CCA-AGC


CCA-AGC 653

Experimental Settings. We use a two-layer GCN and a two-layer MLP as
encoder and projector. The Adam optimizer with weight decay 10−5 is utilized
for optimization. We perform a grid search for each dataset to find the optimal
hyperparameters. Due to space constraints, in the supplementary material, we
specify these parameters, list the default values used in the experiments, and
also perform sensitivity analyses for some important parameters. To ensure a
fair comparison, we replicate all baseline methods using their published codes
and default settings. With their learned node representations of the original
graph, we perform K-means to get the final clusters. We report the average
results of 10 runs for all methods to avoid extreme cases.

4.2 Performance Comparison

Table 1 summarizes the performance of all methods for attributed graph cluster-
ing. Generally, the proposed CCA-AGC model consistently outperforms other
baseline methods on all datasets. For example, we improve NMI and ACC by
2.37% and 2.82% compared to the best CCGC model on the Amazon-Photo
dataset. Specifically, existing contrastive-based two-stage clustering methods
show poor clustering performance because they fail to preserve the cluster struc-
ture of the original graph during augmentation. Although the newly proposed
CCGC [38] and GraphMAE [7] methods achieve good results on some datasets,
they still require additional clustering with the K-means algorithm. On the con-
trary, our CCA-AGC model introduces a cluster-preserving contrasting view
and inherits the idea of DEC, directly obtaining a clearer cluster distribu-
tion and achieving better clustering results. Moreover, compared with exist-
ing autoencoder-based one-stage clustering methods, our multilevel contrastive
mechanism is more helpful for joint optimization and learning cluster-aware dis-
criminative representations, resulting in improved clustering performance.

To further illustrate the effectiveness of our one-stage deep embedded cluster-
ing, we also perform K-means on our learned encoding representations to show
the performance of two-stage clustering, denoted as “CCA-AGC+K-means” in
Table 1. We can see that the results are slightly worse than directly deriving clus-
ters from soft assignments during training. However, our CCA-AGC+K-means
still shows superiority over other baselines. This indicates that representation
learning and clustering can promote each other through our joint optimization,
and the learned representation is more discriminative for clustering.
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Table 1. Performance comparison of attributed graph clustering (mean±std in per-
centage), where the best results are highlighted in bold, and the sub-optimal ones are
underlined. OOM means out of memory.

Method Dataset Cora CiteSeer PubMed WikiCS AmazonCom Amazon-Photo Coauthor-CS

DGI ACC 72.03± 1.97 68.85± 0.57 52.03± 0.90 31.92± 2.95 40.79± 2.52 46.57± 2.06 71.53± 1.41

NMI 56.63± 1.22 44.28± 0.66 11.06± 3.54 12.04± 1.95 32.47± 1.58 37.88± 1.80 76.84± 1.17

ARI 52.14± 2.40 44.88± 0.66 9.33± 3.54 3.30± 0.83 23.37± 2.50 24.72± 1.32 63.87± 1.88

F1 69.21± 1.58 64.60± 0.48 44.43± 0.87 15.39± 1.80 25.41± 1.02 39.98± 3.07 66.92± 4.55

MVGRL ACC 71.85± 1.76 68.51± 0.31 64.52± 0.49 29.75± 2.15 38.28± 0.49 50.91± 0.60 67.66± 0.60

NMI 57.16± 1.16 43.86± 0.29 31.17± 0.92 15.24± 2.63 30.38± 0.86 42.34± 1.79 74.34± 0.32

ARI 52.47± 2.32 43.91± 0.34 27.65± 0.77 4.35± 0.90 17.72± 0.64 28.62± 1.79 60.72± 0.47

F1 68.83± 1.20 63.49± 0.41 64.46± 0.62 17.32± 1.95 23.37± 0.33 43.71± 2.09 64.74± 1.70

GRACE ACC 61.30± 3.81 65.09± 0.54 67.79± 2.83 35.71± 3.23 47.45± 1.69 57.84± 5.17 74.31± 4.35

NMI 47.10± 3.06 39.59± 0.92 31.23± 5.31 27.36± 4.41 42.71± 1.07 47.30± 3.68 75.44± 1.28

ARI 38.73± 4.65 39.86± 0.80 29.45± 4.97 9.27± 4.50 22.59± 1.66 29.99± 4.53 65.49± 5.61

F1 58.06± 3.43 61.38± 0.60 67.81± 2.49 24.14± 3.18 39.15± 1.15 53.33± 5.33 74.12± 3.15

GCA ACC 56.13± 4.69 64.36± 2.26 66.39± 6.55 29.86± 2.50 47.83± 1.19 63.17± 5.30 74.13± 3.67

NMI 46.59± 3.77 39.90± 1.64 33.13± 6.98 16.13± 4.73 43.09± 1.07 54.12± 4.87 75.95± 1.21

ARI 30.61± 6.97 39.56± 2.51 28.89± 8.82 2.81± 2.19 23.88± 1.17 40.21± 6.42 66.51± 4.97

F1 51.46± 3.69 60.10± 2.07 66.32± 6.39 13.97± 4.10 38.69± 0.76 56.98± 5.49 73.17± 2.37

MERIT ACC 68.03± 3.54 69.11± 0.44 63.70± 0.38 36.89± 3.16 55.16± 1.38 76.19± 1.92 72.78± 1.82

NMI 54.08± 1.77 44.38± 0.66 26.68± 0.36 25.00± 1.36 52.51± 0.71 66.20± 3.07 79.08 ± 0.61

ARI 46.31± 2.70 45.31± 0.71 24.26± 0.41 10.67± 2.77 36.23± 2.50 54.92± 3.84 66.30± 1.13

F1 63.96± 4.09 64.70±0.47 64.54± 0.38 23.64± 1.72 42.48± 2.13 71.33± 1.93 72.32± 3.66

CCA-SSG ACC 58.17± 5.32 69.36 ± 0.70 59.58± 5.56 37.09± 2.35 45.41± 0.71 48.93± 1.12 37.45± 2.50

NMI 48.55± 4.28 44.46± 0.85 27.43± 5.09 29.18± 2.62 41.63± 0.85 45.06± 1.18 32.20± 5.63

ARI 35.07± 10.34 45.47± 1.09 23.47± 7.35 9.42± 1.88 26.42± 1.16 22.78± 0.55 8.61± 6.03

F1 46.44± 6.83 64.19± 0.86 57.38± 8.70 27.76± 2.37 42.04± 0.78 49.58± 0.84 24.66± 1.99

AFGRL ACC 68.67± 2.17 66.24± 1.93 63.64± 2.14 50.53± 1.55 48.05± 1.60 71.24± 2.29 74.71± 1.67

NMI 52.73± 1.81 41.36± 1.36 31.74± 1.28 41.57± 0.74 54.07 ± 0.89 65.29± 2.07 78.65± 0.43

ARI 45.54± 2.81 41.07± 1.96 27.75± 1.26 31.65± 1.51 31.84± 1.37 52.49± 3.41 67.07± 0.72

F1 67.52± 2.05 61.86± 2.47 62.94± 2.46 42.62± 1.23 40.24± 1.54 67.36± 1.27 72.82± 2.91

CCGC ACC 73.73 ± 1.81 69.61±0.67 67.43± 0.77 37.90± 0.81 61.62±3.42 77.53± 0.76 OOM

NMI 55.93± 1.58 44.12± 0.70 30.98± 1.29 23.32± 1.39 52.19± 1.74 66.68± 0.89

ARI 51.52± 2.44 44.03± 1.39 29.56± 1.07 17.29± 1.28 42.38 ± 5.57 58.96 ± 2.20

F1 70.83 ± 2.92 62.34± 1.82 67.27± 0.75 29.41± 2.46 46.42±3.30 71.59 ± 1.47

GraphMAE ACC 67.61± 3.69 68.47± 0.40 69.60± 0.53 42.55± 2.54 52.23± 1.39 72.25± 1.34 59.96± 6.07

NMI 57.24± 1.76 43.14± 0.34 34.20± 0.53 35.86± 1.37 52.24± 0.81 64.45± 1.83 70.22± 4.17

ARI 49.66± 3.87 43.99± 0.54 32.63 ± 0.67 22.88± 2.07 36.66± 1.72 55.68± 1.67 52.61± 6.12

F1 62.67± 3.84 64.47± 0.34 69.27± 0.55 36.47± 2.22 40.84± 0.49 66.28± 2.60 50.53± 6.69

SDCN ACC 54.76± 2.75 65.05± 1.19 62.57± 0.80 48.11± 0.52 50.50± 5.25 58.00± 4.27 65.80± 1.66

NMI 36.52± 3.02 38.05± 0.85 22.76± 1.02 39.08± 0.75 35.79± 4.53 47.15± 3.94 66.02± 1.63

ARI 28.97± 2.55 39.28± 1.36 21.16± 1.10 27.37± 0.35 30.44± 8.23 38.16± 4.36 65.04± 2.14

F1 46.06± 3.34 59.88± 0.86 63.07± 0.72 41.90± 1.12 26.84± 3.09 47.36± 5.27 37.29± 2.89

AGCN ACC 58.71± 0.36 68.65± 0.20 61.20± 0.39 55.50±1.49 57.18± 1.43 61.03± 2.55 77.73± 0.99

NMI 40.61± 0.27 41.52± 0.27 23.03± 0.29 42.66 ± 0.04 41.65± 1.05 54.73± 1.17 72.16± 0.78

ARI 34.19± 0.28 43.67± 0.22 20.96± 0.47 35.11 ± 1.36 2.25± 1.91 44.32± 2.27 74.64 ± 0.89

F1 50.59± 0.32 62.37± 0.15 62.12± 0.48 43.05 ± 0.38 30.77± 1.32 53.85± 1.54 53.88± 1.67

CCA-AGC ACC 73.50± 0.26 68.77± 0.12 70.00 ± 0.06 50.04± 2.92 51.64± 0.06 77.85 ± 0.06 78.98 ± 3.00

+K-means NMI 57.45 ± 0.89 44.81 ± 0.23 35.72 ± 0.09 36.53± 1.90 51.16± 0.07 68.34 ± 0.10 75.87± 1.79

ARI 54.82 ± 1.21 45.53 ± 0.22 32.28± 0.11 29.77± 3.42 34.20± 0.07 64.06±0.15 71.70± 7.31

F1 70.08± 2.07 64.56± 0.11 69.81 ± 0.07 33.08± 2.70 42.14± 0.06 73.94±0.06 78.15 ± 1.07

CCA-AGC ACC 74.46±0.26 69.01± 0.12 70.91±0.08 52.58 ± 1.05 60.35 ± 0.17 80.35±0.07 83.51±0.32

NMI 58.50±0.31 45.06±0.24 36.57±0.04 42.78±0.45 54.18±0.06 69.80±0.10 79.42±0.34

ARI 56.13±0.33 45.91±0.20 34.11±0.10 35.23±0.92 44.31±0.20 64.06±0.15 79.18±0.61

F1 72.00±0.24 64.69 ± 0.11 70.77±0.08 45.50±0.84 43.95 ± 0.31 73.94±0.06 80.90±0.20
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4.3 Ablation Study

In this section, we conduct ablation studies to verify the benefit of each compo-
nent of the proposed CCA-AGC model.

Augmentation Mechanism. To examine the influence of the contrasting view
construction strategy on the proposed CCA-AGC model, we substitute our gen-
erative augmentation strategies, i.e., generate a kNN graph and filter its edges
according to the EBC, with commonly used augmentation strategies, including
random edge dropping and diffusion graph construction. Therefore, we imple-
ment three variants of our model: (1) kNN + Random dropping, which gen-
erates a kNN graph but drops edges randomly. (2) Random dropping, which
randomly drops edges in the original graph. (3) Diffusion, which employs diffu-
sion to construct another contrasting view. The clustering results on the CiteSeer
and Amazon-Photo datasets are shown in Fig. 2.

Fig. 2. Clustering performance of CCA-AGC model under different contrasting view
augmentation strategies.

We see that the proposed generative augmentation performs the best among
all variants. In detail, performing corruption on the generated kNN graph rather
than on the original graph leads to better clustering results. This is because the
generated kNN graph not only emphasizes feature similarity but also preserves
the inherent structure of the original graph. Meanwhile, compared to randomly
dropping edges, the introduction of EBC can remove edges that are more likely
to exist between clusters, facilitating better identification of the cluster structure
and improving the overall clustering performance. Besides, a diffusion graph is
not well-suited for our model, as it yields poor results. In general, our generative
augmentation strategy is effective and important for the CCA-AGC model.

Multilevel Contrast. To illustrate the effectiveness of our multilevel contrast
mechanism, which performs contrast in both the encoding and the projecting
representation spaces, we validate the clustering performance of the CCA-AGC
model when contrasted only on one of the representations. Figure 3 presents
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Fig. 3. Performance of CCA-AGC model with/without multilevel contrast.

the results on Cora and Coauthor-CS datasets, where “CCA-AGC-pro” and
“CCA-AGC-rep” indicate that we maximize the agreement of positive sample
pairs by optimizing the projecting representation and encoding representation,
respectively.

As shown in Fig. 3, the results of CCA-AGC-pro and CCA-AGC-rep are infe-
rior to those of the CCA-AGC model, demonstrating the benefits of multilevel
contrast for overall optimization. Since the encoder and projector exploit infor-
mation in a graph at different granularities, different contrasting strategies show
varying influences across datasets. For example, CCA-AGC-pro works better
than CCA-AGC-rep on the Cora dataset, but the opposite is true on Coauthor-
CS in our presented case. Therefore, we mitigate this issue through multilevel
contrast, which comprehensively considers various information in multiple latent
spaces and achieves superior results.

Fig. 4. Clustering performance of CCA-AGC model with different self-supervised clus-
tering constraints.
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Self-supervised Clustering. We utilize KL divergence to measure the self-
supervised clustering process of the original graph and the augmented graph, as
well as the distribution consistency constraint, which corresponds to the three
parts represented in Eq. (7). We evaluate the influence of each part on the model
in this section. The clustering performance of the CCA-AGC model on Cora and
Amazon-Photo datasets is shown in Fig. 4, where “CCA-AGC-oneKL” indicates
only utilizing the KL divergence constraint for the original graph, i.e., KL(P‖Q).
“CCA-AGC-w/oCon” indicates ignoring the distribution consistency constraint,
i.e., we use KL(P‖Q) + KL(P‖Q′) for clustering.

From Fig. 4, we find that CCA-AGC-w/oCon works better than CCA-AGC-
oneKL, and the final CCA-AGC model outperforms CCA-AGC-w/oCon. It
shows that each part of the clustering loss can affect joint training and improve
the final clustering results. With the increasing constraints in self-supervised
clustering, we can refine the cluster distribution from different aspects and obtain
clear clusters. Specifically, with the former two constraints in Eq. (7), the target
distribution can guide the refinement of soft assignments calculated from the
original and augmented attributed graphs simultaneously. Meanwhile, they are
forced to be consistent through the last distribution consistency constraint.

4.4 Convergence Analysis

To provide a more intuitive understanding of the training process, we present the
convergence trends of the CCA-AGC model in Fig. 5, showcasing the overall loss
and clustering performance on the WikiCS and AmazonCom datasets. Note that
the x-axis represents the training epoch, the y-axis on the left denotes the value
of the overall loss, and the one on the right represents the clustering results.

According to Fig. 5, our model can achieve convergence quickly. In the first
few epochs, both the total loss of the model and the clustering performance
change rapidly. However, after about 100 training epochs, the model gradu-
ally stabilizes and tends to converge, where the loss decreases steadily and the
clustering results increase slightly. Importantly, our results show that optimal

Fig. 5. The convergence curves of CCA-AGC model for the overall loss and clustering
performance over the training process.
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performance can be achieved upon convergence, further demonstrating the fea-
sibility of joint optimization of representation learning and clustering based on
contrastive mechanisms.

5 Conclusion

Motivated by the great success of graph contrastive learning and deep embedded
clustering, we propose a simple yet effective contrastive learning method with
cluster-preserving augmentation for attributed graph clustering. Our CCA-AGC
model differs from existing graph contrastive learning methods by constructing
another cluster-aware contrasting view that considers the similarity of node fea-
tures while preserving the original graph structure. Moreover, we jointly opti-
mize the contrasting objective defined in multiple latent representation spaces
with the specific clustering objective, allowing node representation learning and
clustering to reinforce each other. Extensive experiments on clustering tasks
demonstrate the superior performance of CCA-AGC over existing methods and
validate the effectiveness of each component. Overall, our proposed model pro-
vides insight for designing attributed graph clustering models that leverage the
advantages of graph contrastive learning and deep embedded clustering. In the
future, we plan to utilize cluster distribution as a pseudo-label to guide the
construction of positive and negative sample pairs in the contrastive objective
during training.
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Abstract. Clustering heterogeneous data is an ongoing challenge in
the data mining community. The most prevalent clustering methods
are designed to process datasets with numerical features only, but
often datasets consist of mixed numerical and categorical features. This
requires new approaches capable of handling both kinds of data types.
Further, the most relevant cluster structures are often hidden in only
a few features. Thus, another key challenge is to detect those specific
features automatically and abandon features not relevant for cluster-
ing. This paper proposes the subspace mixed-type clustering algorithm
k-SubMix, which tackles both challenges. Its cost function can handle
both numerical and categorical features while simultaneously identify-
ing those with the biggest impact for a high-quality clustering result.
Unlike other subspace mixed-type clustering methods, k-SubMix pre-
serves inter-cluster comparability, as it is the first mixed-type approach
that defines a common subspace for all clusters. Extensive experiments
show that k-SubMix outperforms competitive methods and reduces the
data’s complexity by a simultaneous dimensionality reduction.

Keywords: Subspace Clustering · Heterogeneous Data ·
Dimensionality Reduction

1 Introduction

Automatically identifying meaningful structures, e.g. clusters in data, is a key
challenge both in science and in economy. Applications range from medicine,
over social sciences to customer segmentation. Taking a closer look at certain
datasets, one will notice that some features like blood type, gender or educa-
tional background are categorical, while others like age or income are numerical.
Despite this, the most widely used clustering approaches only focus on a single
data type. E.g., k-Means [17] can only group data with numerical features, while
k-Modes [20] can only process categorical data. To overcome this, a common
way is to map one data type to another. Examples are one-hot encoding or dis-
cretization. However, these concepts imply either a dimensional extension or a
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loss of information. Further, A. Diop et al. [13] conclude, that mixed-type clus-
tering methods applying data type specific metrics perform better than methods
homogenizing features to a single type.

The cost function of our proposed k-SubMix algorithm, therefore consists of
two terms to minimize the clustering objective with different metrics for numer-
ical and categorical features. For numerical features, we apply the commonly
used k-Means objective function. For categorical features, our proposed metric
measures the heterogeneity of the feature values within a cluster. This enables
us to keep clusters as pure as possible when assigning the samples to the cluster.
However, identifying meaningful groups in data is not only challenging due to
different data types but also because cluster structures might be hidden only
within a few features. This applies especially to high-dimensional datasets. For
this reason, the research area of subspace clustering has emerged, which has
proposed a variety of different procedures. These proposals can essentially be
divided into two groups. While in Classical Subspace Clustering, each cluster
is assigned its own subspace, Common Subspace Clustering algorithms define a
common subspace for all clusters. This benefits the comparability of the found
structures [15], which is why we mainly focus on this group. Current proce-
dures are, however, mainly limited to numerical data. K-SubMix extends the
idea of common subspace clustering to mixed-type data and dynamically assigns
features to either the clustered space (containing structures useful for cluster-
ing and used for the actual clustering) or noise subspace (containing irrelevant
structures). The assignment of features to clustered or noise subspace is updated
constantly after every cluster assignment step, which means both clustering and
feature selection iteratively learn from each other. As informative structures can
be contained both within numerical and categorical features it is crucial that
the feature selection happens simultaneously and that it is based on a clustering
which was defined from features of both data types. Our proposed categorical
feature selection is therefore complemented very well by the SubKMeans [24]
method, which is able to automatically determine the relevant numerical fea-
tures of the clustered subspace. Our main contributions can be summarized as
follows:

– k-SubMix is the first common subspace mixed-type clustering method
– The integrated feature reduction method automatically detects those features

that are especially relevant for clustering
– Both feature selection and clustering iteratively enhance each other
– The objective function for categorical data runs independently from a cluster

center and uses the entire feature distribution to measure similarity
– Our proposal can be combined with various numeric common subspace clus-

tering algorithms and only requires the number of clusters as input parameter

2 Related Work

Mixed-Type Clustering. Ahmad et al. [4] provide a detailed overview of
the state-of-the-art mixed-type clustering algorithms. Due to its simplicity, k-
Prototypes [19,20] is among the most used mixed-type clustering approaches.



664 M. Klein et al.

Like in most partional approaches, its cost function differs for numerical and for
categorical attributes. For numerical attributes it works the same as k-Means
with mean values as cluster centers and the Euclidean distance as distance func-
tion. For categorical attributes it works similar to k-Modes [9] with the modes as
cluster centers and the Hamming distance as distance function. K-Means mixed
[2] tackles the problem that due to the simple 0 or 1 matching, k-Prototypes
is unable to capture the actual categorical feature distribution. Therefore, it
calculates categorical costs based on the co-occurrence of attribute values and
defines a frequency-based cluster center representation. Furthermore, they apply
the same cost metric on both data types as they discretize numerical features
and map them onto categorical values. Discretization, however, highly depends
on the chosen window size and often implies a loss of information.

Generally, k-Means like partitional mixed-type clustering approaches differ
in three aspects. Firstly, the definition of cluster centers. Examples of varying
center definitions are frequency-based concepts like [2,32], and [26] and the Mode
as categorical center [19,20]. Secondly, the definition of a distance measure. For
categorical attributes, this includes e.g. Hamming distance [19,20], Cosine simi-
larity [26], and frequency-based approaches [2]. Regarding the numerical metric,
the Euclidean distance is mostly used. This leads us to our third point, the
weighting of numerical and categorical costs. As different metrics are applied for
different data types, balancing their influence is a key challenge. Even though
some approaches, like e.g. [2] claim to be parameter-free concerning attribute
weighting, a detailed view into the approach reveals the dependency of the dis-
cretization’s window size. As [4] states, the scale defining the balance between
numerical and categorical features is unclear and, due to different similarity mea-
sures and center definitions, even harder to obtain. INTEGRATE [7] tries to
automatically balance their influence by using the Minimum Description Length
Principle (MDL) [5].

Common Subspace Clustering. Other than traditional subspace clustering
approaches like e.g. 4C [8], which define individual subspaces for every clus-
ter and are only able to analyze intra-cluster relationships, common subspace
clustering approaches as FOSSCLU [15] aim to both cluster in a subspace set-
ting but additionally preserve the ability to compare clusters in terms of their
inter-cluster relationship. Furthermore, one must differentiate common subspace
clustering from mere dimensionality reduction methods like e.g. PCA [28] or
LDA [14] for numerical features, MCA [1] for categorical features and Factor
Analysis on mixed-data (FAMD) [27] for mixed-type data. Those techniques are
not included in the actual clustering approach. Thus, the current state of the
clustering procedure does not influence the resulting subspaces. Actual common
subspace clustering approaches applicable to numeric data are LDA k-Means
[12], FOSSCLU [15], SubKMeans [24] and Dip’n’Sub [6]. LDA k-Means inte-
grates LDA into the traditional k-Means framework by utilizing the fact that
both LDA and k-Means have the properties of minimizing within-class scatter
and/or maximizing the between-class scatter. FOSSCLU [15] is not based on k-
Means but on the EM-Algorithm [11] and combines it with rigid transformation.
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SubKmeans [24] projects features to a rotated clustered and noise subspace by an
eigenvalue decomposition that determines if a feature reduces the cost function.
Dip’n’Sub [6] utilizes the statistical Dip-test [16] to identify relevant features.

To the best of our knowledge, so far, no common subspace clustering method
for mixed-type data has been proposed. INCONCO [29] uses the MDL-principle
to find attribute weights. Jia and Cheung propose a mixed-type clustering app-
roach OCIL [10] with a unified distance metric for categorical and numerical
features. Its extension, WOCIL is a soft subspace clustering approach [21], which
computes attribute-cluster weights by considering both intra/- and inter-cluster
impact of features. Other mixed-type feature weighting methods like EWKM
[22] (entropy-based) or WKM [18] (weights depend on current assignment), can
be integrated into mixed-type clustering approaches [3,21]. However, all men-
tioned methods cluster only within the entire feature set, and the interpretability
of inter-cluster relations is lacking with different feature-cluster weights. To the
best of our knowledge, k-SubMix is the first approach addressing common sub-
space clustering on mixed-type data.

3 k-SubMix Approach

3.1 Cost Function and Algorithmic Procedure

This section introduces the k-SubMix approach for clustering mixed-type data
in common subspaces. Table 1 shows the used symbols and definitions. The k-
SubMix underlying cost function is k-Means-based, and as in most k-Means-
based mixed-type clustering approaches, the cost function J comprises two inde-
pendent sub-cost functions, one for minimizing numerical costs and one for mini-
mizing categorical costs. We apply the standard Euclidean distance for numerical
features, and the cluster centers μ correspond to the average of all points assigned
to a cluster. The orthogonal matrix V rotates the numerical feature space. Since
the mode as a cluster center (as used by e.g. k-Prototypes for categorical fea-
tures) cannot capture the full diversity of information within a cluster, we do
not specify categorical cluster centers, but use the entire attribute distribution
within a cluster to measure the similarity between points and clusters.

J =

clustered space
︷ ︸︸ ︷

Kc
∑

k=1

∑

x∈Ck

(

numerical
︷ ︸︸ ︷

||PNumT

c V T x − PNumT

c V T μk||2 +γ

categorical
︷ ︸︸ ︷

∑

y∈Ck

f(PCatT

c x, PCatT

c y)

lc|Ck|
)

+
∑

x∈D

(

||PNumT

n V T x − PNumT

n V T μD||2
︸ ︷︷ ︸

numerical

+γ

∑

y∈D
f(PCatT

n x, PCatT

n y)

ln|D|
︸ ︷︷ ︸

categorical

)

︸ ︷︷ ︸

noise space
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Table 1. Symbols table

Symbol Interpretation

Dcat, Dnum Set of categorical and numerical features in the original feature space

d = dcat + dnum Number of features in the original feature space (categorical + numerical)

lc ∈ N, ln ∈ N Number of categorical features of the clustered (c) and noise space (n)

mc ∈ N, mn ∈ N Number of numerical features of the clustered (c) and noise space (n)

Kc ∈ N, Kn = 1 Number of clusters in the clustered (c) and noise space (n)

γ ∈ R Trade-off parameter to regulate numerical and categorical costs

D, N = |D| Set of all data objects D and its cardinality N

xj ∈ R Data object x with feature value j

Ck ⊆ D Set of all objects assigned to Cluster k in the clustered subspace

μk ∈ R
dnum Mean of all data objects of a cluster k regarding the numerical features

b ∈ N Bias value of the clustered subspace (b = Kc)

PCat
s ∈ R

dcat×ls Categorical projection onto subspace s (either clustered c or noise n)

PNum
s ∈ R

dnum×ms Numerical projection onto subspace s (either clustered c or noise n)

V ∈ R
dnum×dnum Orthogonal rotational matrix regarding numerical features

Iw, 0w,r w × w identity matrix and w × r zero matrix

Fig. 1. Difference between the categorical costs of a sample A when assigning to clusters
C1 and C2. K-SubMix assigns A to C1. With the Mode A as centers for both C1 and
C2, k-Prototypes is indifferent between both clusters.

The k-SubMix cost function J calculates for categorical features the deviation of
a point to a cluster distribution. The functions f(x, y) and respectively g(xj , yj)
(see Eq. 1) determine for a point x of dimensionality dim(x) how many points y
within the cluster Ck have the same attribute value for a feature j. By dividing
this value by the overall number of points assigned to cluster Ck, we obtain
information about how well a certain point matches a cluster. The more points
within a cluster have equal attribute values as x, the lower are its categorical
costs when assigned to a certain cluster. These categorical costs of a single point
can range from 0 to 1.

f(x, y) =
∑

1≤j≤dim(x)

g(xj , yj), g(xj , yj) =

{

1, if xj �= yj

0, else
(1)

Figure 1 illustrates how the k-SubMix categorical cost function correctly
assigns a sample A to the pure cluster C1, whereas k-Prototypes is indifferent
between C1 and C2. The fact that k-SubMix uses the entire cluster distribution
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Algorithm 1: k-SubMix
Input : Dataset D, number of clusters Kc, trade-off parameter γ
Output: Clusters C1, ...Ck in clustered subspace

1 mc, mn, lc, ln ← initial values, e.g.
dnum

2
,
dcat

2
2 PNum

c , PNum
n , PCat

c , PCat
n ← initialize using mc, mn, lc, ln

3 Ck ← Initial assignments using the 1st iteration of k-Prototypes(D, Kc)
4 μk = 1

|Ck|
∑

xnum∈Ck
xnum; μD = 1

N

∑
xnum∈Dnum

xnum

5 repeat
6 // Keep old cluster assignment for categorical cost function and

initialize new empty clusters

7 ∀k ∈ [1, Kc] : Cold
k ← Ck ∧ Ck ← ∅

8 for x ∈ D do

9 k ← argmin
i∈[1,Kc]

(|PNumT

c V Tx − PNumT

c V Tμi|2 + γ

∑

y∈Cold
i

f(PCatT

c x,PCatT

c y)

lc|Cold
i | )

10 Ck ← Ck ∪ {x} // Assign x to cluster k in clustered space

11 end

12 PNum
c , PNum

n , V, μk ← SubKMeans optimization (see [24])
13 for j ∈ Dcat do
14 if catCostc(j) + b < catCostn(j) then
15 Feature j is assigned to clustered space c by PCat

c

16 else
17 Feature j is assigned to noise space n by PCat

n

18 end

19 end

20 until convergence;

to determine point to cluster similarity is a clear advantage over the simple
matching between a point and the mode of a cluster (as done in k-Prototypes).

Algorithm 1 shows the k-SubMix approach in detail. The k-SubMix app-
roach assumes that most cluster-relevant structures can be contained in a lower
dimensional subspace, named clustered space, with Kc clusters. K-SubMix aims
to push features with a positive impact on discovering clustering structures into
this space as the actual clustering takes place only in the clustered space. All
other features are pushed into the noise space and not considered for the point-to-
cluster assignment for the next iteration. The number of categorical and numer-
ical features lc and mc belonging to the clustered space c are initially set such

that lc =
dcat

2
and mc =

dnum

2
. Accordingly, the other half of the features

belong to the noise space n. The following projections map features to clustered
or noise subspaces:

PNum
c =

[

Imc

0dnum−mc,mc

]

, PNum
n =

[

0mn,dnum−mn

Imn

]

, PCat
c =

[

Ilc

0dcat−lc,lc

]

, PCat
n =

[

0ln,dcat−ln

Iln

]
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Fig. 2. Clustered and noise distributions of numerical and categorical data type.

As the k-SubMix categorical cost function depends only on the current state of
cluster assignments, k-SubMix does not have a categorical cluster center update
step. However, this implies that some initial clusters need to be generated in the
initialisation phase. We, therefore, perform a single iteration with the Euclidean
distance for numerical features and for categorical features we calculate the Ham-
ming distance between all points and randomly set cluster centers (similarly to
the k-Prototypes method) to obtain initial clusters. Following Algorithm 1 to
the actual clustering phase, every point x is assigned to its closest cluster k by
optimizing the clustered subspace part of the objective function J . As cluster-
ing only takes place in the clustered space, the point vectors are reduced by
PCat

c and PNum
c . Features mapped to the noise subspace do not influence the

point-to-cluster assignment.

3.2 Subspace Optimization

Categorical Optimization. After cluster assignment, the projection matrices
mapping features to either clustered or noise subspace are updated depending
on the feature’s impact on the newly derived clustering result. In order to decide
to which subspace a categorical feature j should be projected for the upcoming
cluster iteration, we compare its overall costs in both subspaces.

Thus, given a current cluster assignment of points to clusters Ck in the clus-
tered subspace, let catCostc(j) be the overall sum of categorical costs from all
points to their current cluster for feature j. On the other hand, catCostn(j)
sums up the categorical costs of all points being assigned to a single cluster.
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Fig. 3. Overall assignment costs in the clustered and noise subspace for features of
varying heterogeneity. Cluster splits are indicated by the black separating line.

We aim to keep features that minimize the clustering cost function in the
clustered space. This implies feature j is assigned to the clustered space if
catCostc(j) < catCostn(j), which means features are projected to the clustered
space, if their costs are cheaper in a clustering setting than in a noise setting
with a single cluster.

Figure 2 illustrates possible noise and clustered features for both data types.
K-SubMix aims to detect categorical noise features vn1 (Fig. 2b - randomly dis-
tributed consisting in the extreme case of N unique values) and feature vn2

(Fig. 2c - all samples have equal feature values) and to push them into the noise
subspace. Features rich in clustering structure similar to vc (Fig. 2e) are to be
kept in the clustered subspace.

For features of type vn1(randomly distributed consisting of N unique values),
catCostc(j) = N−Kc and catCostn(j) = N−1. To avoid a mismatch of the noise
feature vn1 to the clustered space, we introduce the bias b = Kc and add it to the
clustering subspace costs. We obtain our final decision rule catCostc(j) + b <
catCostn(j), that correctly projects features of type vn1 and vn2 to the noise
subspace and keeps high informative features as vc in the clustered subspace.
The projection matrices PCat

c , PCat
n and the subspace dimensionalities lc and ln

are updated accordingly after every cluster iteration step.
Figure 3 shows how both catCostsc(j) and catCostn(j) evolve for features of

varying heterogeneity. All features of the example have 8 samples and Kc = 2.
The example clearly shows how both features of type vn1 and vn2 are correctly
identified as noise and catCostc(j)+b > catCostn(j). On the other hand features
similar to vc (see Fig. 3, features between the dotted lines) are identified as
relevant for clustering, as catCostc(j)+ b < catCostn(j) and thus pushed to the
clustered subspace.

Figure 4 illustrates how points-to-cluster costs are calculated within the clus-
tered subspace. Whereas the Euclidean distance calculates distnum, distcat for
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Fig. 4. Example of point-to-cluster costs in the clustered subspace for numerical and
categorical features.

the categorical features color and shape is obtained by our frequency-based
method. Categorical costs of a single sample x range from 0 (all have equal val-
ues) to 1 (all have different values). To minimize the point-to-cluster assignment,
numerical and categorical costs are added and weighted by the γ-parameter.
Observing the features of the example, one can identify that the categorical fea-
ture shape is clearly a noise feature, as shapes are randomly distributed across
all clusters, and k-SubMix would project it through PCat

n to the noise subspace.
The same applies to the numerical y-dimension, which is a unimodal Gaus-

sian as in Fig. 2a. Thus, PNum
n projects it to the noise subspace. The actual

clustering structure is only contained within the categorical feature color and
the numerical x-dimension, as both clearly separate the data into 3 clusters.
Therefore, k-SubMix would project the numerical x-dimension through PNum

c

and the categorical color feature through PCat
c to the clustered space and clus-

tering would only happen within this reduced feature space for the upcoming
iteration.

Numerical Optimization. For numerical features we apply the SubKMeans
approach [24]. Its basic idea can be summarized as follows. Firstly a random
orthonormal matrix V is initialized, PNum

c and PNum
n are set by the initial

mc and mn. In the assignment step, k-Means is performed on the reduced (by
PNum

c ) and rotated (by V ) data. In the update step, the full dimensionality
is taken into account to update the cluster centers, the rotational matrix V
and the projection matrices PNum

c and PNum
n . An eigenvalue decomposition is

performed, and its eigenvectors form the new rotational matrix V . The size of
its corresponding eigenvalue decides whether a feature should be mapped to
the clustered or noise subspace. Thus, V , PNum

c and PNum
n are updated for

the upcoming iteration. SubKMeans identifies unimodal Gaussians (Fig. 2a) as
noise and only keeps features that minimize the objective goal (Fig. 2d) in the
clustered space.
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3.3 Complexity and Convergence

The complexity of k-SubMix consists of the complexity of the numerical and
categorical parts of the cost function. The numerical complexity is equal to that
of the SubKmeans approach [24] which corresponds to O(I(mc Kc N +d2

numN +
d3

num)). For the categorical part, the complexity is O(I(dcat N)+dcatN)), where
O(I(dcat N)) describes how for each iteration I and each feature all clusters
and therefore all samples N must be looked up once to count the appearance of
the distinct feature values in order to compute both clustering assignment costs
and clustered subspace feature cost. As the noise subspace consists of a single
cluster containing all samples and the costs for the noise space features do not
change between iterations, its costs can be initially computed once and are thus
O(dcatN).

It is easy to see that k-SubMix has to converge. Its cost function decreases
in each update and assignment step and has a lower bound of 0. This implies
that the algorithm has to converge towards a (local) minimum.

4 Experiments

4.1 Experimental Setup and Datasets

We evaluated k-SubMix with respect to its clustering result considering the NMI
(Normalized-Mutual Information) score [30], the Clustering Accuracy [31] and
its ability to reduce the dimensionality of the dataset.

The evaluation is based on five real-world and three synthetically generated
datasets. The real-world datasets Heart, Credit, Dermatology (Derma), Adult,
and Cylinder Bands (Bands) are available at the UCI repository1 and commonly
used in mixed-type clustering. The synthetical datasets Syn1, Syn2 and Syn3,
are different combinations of the features illustrated in Fig. 2. Syn1 contains
all the clustering information in its categorical features, Syn2 in its numerical
features and Syn3 in 3 numerical and 3 categorical features. Table 2 gives an
overview of the dataset’s properties. We compare k-SubMix to a variety of clus-
tering approaches. Firstly to the well-known mixed-type methods k-Prototypes
[19,20] and k-Means Mixed [2]. Secondly to mixed-type subspace (feature weight-
ing) methods like EWKM [22], WKM [18], OCIL [10] and WOCIL [21]. Thirdly
to the numerical common subspace clustering method SubKMeans [24]. Lastly
to the traditional clustering approaches k-Means (for numerical data) [17] and
k-Modes (for categorical data) [20]. To highlight properties of our k-SubMix
method and point out the need for sophisticated common subspace mixed-type
clustering methods, further variations of some methods like one-hot encoding,
discretizing or preprocessing the data with FAMD, were analyzed. In all cases,
we preprocess the datasets by a 0 to 1 min-max normalization on the numeri-
cal features. All algorithms were run 10 times (with the correct number of k),
and average scores were taken. For k-SubMix and k-Prototypes, we evaluated

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Table 2. Information regarding the used datasets.

Heart Credit Derma Adult Bands Syn1 Syn2 Syn3

dnum 8 6 1 6 20 17 3 10

dcat 5 9 33 8 19 3 17 10

N 303 653 366 30612 277 1500 1500 1500

Kc 2 2 2 2 2 3 3 3

runs with varying γ-parameter within [0.1, 0.11, ..., 2]. For k-Means Mixed, we
evaluated discretization window sizes within [2, 3, ..., 10] (5 are recommended
and set as default). The highest average scores with equal parameter settings
out of 10 runs are taken. For WOCIL, OCIL, EWKM, and WKM, we took the
results from the real-world experiments of [21] (proposing WOCIL as extension
of OCIL). The paper states that the feature weighting methods EWKM and
WKM were integrated into a k-Prototypes kind of clustering. Furthermore we
analyzed the impact of the γ-parameter on the NMI score on both a synthetical
and real world dataset. The k-SubMix implementation and synthetical datasets
can be downloaded from: https://doi.org/10.6084/m9.figshare.23560305.v1.

4.2 Quantitative Results

Table 3 and Table 4 present the quantitative results of our experiments. As can be
deduced, regarding the NMI score and the Clustering Accuracy score, k-SubMix
is highly competitive to other methods both on real-world and synthetically gen-
erated datasets. K-SubMix is the only approach that performs well consistently
across all datasets. Some approaches, e.g. SubKmeans and k-Means, perform well
only on numerically dominated data like Syn2 and analogously k-Modes only on
categorical dominated data as, e.g. Syn1. Discretization did not have a meaning-
ful impact on k-Modes performance. On the other hand, one-hot encoding cate-
gorical feature increased k-Means performance on most datasets and achieved a
high average NMI scores, especially on the Dermatology dataset. However, one
must bear in mind that, in this case, it implies an expansion from 33 to 130
features. Apart from that, the method cannot detect noise dimensions, which
can be clearly observed by its low performance on Syn2, where all 17 categorical
noise features are one-hot encoded. This makes it particularly hard to interpret
the final clustering result. Mixed-type methods like k-Prototypes and k-Means
mixed have fairly well scores on some datasets but struggle, e.g. at the Credit
or Syn2 data. EWKM and WKM perform worse than pure k-Prototypes with-
out attribute weighting regarding the NMI. However the Clustering Accuracy
scores of both EWKM and WKM, such as of OCIL and its extension WOCIL are
quite high. FAMD preprocessing is among the strongest competitors on many
datasets.

Apart from being a highly competitive approach regarding clustering scores,
the second key advantage of k-SubMix can be analyzed with Table 5, which shows

https://doi.org/10.6084/m9.figshare.23560305.v1
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Table 3. NMI results on real-world and synthetical datasets. Average scores are taken
of 10 runs. Bold, underlined and dotted underlined values represent the best, 2nd best
and 3rd best result. Results of algorithms marked with a * are taken from [21]. As
the Derma dataset only contains a single numeric feature, SubKMeans could not be
executed for this dataset (†).

NMI scores Heart Credit Derma Adult Bands Syn1 Syn2 Syn3

k-SubMix 0.350 0.372 0.858 0.173 0.054 0.793 0.912 0.955

k-Meansnumeric only 0.157 0.041 0.098 0.064 0.003 0.003 0.910 0.901

k-Meanscategoric one-hot 0.328 0.022 0.936 0.131 0.050 0.790 0.001 0.858

FAMD + k-Means 0.274 0.249 0.695 0.185 0.049 0.777 0.912 0.931

SubKMeansnumeric only 0.143 0.042 † 0.063 0.003 0.002 0.910 0.902

SubKMeanscategoric one-hot 0.337 0.033 0.762 0.087 0.050 0.692 0.001 0.863

FAMD + SubKMeans 0.292 0.242 0.616 0.176 0.050 0.765 0.912 0.931

k-Modescategoric only 0.283 0.278 0.588 0.087 0.046 0.770 0.000 0.404

k-Modesnumeric discretized 0.214 0.270 0.591 0.119 0.052 0.085 0.175 0.755

k-Prototypes 0.261 0.002 0.682 0.106 0.006 0.528 0.018 0.931

k-Means mixed 0.345 0.309 0.528 0.172 0.046 0.755 0.104 0.841

WKM* 0.184 0.287 0.096 0.091 – – – –

EWKM* 0.225 0.245 0.507 0.001 – – – –

OCIL* 0.233 0.182 0.796 0.004 – – – –

WOCIL* 0.307 0.236 0.591 0.005 - - - -

the original features of the datasets (dnum and dcat) and the features k-SubMix
selected for the clustered subspace (mc and lc). K-SubMix detects noise features
throughout all datasets. Most categorical real-world datasets seem to have few
noise features, but k-SubMix’s ability to detect noise features can clearly be
proven by Syn1-Syn3. For Syn1 and Syn3, k-SubMix identifies all categorical
noise features correctly. Together with the numerical subspace optimization from
SubKmeans, it generates a clustered subspace with less than half of the original
dimensionality while still achieving the highest NMI scores. For Syn2, it detects
15 of 17 categorical noise features and reduces the total number of features from
20 to just 5. Having only 3 numerical and 2 categorical features highly increases
the interpretability of the clustering outcome as one could, e.g. by using color and
shape coding for categorical values, use a single 3-dimensional plot to visualize
the entire remaining data. For the Adult dataset, which consists of 2 clusters
(people earning more and people earning less than 50K$ a year), k-SubMix
correctly identifies the categorical feature native-country as noise, as 90% of the
samples are from the US. Further, the numerical features age and working hours
were identified as noise features and do not influence the clustering outcome.
Other features such as education and gender had a bigger impact.
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Table 4. Clustering Accuracy results on real-world and synthetical datasets. Average
scores are taken of 10 runs. Bold, underlined and dotted underlined values represent
the best, 2nd best and 3rd best result. Results of algorithms marked with a * are taken
from [21]. As the Derma dataset only contains a single numeric feature, SubKMeans
could not be executed for this dataset (†).

Clustering Accuracy Heart Credit Derma Adult Bands Syn1 Syn2 Syn3

k-SubMix 0.835 0.838 0.799 0.707 0.574 0.950 0.983 0.998

k-Meansnumeric only 0.728 0.618 0.162 0.650 0.570 0.348 0.982 0.981

k-Meanscategoric one-hot 0.825 0.455 0.966 0.715 0.628 0.947 0.350 0.969

FAMD + k-Means 0.799 0.763 0.553 0.694 0.617 0.943 0.983 0.996

SubKMeansnumeric only 0.715 0.618 † 0.648 0.568 0.343 0.982 0.985

SubKMeanscategoric one-hot 0.830 0.455 0.728 0.712 0.628 0.943 0.351 0.972

FAMD + SubKMeans 0.815 0.755 0.490 0.681 0.617 0.936 0.983 0.996

k-Modescategoric only 0.784 0.799 0.623 0.636 0.613 0.939 0.355 0.780

k-Modesnumeric discretized 0.777 0.799 0.667 0.654 0.649 0.530 0.657 0.935

k-Prototypes 0.717 0.499 0.559 0.502 0.548 0.846 0.415 0.996

k-Means mixed 0.831 0.790 0.617 0.712 0.560 0.910 0.604 0.951

WKM* 0.733 0.757 0.283 0.727 – – – –

EWKM* 0.756 0.772 0.636 0.751 – – – –

OCIL* 0.769 0.697 0.725 0.750 – – – –

WOCIL* 0.815 0.853 0.786 0.750 – – – –

Table 5. Original dimensionalities vs. reduced dimensionalities by k-SubMix.

Heart Credit Derma Adult Bands Syn1 Syn2 Syn3

dnum/dcat 5/8 6/9 1/33 6/8 20/19 17/3 3/17 10/10

mc/lc 2/6 3/8 1/32 3/7 10/14 6/3 3/2 5/3

4.3 γ-Parameter Sensitivity

For mixed-type clustering algorithms, finding a good weighting of numerical
and categorical features is challenging, even though data normalization helps
to increase the comparability of their cost functions. We evaluated the γ-value
influence on the NMI score for k-SubMix and for k-Prototypes. Both approaches
handle numerical and categorical features differently and therefore need a param-
eter to trade-off their respective impact on the cost function.

Figure 5 shows the results of the γ-parameter sensitivity on the synthetical
dataset Syn1 (Fig. 5a) and the real world dataset Heart disease (Fig. 5b). The γ-
values range from γ = 0 (categorical features are ignored) over γ = 1 (numerical
and categorical costs contribute equally), to γ = 2 (categorical costs weight
twice as high as numerical costs). We recognize for both datasets, that for very
low γ-values around 0 both algorithms have a low performance. This proves the
necessity of integrating categorical features into the clustering as they have a
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Fig. 5. γ-parameter sensitivity on a synthetical and real world dataset. Effect of γ on
NMI scores for k-SubMix and k-Prototypes.

meaningful impact on the clustering result. One can further recognize that both
algorithms perform stable on the Syn1 dataset for the remaining γ-values, but
k-SubMix has a way higher overall NMI score. For the real-world Heart disease
dataset γ’s influence on k-Prototypes is high, as one must find the exact spot in
a rather small range to obtain a good clustering result. K-SubMix’s NMI scores,
on the other hand, are constantly high for the Heart dataset, and the average
NMI across all γ’s is just 0.033 lower than the highest achieved NMI score.

For the illustrated examples k-SubMix’s dependency on a good γ choice is
rather low, and the results are more constant compared to k-Prototypes. How-
ever, feature weighting is an ongoing challenge, and different datasets might show
different behaviours regarding the γ-parameter.

5 Conclusion

In this paper, we propose k-SubMix, which to the best of our knowledge is the
first common subspace mixed-type clustering approach. It simultaneously clus-
ters and reduces the data dimensionality by projecting features to the clustered
or noise subspace. This projection is constantly improving during the clustering
process, as it depends on the current state of the clustering assignment. The cate-
gorical feature reduction method of k-SubMix is complemented by the numerical
method of SubKMeans, but can be easily be replaced by any other numerical
common subspace method like FOSSCLU or LDA k-Means. Extensive experi-
ments show the high value of the proposed strategy as it almost consistently
surpasses the results of its competitors. Apart from that, one of k-SubMix’s
core strengths is to deal with datasets that have hidden cluster structures only
within a few features. Its resulting lower dimensional representation increases the
explainability and reduces the problem of the curse of dimensionality. Further
developments could be the extension of k-SubMix to non-redundant clustering
as in [25] or automatically determining the number of clusters as in [23] or [15].
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Ethical Statement. Our proposed k-SubMix approach is a new clustering method in

the area of unsupervised learning. We have no specific ethical concerns regarding the

work of this paper, as all experiments were run on either synthetically generated data

or on publicly available datasets that are commonly used in the field of mixed-type

clustering. Real-world datasets containing personal data such as Heart, Derma and

Adult are standard datasets for the evaluation of mixed-type clustering approaches

and the resulting cluster did not reveal any new or ethically critical patterns. No data

from humans has been collected for this paper. K-SubMix can be applied to any dataset

and is not targeting a specific ethically critical domain.
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Abstract. Multi-view spectral clustering has achieved considerable per-
formance in practice because of its ability to explore nonlinear structure
information. However, most existing methods belong to shallow models
and are sensitive to the original similarity graphs. In this work, we pro-
posed a novel model of Transformer-based contrastive multi-view cluster-
ing via ensembles (TCMCE) to solve the above issues. Our model inte-
grates the self-attention mechanism, ensemble clustering, graph recon-
struction, and contrastive learning into a unified framework. From the
viewpoint of orthogonal and nonnegative graph reconstruction, TCMCE
aims to learn a common spectral embedding as the indicator matrix.
Then the graph contrastive learning is performed on the reconstructed
graph based on the fusion graph via ensembles. Extensive experiments
on six real-world datasets have verified the effectiveness of our model on
multi-view clustering tasks compared with the state-of-the-art models.

Keywords: Graph reconstruction · Multi-view clustering ·
Contrastive graph learning · Transformer · Ensemble clustering

1 Introduction

With the arrival of the big data era, multi-view or multi-modal data is ubiq-
uitous [1,2]. Under such circumstances, multi-view learning has attracted more
and more attention, in which multi-view clustering (MVC) is the fundamental
task [3,4]. In recent years, a large number of MVC methods have been proposed,
which can be roughly divided into two categories: traditional shallow models and
deep models.

Traditional models utilize machine learning techniques to optimize the vari-
ables in the objective function for clustering assignment, in which graph-based
ones show superior performance because of the ability to capture nonlinear struc-
ture information [5,6]. In most cases, graph-based MVC approaches are con-
ducted via a two-stage process: 1) obtaining the common spectral embedding; 2)
discretizing the embedding via the single-view clustering method, e.g., k-means,
to obtain the final cluster labels. Unfortunately, the clustering performance is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 678–694, 2023.
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limited by the post-processing, e.g., k-means is sensitive to the initialization of
original data points. Strategies to implement the one-step MVC have become
the research hot, in which learning a nonnegative spectral embedding [7] as the
indicator matrix from the viewpoint of orthogonal and nonnegative graph recon-
struction (ONGR) [8] has made great strides in improving the clustering perfor-
mance. For multi-view clustering, NESE [9] was designed to integrate spectral
embedding and nonnegative embedding into a joint framework. Similarly, Shi
et al. proposed MCONGR [10] to fully dig out the latent structure information
based on ONGR. To consider the importance of multiple views, AONGR was
devised to learn a unified nonnegative spectral embedding [11]. However, these
methods belong to shallow models with the limited capacity to dig out the latent
information hidden in complex real-world datasets.

Deep MVC methods have gradually become a popular trend in the commu-
nity due to their outstanding representation ability [12,13]. Graph convolution
network (GCN) [14] is widely employed in deep MVC models because of its
ability to encode the graph structure and node embedding [15,16]. However,
the graphs in most GCN-based methods are fixed, making the clustering perfor-
mance heavily dependent on the predefined graph. In addition, a complex loss
function is often devised in this kind of model. Different modules in these models
need to be trained solely without a unified optimization framework to conduct
end-to-end learning.

To this end, we propose a novel model of Transformer-based contrastive
multi-view clustering via ensembles (TCMCE) to obtain a nonnegative spectral
embedding as the indicator matrix. In addition, an effective optimization algo-
rithm is employed to update the variables in TCMCE with a unified framework,
consisting of reconstruction loss and graph contrastive learning loss. Specifically,
the reconstruction loss is devised from the viewpoint of similarity graph recon-
struction and the graph contrastive learning loss is designed to draw alike nodes
close and push the dissimilar ones apart in the reconstructed graph. The contri-
butions of this work can be summarized as:

– To our best knowledge, our model is one of the first works to utilize the self-
attention mechanism in the Transformer to obtain the nonnegative spectral
embedding for one-step MVC.

– The co-association matrix in ensemble clustering is utilized for graph con-
trastive learning to make the similar nodes close and the dissimilar ones apart
in the learned common graph.

– Extensive experiments on six real-world datasets are conducted to verify the
effectiveness of the proposed TCMCE in comparison with the state-of-the-art
(SOTA) MVC baselines.

2 Related Works

2.1 Traditional MVC Methods

With the rapid development of graph data, graph-based multi-view clustering
has achieved great success. CGL [17] was proposed to learn a consensus graph in
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spectral embedding space and conduct k-means to get the clustering labels. To
get the clustering results in a one-step process, MLAN with a rank constraint
on the Laplacian matrix was proposed for multi-view clustering task [6]. In [5],
GMC was proposed to fuse the similarity graphs of all views to learn a consis-
tent graph with corresponding connected components, which could improve the
graph matrix of each view in turn and give the final clustering result directly.
Instead of Laplacian rank constraint, Zhang et al. proposed COMVSC to learn
the common representation and label matrix simultaneously [18]. To consider the
importance of multiple views, Zhan et al. proposed an unsupervised multi-view
clustering method based on graph structure fusion by using the Hadamard prod-
uct [19], combining similarity and graph structure learning into a unified frame-
work. Ren et al. devised a robust auto-weighted multi-view clustering model
named RAMC [20], which was robust to the outliers because of the use of l1-
norm. For the practical application of multi-view clustering, MOSTA [21] was
proposed to identify groups of legal judgments. To deal with the scalability issue
on large datasets, anchor-graph were applied in multi-view clustering methods.
Kang et al. [22] proposed LMVSC with linear order complexity, which employed
SC on a small fusion graph to obtain the clustering results. FMDC [23] was pro-
posed to perform multi-view clustering with a small cost in terms of running
time, in which the indicator matrix could be directly learned via the aggregated
graph. Similarly, EOMSC [24] was proposed to integrate graph construction and
anchor-graph learning into a joint framework. In most cases, however, the clus-
tering performance of the anchor-graph-based methods is sensitive to the number
of anchors.

2.2 Deep MVC Methods

To obtain the deep features from different views, the deep learning technique
has been employed in many multi-view clustering methods, which can learn bet-
ter feature representation than traditional shallow models. AE2-Net [25] as an
unsupervised multi-view representation learning network is effective for clus-
tering tasks, which can flexibly balance the complementarity and consistency
among multiple views due to the unified framework with the inner and outer
auto-encoder networks. However, this method only learns a latent representa-
tion in multi-view data, extra post-processing is also necessary to obtain the
final results. To learn the clustering labels in one stage, an end-to-end adversarial
network (EAMC) [26] was devised to conduct multi-modal clustering, which con-
tained a divergence-based clustering loss to learn the simplex embedding for clus-
ter assignments. Owing to the success of contrastive learning, contrastive clus-
tering [27] based methods had achieved SOTA performance in clustering tasks.
Based on the loss function in EAMC, Trosten et al. proposed contrastive multi-
view learning (CoMVC) [28], which fused the multiple representations of each
view by a weighted linear combination and obtained the cluster results from the
representation via selective alignment in the contrastive learning module. COM-
PLETER [29] was proposed to project the original features into a subspace with
information consistency and data restorability based on contrastive learning. To
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consider the conflict between consensus feature learning and diversity among
multiple views, MFLVC [30] was proposed to perform multi-view contrastive
clustering, which obtained the common representation with multiple levels of
the feature. For multi-view graph clustering tasks, O2MAC [15] employed the
graph auto-encoder to obtain low-dimensional embedding. CMGEC [16] was pro-
posed to deal with general multi-view clustering, which coupled auto-encoder,
mutual information maximization, and GCN technique into a unified framework
to learn a consistent representation.

Fig. 1. The architecture of TCMCE.

3 Methodology

Given dataset X = [x1, x2, ..., xN ] ∈ R
N×d, N denotes the number of data

points, d represents the feature number of each point, spectral clustering utilizes
the graph form to separate the data points into corresponding clusters. Within
the affinity graph, each vertex denotes a data point, and edges represent the
connection between two data points. With the original graph W , the objective
function of ONGR can be written as:

min
F

∥
∥
∥S − FF T

∥
∥
∥

2

F

s.t. F T F = I,F ≥ 0.

(1)

where S = D− 1
2 WD− 1

2 , D is the degree matrix of W and L = D − W . To
extend Eq. (1) in multi-view clustering. The objective function of orthogonal and
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nonnegative graph reconstruction for multi-view clustering can be represented
as follows:

min
αv,F

∥
∥
∥
∥
∥

V∑

v=1

(αv)r
Sv − FF T

∥
∥
∥
∥
∥

2

F

s.t. α > 0,αT1 = 1,F T F = I,F ≥ 0,

(2)

where αv represents the weight of v-th view, r is a scalar to control the distribu-
tion of weights, V denotes the number of views in multi-view datasets. Sv is the
normalization similarity graph of v-th view, and F ∈ R

N×c denotes the spectral
embedding, c is the number of clusters.

Instead of learning the shallow graph embedding in traditional models, we
propose the TCMCE model, which combines the self-attention mechanism [31]
and contrastive learning [32] to obtain the deep nonnegative spectral embedding
as the indicator matrix. Figure 1 gives the architecture of our model, which
consists of three modules: similarity graph encoder, similarity graph decoder,
and graph contrastive learning via ensembles.

3.1 Similarity Graph Encoder

The graph encoder is utilized to transform the unified similarity graph Ŝ ∈
R

N×N =
∑V

v=1 (αv)r
Sv into corresponding graph embeddings by self-attention

mechanism. Ŝ will be embedded into three subspaces, which can be represented
as query, key, and value. We can learn the three features via the following for-
mula:

Q = ŜW
Q

K = ŜW
K

V = ŜW
V

(3)

where W Q ∈ R
N×d, W K ∈ R

N×d, and W V ∈ R
N×d denote the learned param-

eters. Q ∈ R
N×d, K ∈ R

N×d, and V ∈ R
N×d are the obtained query, key, and

value features, respectively. The self-attention score among samples in the fusion
graph can be learned via

aij =
e

1√
d

K iQ
T
j

∑N
l=1 e

1√
d

K iQT
l

(4)

We can obtain the output spectral embedding by

F a = Attention(Q,K, V ) = {Fi}N
i=1 (5)

where Fi =
∑N

j=1 aijVj , and the final output F is the aggregation of V by the
weighted attention score.
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The multi-head attention module is applied in the self-attention mechanism
to project the input feature into multiple sub-spaces, which makes the model
own the capability to pay attention to different positions. The final output in
multi-head attention is a linear projection of the concatenation of the outputs
from multiple attention heads, which can be obtained by

F M = Concat(F 1, ...,F m) · W M (6)

where F i = Attention(Qi,Ki, Vi), 1 ≤ i ≤ m, m denotes the number of heads.
W M is also a learnable matrix, F M ∈ R

N×d
′

is the output of multi-head atten-
tion module, d

′
= d × m. In addition, Point-wise Feed Forward Network (FFN)

is the last layer in the similarity graph encoder and we can get the output of it
by

F e = Relu(F a · W e
1 + be

1) · W e
2 + be

2 (7)

In addition, the dropout layer, residual connection, and layer normalization
are added to the modules in the encoder.

3.2 Similarity Graph Decoder

After obtaining the embedding F e from the graph encoder, the low-dimension
output of the graph decoder can be obtained via:

F = Softmax(Relu(F e · W d
1 + bd

1) · W d
2 + bd

2) (8)

where W d
1, W d

2 are the learnable matrices in the decoder, and bd
1, bd

2 denote
the biases. The obtained nonnegative spectral embedding serves as the indicator
matrix for the clustering assignment.

3.3 Similarity Graph Contrastive Learning

For the input normalization similarity graphs S1,S2, ...,SV , N-cut is applied to
get the original spectral embedding of each view, which can be written as:

min Tr(F v T LvF v )

s.t. F v T DvF v = I,
(9)

where Dv and Lv represent the degree matrix and Laplacian matrix of Sv ,
respectively.

Let F (v) denote the basic partition for the v-th view in datasets. We fuse the
basic partition in each view into the co-association matrix from ensemble cluster-
ing, which serves as the fusion similarity graph. We obtain F (v) by performing
k-means on F v . So the co-association matrix H can be learned by:

Hij =
1
V

V∑

v=1

δ(F (v)
i , F

(v)
j ) (10)
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where Hij represents the (i-th, j-th) element in H, and δ(.) is the Kronecker
delta function, which returns 1 with two identical input values otherwise 0. Here
we regard H as the fusion similarity graph from multiple views.

In this paper, each node and its neighbours in the co-association H are
regarded as positive pairs. We perform contrastive learning at the graph level by
applying a contrastive regularizer on the reconstructed similarity graph FF T .
Significantly, the value of FFT

ij should be large if xi and xj are connected
in H while small if they are disconnected in H. We can get the loss of graph
contrastive learning as:

Lgcl = − 1
N

N∑

i

log

∑

Hij>0 exp(FFT
ij)

∑

Hij=0 exp(FFT
ij)

(11)

3.4 Loss Function

The loss function consists of two forms: reconstruction loss and graph contrastive
learning loss. From the viewpoint of the graph reconstruction, we serve FF T as
the reconstructed similarity graph. Thus, the reconstruction loss is defined as:

Lre =
∥
∥
∥Ŝ − FF T

∥
∥
∥

2

F
(12)

The total loss function can be represented as:

L = Lre + λLgcl (13)

where λ denotes the trade-off parameter to balance the two forms. We use Adam
to update the loss function in TCMCE, and the learning rate is set as 10−3.
Optimizing the overall loss L, we can learn the final spectral embedding F .
We find the column index of the largest number in each row of the final graph
embedding F as a label matrix. The cluster label of the i-th sample can be
obtained as:

yi = argmax(f i) (14)

3.5 Computational Complexity

The computational cost of constructing the similarity graph for each view is
O(N2dv), where dv denotes the dimension of the original feature in v-th view.
For the Transformer-based encoder, the main cost is the Attention(Q,K, V ),
whose computational cost is O(N2d). For the decoder, the most time-consuming
operation is matrix multiplication, e.g., F e · W d

1 ∈ R
N×de , its computational

complexity is O(Nd
′
de). For graph contrastive learning, the most cost is FF T ,

whose computational complexity is O(N2). In addition, the complexity to obtain
original spectral embedding on each view is O(cN2).
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4 Experiments

In this section, we first give the experimental setting of this work. In addition, to
illustrate the effectiveness of our model, we evaluate the clustering performance
on six real-world datasets compared with the SOTA multi-view clustering meth-
ods. Finally, parameter sensitivity, convergence analysis, and ablation study are
also introduced.

4.1 Experimental Setting

Table 1. Description of the benchmark multi-view dataset used in this paper.

Dataset N V c d1, d2,..., dV

MSRCV1 210 6 7 256/48/100/512/210/1302

COIL20 1440 3 20 1024/3304/6750

100leaves 1600 3 100 64/64/64

HW2sources 2000 2 10 784/256

Scene 2688 4 8 512/432/256/48

Caltech101 9144 6 102 48/40/254/1984/512/928

Datasets: Six widely used benchmark multi-view datasets are utilized in this
article, including MSRCV1 [34], COIL20 [35], 100leaves [36], HW2sources [37],
Scene [38] and Caltech101 [39]. The description of the above datasets is given in
Table 1.

Comparison Methods: In the comparison experiment, we compare TCMCE
with ten SOTA multi-view clustering methods, including Multi-view Learn-
ing with Adaptive Neighbours (MLAN) [6], Multi-view clustering via orthog-
onal and nonnegative graph reconstruction (MCONGR) [10], Auto-weighted
Orthogonal and Nonnegative Graph Reconstruction for Multi-view Cluster-
ing (AONGR) [11], Fast Parameter-free Multi-view Subspace Clustering with
Consensus Anchor Guidance (FPMVS) [40], Efficient one-pass multi-view sub-
space clustering with consensus anchors (EOMSC) [24], Fast Multi-view Clus-
tering via Ensembles (FastMICE) [41], One2Multi Graph Autoencoder for
Multi-view Graph Clustering (O2MAC) [15], multi-view contrastive graph
clustering (MCGC) [32], Consistent Multiple Graph Embedding Clustering
(CMGEC) [16], and Multi-level Feature Learning for Contrastive Multi-view
Clustering (MFLVC) [30].

For the baseline methods, we follow the experimental setting reported in
the papers. For our model, the original similarity graphs in different views are
constructed via [33]:

W
(v)
ij =

⎧

⎪⎪⎨

⎪⎪⎩

e
(v)
i,k+1 − e

(v)
ij

ke
(v)
i,k+1 − ∑k

h=1 e
(v)
ih

j ≤ k;

0 j>k,

(15)
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where e
(v)
ij =

∥
∥
∥x

(v)
i − x

(v)
j

∥
∥
∥

2

2
and k represents the number of neighbours, which

is set as 20 in this paper. We set r equal to −1 in all the experiments. In addi-
tion, one parameter in this paper λ needs to tune and we select it from the list
[0.1, 1, 10, 100].

Evaluation Metrics: In this article, four measure metrics are used to evalu-
ate the clustering performance of all the approaches, including Accuracy (ACC),
Normalized Mutual Information (NMI), Purity and Adjusted Rand Index (ARI).
In most cases, higher values of the above indicators mean better clustering per-
formances. In addition, we run all the methods ten times and record the mean
values and standard deviations of the clustering results.

Table 2. Clustering results (%) comparison on MSRC-V1 and 100leaves datasets.

Method MSRC-V1 100leaves

ACC NMI Purity ARI ACC NMI Purity ARI

MLAN 89.52± 0.30 83.76± 0.63 89.52± 0.30 76.57± 0.63 92.75 ± 0.00 95.54± 0.00 93.81 ± 0.00 88.70 ± 0.00

MCONGR 84.29± 0.00 77.18± 0.00 84.29± 0.00 70.72± 0.00 88.00± 0.00 94.16± 0.00 88.50± 0.00 82.45± 0.00

AONGR 93.81 ± 0.00 87.95 ± 0.00 93.81 ± 0.00 85.73 ± 0.00 92.44± 0.00 95.95 ± 0.00 93.13± 0.00 88.52± 0.00

FPMVS 61.43± 0.00 65.54± 0.00 82.86± 0.00 54.27± 0.00 30.81± 0.00 68.35± 0.00 44.19± 0.00 18.26± 0.00

EOMSC 87.62± 0.00 84.47± 0.00 87.62± 0.00 83.97± 0.00 42.50± 0.00 76.57± 0.00 45.06± 0.00 25.40± 0.00

FastMICE 90.81± 2.78 84.73± 2.39 90.91± 2.57 82.36± 2.92 80.30± 2.10 91.94± 1.80 82.89± 2.86 78.29± 2.38

O2MAC 45.24± 2.44 35.52± 1.82 47.05± 2.68 21.49± 1.97 52.75± 0.91 73.27± 0.76 52.99± 0.95 26.77± 0.52

MCGC 70.00± 1.93 61.62± 1.46 70.95± 1.69 47.87± 1.24 72.25± 0.96 83.37± 0.64 74.69± 0.87 46.35± 0.31

CMGEC 91.43± 2.48 85.39± 1.13 91.43± 2.48 83.04± 1.34 90.34± 1.32 95.32± 1.44 92.03± 1.63 85.63± 1.88

MFLVC 82.67± 1.10 80.37± 1.04 84.10± 1.65 72.55± 1.23 38.75± 2.36 70.41± 1.42 39.70± 2.20 31.32± 1.59

Ours 94.10±0.49 88.23±1.13 94.10±0.49 86.39±0.00 95.60±1.07 97.62±0.43 96.30±0.82 93.26±1.31

Table 3. Clustering results (%) comparison on HW2sources and COIL20 datasets.

Method HW2sources COIL20

ACC NMI Purity ARI ACC NMI Purity ARI

MLAN 61.42± 2.26 70.53± 2.28 66.42± 2.01 49.15± 2.18 88.26± 0.00 96.93± 0.00 90.00± 0.00 88.85± 0.00

MCONGR 99.15 ± 0.00 97.99 ± 0.00 99.15 ± 0.00 98.12 ± 0.00 82.15± 0.00 92.18± 0.00 84.65± 0.00 79.52± 0.00

AONGR 99.00± 0.00 97.63± 0.00 99.00± 0.00 97.79± 0.00 97.99 ± 0.00 98.73 ± 0.00 97.99 ± 0.00 96.60 ± 0.00

FPMVS 69.05± 0.00 71.14± 0.00 88.40± 0.00 63.44± 0.00 47.36± 0.00 70.51± 0.00 66.38± 0.00 40.73± 0.00

EOMSC 75.55± 0.00 67.84± 0.00 75.60± 0.00 69.89± 0.00 57.50± 0.00 72.91± 0.00 59.51± 0.00 47.60± 0.00

FastMICE 96.14± 2.33 94.57± 1.27 96.15± 2.31 93.90± 2.23 79.11± 2.38 89.23± 1.47 81.24± 2.70 78.18± 1.88

O2MAC 79.11± 3.64 68.67± 2.33 88.40± 0.00 81.08± 3.05 53.61± 1.86 65.56± 2.11 57.24± 1.42 42.91± 1.64

MCGC 60.75± 0.73 58.29± 0.41 64.55± 0.64 45.16± 0.37 27.42± 0.76 24.76± 0.81 42.14± 0.52 10.60± 0.21

CMGEC 88.83± 1.85 90.48± 1.51 89.63± 0.99 83.21± 2.28 62.03± 1.64 82.13± 1.29 62.74± 1.53 61.31± 1.13

MFLVC 98.99± 0.30 97.53± 0.55 98.99± 0.30 97.61± 0.48 73.10± 1.29 79.81± 1.43 73.40± 1.28 65.19± 1.73

Ours 99.19±0.08 98.01±0.13 99.19±0.08 98.14±0.11 99.20±0.65 99.56±0.52 99.20±0.65 99.18±0.58
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Table 4. Clustering results (%) comparison on Caltech101 and Scene datasets.

Method Caltech101 Scene

ACC NMI Purity ARI ACC NMI Purity ARI

MLAN 24.40± 0.94 43.23± 1.07 40.67± 1.35 10.93± 1.36 49.63± 0.00 51.05± 0.00 61.04± 0.00 28.42± 0.00

MCONGR 25.08± 0.00 46.58± 0.00 46.06± 0.00 12.90± 0.00 48.63± 0.00 42.26± 0.00 55.41± 0.00 32.52± 0.00

AONGR 28.00± 0.00 48.60 ± 0.00 46.26 ± 0.00 15.90± 0.00 50.04± 0.00 38.54± 0.00 53.76± 0.00 28.11± 0.00

FPMVS 29.33±0.00 35.71± 0.00 33.60± 0.00 17.34±0.00 27.42± 0.00 24.76± 0.00 42.14± 0.00 10.60± 0.00

EOMSC 24.70± 0.00 27.09± 0.00 27.64± 0.00 10.02± 0.00 64.16± 0.00 56.11± 0.00 62.77± 0.00 45.93± 0.00

FastMICE 22.58± 0.94 44.48± 0.71 44.52± 0.83 16.67± 0.36 70.40± 2.05 58.46± 1.50 70.68± 1.69 49.70± 1.74

O2MAC 16.08± 0.65 29.84± 1.98 27.60± 1.83 8.03± 0.78 47.07± 2.49 37.15± 1.93 49.14± 0.77 26.19± 1.09

MCGC 23.05± 1.22 39.23± 1.13 37.66± 1.06 13.36± 0.89 52.60± 0.56 45.74± 0.79 52.64± 0.62 30.26± 0.18

CMGEC 18.96± 0.13 42.14± 0.81 40.72± 0.21 10.44± 0.33 58.38± 1.92 53.44± 1.75 58.66± 1.31 40.11± 2.10

MFLVC 26.37± 1.86 32.53± 1.05 29.68± 1.63 7.61± 0.48 71.78 ± 1.27 57.48 ± 0.74 71.78 ± 1.27 49.77 ± 1.36

Ours 28.26 ± 0.86 48.65±0.63 47.71±0.74 17.18 ± 0.33 75.19±0.53 58.54±0.42 75.19±0.53 52.88±0.31

4.2 Clustering Results

The comparison results of multi-view clustering performances on the six real-
world datasets in terms of four metrics are recorded in Tables 2, 3 and 4, in which
the best performances are marked in bold and underlines mark the second-best
ones. From the above results, we can draw the following conclusions: 1) Our
TCMCE outperforms other baselines on all the benchmark datasets. Especially
on the 100leaves dataset, the proposed TCMCE achieves 2.85%, 1.67%, 2.49%
and 4.56% improvement compared with the second-best values in terms of ACC,
NMI, Purity, and ARI, respectively. 2) Graph-based methods show better perfor-
mance than other multi-view clustering methods on most datasets. Significantly,
the proposed TCMCE outperforms other graph-based baselines because of the
learned precise deep spectral embedding. 3) Although the contrastive multi-view
clustering method MFLVC has achieved considerable results on the HW2sources
and Scene dataset, the GCN-based baseline CMGEC shows good performance
on the MSRCV1 and 100leaves datasets, our model still outperforms them on
the six real-world datasets, which attributes the impact of the similarity graph
reconstruction framework.

The learned common graph comparison on the COIL20 dataset between the
proposed TCMCE and other graph-based baselines is exhibited in Fig. 2. Note
that the reconstructed graphs exhibit clearer structures compared to the original
similarity graphs. In comparison with the graph-based baselines, the unified
graph obtained via our model is a typical block-diagonal matrix, which is good
for clustering tasks. In addition, the reconstructed graph via TCMCE doesn’t
emerge the missing block reported in [8]. To make optimization easier, [8] utilizes
another label matrix to be close to the graph embedding each other, which may
lead to zero rows in the label matrix. In this article, we design an effective and
simple loss function to update the graph embedding, making the reconstructed
graph own a more stable structure.

To show the comparison of the learned spectral embedding or indicator
matrix between our model and the baselines intuitively, Fig. 3 gives the t-
SNE [42] visualization results on the Scene datasets. Significantly, the learned
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Fig. 2. The learned common similarity graphs by TCMCE and other graph-based
baselines on the COIL20 dataset.

Fig. 3. The obtained spectral embedding or indicator matrices by TCMCE and other
baselines on the Scene dataset.

spectral embedding via TCMCE is more cohesive compared with the ones learned
by other baselines. In addition, the obtained deep spectral embedding as an indi-
cator matrix only has one element larger than zero because of its non-negativity,
which offers interpretability for clustering assignments.
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4.3 Parameter Sensitivity Analysis

To investigate the robustness of our model on the predefined similarity graphs,
we conduct the k-sensitivity experiments of TCMCE and other graph-based
baselines, where k denotes the number of neighbours in similarity graphs con-
struction and k is selected from the list [5, 10, 15, 20, 25, 30]. Figure 4 gives the
clustering performance comparison between the proposed TCMCE and baselines
with different k on the MSRCV1 and 100leaves datasets in terms of all metrics,
from which our model is insensitive with k compared with the graph-based base-
lines. Thus, our model is robust to the original similarity graphs. And we set k
to 20 on all the benchmark datasets in practice.

Only one parameter λ exists in our model and we tune it from the list
[0.1, 1, 10, 100]. Figure 5 shows the clustering performance of the proposed
TCMCE in terms of four metrics with different λ on six real-world datasets,
from which our model performs stable clustering capability with parameter per-
turbations. Above all, our TCMCE model is not only effective on multi-view
clustering tasks but robust to the parameter λ.

Fig. 4. The k-sensitivity comparison between TCMCE and other baselines on the
MSRCV1 (a–d) and 100leaves (e–h) datasets.
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Fig. 5. The λ-sensitivity analysis of the proposed TCMCE on the six benchmark
datasets.

4.4 Convergence Analysis

Figure 6 gives the convergence curves of the proposed TCMCE on six benchmark
datasets. The x-axis represents the number of epochs, and the y-axis denotes the
value of the loss function in TCMCE. As shown in Fig. 6, our model can realize
convergence in terms of less than 30 iterations on all the benchmark datasets.

Fig. 6. The convergence curves of TCMCE model on six real-world datasets.
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4.5 Ablation Study

In this sub-section, we aim to verify the effectiveness of similarity graph
reconstruction, contrastive graph learning, and self-attention mechanism in our
TCMCE. In TCMCE model, similarity graph reconstruction aims to learn a pre-
cise spectral embedding, contrastive learning is adopted as regularization to make
the reconstructed graph clustering-friendly, and self-attention helps to capture
the latent relationship among samples in the fusion similarity graph. Specifically,
three variants of TCMCE are designed for the ablation study: 1) variant-1, whose
loss function only contains the contrastive loss; 2) variant-2, whose loss func-
tion only contains the graph reconstruction loss; 3) variant-3, which utilizes the
GCN-based encoder to learn the graph embedding instead of the Transformer-
based one. The comparison of clustering results (ACC and NMI) between our
model and its variants are shown in Table 5, from which the proposed TCMCE
outperforms its variants on all the benchmark datasets. The above phenomena
validate that the similarity graph reconstruction, contrastive graph learning, and
self-attention mechanism in encoder all make positive impacts on our model.

Table 5. Comparison of the clustering results on TCMCE and its variants.

Methods Variant-1 Variant-2 Variant-3 TCMCE

MSRCV1 ACC 67.38±2.62 93.71±0.47 93.76±0.31 94.10±0.49

NMI 66.79±0.98 87.38±0.92 87.36±0.41 88.23±1.13

COIL20 ACC 88.37±3.23 95.51±3.66 87.34±2.72 99.20±0.65

NMI 96.62±0.61 98.95±0.86 96.71±0.29 99.56±0.52

100leaves ACC 63.91±0.22 94.05±1.59 93.94±1.05 95.60±1.07

NMI 83.19±0.06 97.08±0.65 97.17±0.55 97.62±0.43

HW2sources ACC 63.65±0.35 96.01±3.80 99.05±0.11 99.19±0.08

NMI 64.23±0.76 95.38±2.26 97.75±0.24 98.01±0.13

Scene ACC 62.07±0.47 71.26±4.27 68.18±0.52 75.19±0.53

NMI 56.30±0.66 56.79±2.23 56.13±0.71 58.54±0.42

Caltech101 ACC 25.43±0.59 25.17±0.83 27.43±0.66 28.26±0.86

NMI 44.13±0.71 47.06±0.46 47.44±0.34 48.65±0.63

5 Conclusion

In this paper, we propose a novel Transformer-based contrastive multi-view clus-
tering via ensembles model named TCMCE, which integrates the self-attention
mechanism and graph contrastive learning into a joint framework to learn the
deep nonnegative spectral embedding. Due to the non-negativity, only one ele-
ment in each row of the spectral embedding matrix obtained by TCMCE is
non-zero, which can offer interpretability for cluster assignment. So the learned
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spectral embedding can be directly used as an indicator matrix without any post-
processing. The common graph via learned embedding owns a clear structure,
which is good for clustering tasks. In addition, a simple and powerful loss function
is devised to train the proposed model, containing reconstruction loss and graph
contrastive loss. Extensive experiments on six real-world datasets demonstrate
that our method achieves superior multi-view clustering performance. However,
the time complexity of TCMCE is still high. The researches to improve the clus-
tering efficiency and time cost based on anchor graph or parallel computation
are left in our further work. The code of TCMCE is available at Github.
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Abstract. The simultaneous clustering of observations and features of
data sets (a.k.a. co-clustering) has recently emerged as a central machine
learning task to summarize massive data sets. However, most existing
models focus on stationary scenarios, where cluster assignments do not
evolve in time. This work introduces a novel latent block model for the
dynamic co-clustering of data matrices with high sparsity. The data are
assumed to follow dynamic mixtures of block-dependent zero-inflated
distributions. Moreover, the sparsity parameter as well as the cluster
proportions are assumed to be driven by dynamic systems, whose param-
eters must be estimated. The inference of the model parameters relies
on an original variational EM algorithm whose maximization step trains
fully connected neural networks that approximate the dynamic systems.
Due to the model ability to work with empty clusters, the selection of the
number of clusters can be done in a (computationally) parsimonious way.
Numerical experiments on simulated and real world data sets demon-
strate the effectiveness of the proposed methodology in the context of
count data.

Keywords: Co-clustering · Latent Block Model · zero-inflated
distributions · dynamic systems · VEM algorithm

1 Introduction

1.1 Context and Related Works

In a wide range of applications (e.g. signal processing, recommending systems,
genetics, etc.) there is a growing need to develop machine learning models to treat
time-dependent high dimensional data, in contexts of extreme data sparsity. By
the simultaneous clustering of the rows (observations) and the columns (features)
of a data matrix, co-clustering proved to be an useful tool for high-dimensional
data analysis thanks to its ability to provide useful summaries and visualisations
of the data. However, the development of dynamic co-clustering methods for
sparse data sets still remains almost an unexplored territory.
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The cornerstone of model-based co-clustering is the popular latent block
model (LBM, Govaert and Nadif 2003), initially introduced for the co-clustering
of binary data matrices. LBM is based on the assumption that rows and columns
of a matrix are grouped in hidden clusters and that the observations within a
block (intersection of a row cluster and a column cluster) are independently
and identically distributed. Whereas the original formulation of the model dealt
with binary data only, the model has been extended in the last two decades to
count data (Govaert and Nadif 2010), continuous data (Lomet 2012), categor-
ical data (Keribin et al. 2015), ordinal data (Corneli et al. 2020; Jacques and
Biernacki 2018), functional data (Bouveyron et al. 2018) and textual data (Bergé
et al. 2019). In the dynamic context, Boutalbi et al. (2020) proposed the tensor
latent block model (TLBM) for the co-clustering of rows and columns of a 3D
array, with covariates accounting for the third (temporal) dimension. TLBM was
also implemented for different types of data: continuous, binary and counting.
Recently, Marchello et al. (2022) proposed an extension of LBM allowing one
to perform the simultaneous clustering of rows, columns and slices of a three
dimensional counting array. Although being a first attempt to expand the LBM
model to the dynamic case, this model has the limitation of not allowing cluster
switches of rows/columns. In a different framework, Casa et al. (2021) prolong
the latent block model to deal with longitudinal data, relying on the shape invari-
ant model (Lindstrom 1995). Boutalbi et al. (2021) developed a model-based co-
clustering method for sparse three-way data, where the third dimension can be
seen as a discrete temporal one. Here, the sparsity is handled following the same
assumption as in Ailem et al. (2017) that all blocks outside the main diagonal
share a common parameter.

1.2 Contribution of This Work

The model that we introduce brings two major contributions in the field of
dynamic co-clustering: first, observations (rows) and features (columns) are
allowed to leave/join clusters over time; second, the data sparsity is explic-
itly taken into account by means of block dependent zero-inflated distributions.
Before describing our model in more details, in the next section, we just point out
the importance of the first contribution. Capturing the data dynamics is crucial
in order to detect atypical phenomena that may have affected the underlying
generative process. For instance, if at a given time t the value of some features
suddenly increases for just one observation in a cluster, this suggests that the
observation is likely to have switched to another cluster. A change point should
be detected, leaving space for further analysis to inspect the causes. Thus, our
aim was to develop a highly interpretable co-clustering method allowing prac-
titioners to obtain faster visualizations of the results in order to automate the
data analysis.



Zip-dLBM for the Co-clustering of Zero-Inflated Data Matrices 697

2 A Zero-Inflated Dynamic LBM

The observed data are assumed to be collected into time evolving matrices, over
the interval [0, T ]. We work in discrete time and assume that we have a time
partition of equally spaced points

0 = t0 < t1 < tu ≤ tU = T.

Now up to rescaling, we can assume without loss of generality, that tu+1 − tu =
1. Moreover, to simplify the exposition we omit the subscript u and, with a
slight abuse of notation, we denote by t the generic time point tu and by T the
number of time points U . Thus, at (discretized) time t, we introduce the incidence
matrix X(t) ∈ N

N×M whose entry Xij(t) describes the (binary, counting, real)
interaction between the observation i and the feature j took place between t
and t − 1. The rows of X(t) are indexed by i = 1, ..., N and the columns by
j = 1, ...,M .

We aim at simultaneously clustering the rows and columns of the collection
of the time indexed data matrices {X(t)}t.

Cluster Modeling. The rows (i.e. observations) and columns (i.e. features)
of X(t) are clustered into Q and L groups, respectively. Although Q and L are
assumed fixed over time, each row/column is nevertheless allowed to change
its cluster membership over [0, T ]. More formally, a latent matrix Z(t) :=
{Ziq(t)}i∈1,...,N ;q∈1,...,Q represents the clustering of N rows into Q groups at
a given time point t, with Ziq(t) = 1 if row i belongs to the q-th cluster in t, zero
otherwise. We assume that the i-th row of Z(t) (say Zi(t)) follows an evolving
multinomial distribution, parameterized by α(t)

Z(t) ∼ M(1, α(t) := (α1(t), . . . , αQ(t))), (1)

where αq(t) = P{Ziq(t) = 1} and
∑Q

q=1 αq(t) = 1, for all t.
In a similar fashion, we introduce a latent matrix W (t) ∈ {0, 1}M×L, labelling

the column clusters at time t, and whose j-th row Wj(t) follows a multinomial
distribution of parameter β(t) := (β1(t), . . . , βL(t)).

The two random matrices Z and W are further assumed to be independent.

Sparsity Modeling. In order to model a potentially extreme data sparsity, the
observed data are modeled by mixtures of block-conditional Zero-Inflated distri-
butions, with conditionally independent entries Xij(t). In more detail we intro-
duce a latent vector π of length T , whose entry π(t) indicates the proportion of
data sparsity at time t. Then we assume that, with probability π(t), Xij(t) = 0
a.s., whereas with probability 1 − π(t) we have1

Xij(t)|Zi(t),Wj(t) ∼ ϕ(Xij(t); ζZi(t),Wj(t)), (2)

1 We adopt in Eq. (2) a quite common convention in the clustering literature: Zi(t)
denotes both the i-th row of Z(t) and a random variable whose value is q if row i is
in the q-th row cluster at time t.
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independently for all (i, j), where ϕ(Xij(t), ·) is some probability distribution
function with parameter ζ ∈ R

Q×L. In a compact notation:

Xij(t)|Zi(t),Wj(t) ∼ ZIϕ(ζZi(t),Wj(t), π(t)) , (3)

where ZI stands for Zero-Inflated. Among the distributions ϕ(·) that could be
considered, we can cite the zero-inflated versions of the log-normal and the
Gamma distributions for continuous data, or the zero-inflated Poisson (ZIP)
distribution (Lambert 1992) for count data.

In order to ease the illustration of the inference routine we finally provide a
third, equivalent formulation of the above equations in terms of a hidden random
matrix, A ∈ {0, 1}N×M , where independently for all i and j

Aij(t) ∼ B(π(t)),

with B(p) denoting the Bernoulli probability mass function of parameter p and
such that

Aij(t) = 1 ⇒ Xij(t)|Zi(t),Wj(t) = 0
Aij(t) = 0 ⇒ Xij(t)|Zi(t),Wj(t) ∼ ϕ(Xij , (t), ζZi(t),Wj(t)).

(4)

Modeling the Parameters Dynamics. The mixing parameters α and β as well as
the sparsity proportions π (all vectors of length T ) are assumed to be driven by
systems of ordinary differential equations (ODEs). In this way, we are able to
capture the temporal evolution of both the cluster proportions and the (excess
of) sparsity. In continuous time, the three dynamic systems would read as:

d

dt
a(t) = fZ(a(t)), (5)

d

dt
b(t) = fW (b(t)), (6)

d

dt
c(t) = fA(c(t)), (7)

where t ∈ [0, T ], fZ : R
Q → R

Q, fW : R
L → R

L and fA : R → R are
three unknown continuous functions and a : [0, T ] → R

Q, b : [0, T ] → R
L and

c : [0, T ] → R are three continuously differentiable functions such that

αq(t) :=
eaq(t)

∑Q
q=1 ea

q (t)
β�(t) :=

eb�(t)

∑L
�=1 eb

�(t)
, (8)

and

π(t) :=
ec(t)

1 + ec(t)
. (9)

Then, since (as stated at beginning of Sect. 2) we work with discrete time points,
the above dynamic systems reduce to their Euler schemes. A graphical repre-
sentation of the model described so far, and named Zero-Inflated dLBM, can be
seen in Fig. 1.



Zip-dLBM for the Co-clustering of Zero-Inflated Data Matrices 699

2.1 The Joint Distribution

The model described so far can be adapted to any zero-inflated distribution. The
first formulation as well as the most well-known concerns the Zero-Inflated Pois-
son (Lambert 1992). However, other distributions such as Zero-Inflated Negative
Binomial (Ridout et al. 2001), Zero-Inflated Beta (Ospina and Ferrari 2012),
Zero-Inflated log-normal (Li et al. 2011) could be coupled with the present mod-
eling. In the following to ease the readability of the inference procedure we make
use of the Zero-Inflated Poisson (ZIP) formulation to illustrate our approach.

Fig. 1. Graphical representation of the Zero-Inflated dLBM model.

Hence, we can write

Xij(t)|Zi(t),Wj(t) ∼ ZIP(ΛZi(t),Wj(t), π(t)),

where P(·) denotes the probability mass function of a Poisson distribution and
Λ is a Q×L matrix, denoting the block-dependent Poisson intensity parameter.
The whole set of the model parameters is denoted by θ := (Λ,α, β, π) and the
latent variables used so far are A, Z and W . Thus, the likelihood of the complete
data reads

p(X,A,Z,W |θ) = p(X|A,Z,W,Λ, π) × p(A | π)p(Z|α)p(W |β). (10)

The terms on the right hand side of the above equation can be further developed.
Details are postponed in Appendix ?? for lack of space2.

3 Inference

In order to infer the model parameters, two main problems occur. First, we
can’t adopt the EM algorithm (Bishop 2006; Dempster et al. 1977) in order to
numerically compute ML estimates from the intractable quantity p(X|θ). This
issue is common to all stochastic and latent block models (see for instance,
Govaert and Nadif 2003) due to the intractability of the posterior distribution of
the latent variables (here A,Z and W ). Second, although variational strategies
(Jaakkola and Jordan 1997; Jordan et al. 1998) could be employed, α, β and π
cannot be updated explicitly, in the M step, due to the dynamics in Eqs. (5)–
(7). This is why we combine variational inference with a Gradient Descent (GD)
optimization for the ODE part.
2 The supplementary materials are available at https://hal.science/hal-04150292.

https://hal.science/hal-04150292


700 G. Marchello et al.

3.1 Variational Decomposition

Since we cannot compute the joint posterior distribution p(A,Z,W |X, θ), we
introduce a variational distribution q(·) over the latent variables (A,Z,W ) and
adopt the following standard variational decomposition of the observed log-
likelihood

log p(X|θ) = L(q; θ) + KL(q(·)||p(·|X, θ)),

where L denotes a lower bound of the term on the left hand side of the equality
and is defined as:

Eq(A,Z,W )

[
log

p(X,A,Z,W |θ)
q(A,Z,W )

]
(11)

and KL indicates the Kullaback-Liebler divergence between the approximate and
the true posterior distribution of (A,Z,W ). Although the above equations hold
for any distribution q(·), we look for one that maximizes L(·; θ) (or equivalently,
that minimizes the KL divergence) while keeping the maximization problem
tractable. Hence, we adopt the following mean-field assumption

q(A,Z,W ) = q(A)q(Z)q(W ) =
∏

i,j,t

q(Aij(t))
∏

i,t

q(Zi(t))
∏

j,t

q(Wj(t)). (12)

Thus, we introduce a variational expectation-maximization algorithm that alter-
nates an expectation step (VE) maximizing the lower bound in Eq. (11) with
respect to the variational distribution q(·), while keeping θ fixed and a max-
imization step (VM), maximizing the lower bound L(q, θ) with respect to
θ = (Λ,α, β, π), while holding the variational distribution q(·) fixed. The two
steps are now described in much detail.

3.2 VE-Step

The optimal variational updates of q(·), under the assumption in Eq. (12), can
be obtained as Bishop (2006):

log q(A) := EW,Z [log p(X,A,Z,W | θ)], (13)

log q(Z) := EA,W [log p(X,A,Z,W | θ)], (14)

log q(W ) := EA,Z [log p(X,A,Z,W | θ)]. (15)

Optimization of Q(A). The expectation in Eq. (13) can be explicitly com-
puted leading to the following

Proposition 1. Denoting by δij(t) := q(Aij(t) = 1) the variational probability
of success for Aij(t), the optimal update is:

δij(t) =
exp(Rij(t))

1 + exp(Rij(t))
, (16)



Zip-dLBM for the Co-clustering of Zero-Inflated Data Matrices 701

with:

Rij(t) := log(π(t)1{Xij(t)=0}) +
∑

q,�

[
E[Ziq(t)]E[Wj�(t)](Λq�+

− Xij(t) log Λq�)
]

+ log Xij(t)! − log(1 − π(t))
(17)

where 1{·} denotes the indicator function.

The proof is provided in the Appendix ??. Note that, formally, when Xij(t) �= 0,
Rij(t) = −∞ and δij(t) = 0, which makes sense: non-null observations in X
come from a Poisson distribution with probability one (see Eq. (4)).

Optimization of Q(Z) and Q(W). Regarding the factor q(Z), the expecta-
tion in Eq. (14) can be explicitly computed leading to the following

Proposition 2. Denoting by τiq(t) := q(Ziq(t) = 1) the variational probability
of success of Ziq(t), the optimal update is:

τiq(t) =
riq(t)

∑Q
v=1 riv(t)

, (18)

with

riq(t) ∝ exp

(
∑

j,�

F iq
jl + log(αq(t))

)

(19)

and
F iq

jl := (1 − E[Aij(t)])
[
E[Wj�(t)](Xij(t) log(Λq�) − Λq�)

]
. (20)

The proof is provided in the Appendix ??. In a similar way, for the factor
q(W ), the expectation in Eq. (15) can be explicitly computed leading to the
following

Proposition 3. Denoting by ηj�(t) := q(Wj�(t) = 1) the variational probability
of success of Wj�(t), the optimal update is:

ηj�(t) =
sj�(t)

∑L
v=1 sjv(t)

, (21)

with

sj�(t) ∝ exp

(
∑

i,q

Gj�
iq + log(β�(t))

)

. (22)

Gj�
iq := (1 − E[Aij(t)])

[
E[Ziq(t)](Xij(t) log(Λq�) − Λq�)

]
. (23)

The proof is provided in the Appendix ??.
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3.3 Variational M-Step

The lower bound can be explicitly computed as stated in Proposition 2 in
Appendix ?? for lack of space. From that bound, we can optimize the model
parameters θ, while keeping q(·) fixed, as stated in the reminder of this section.
Update of Λ. We now report the update of the Zero-inflated Poisson parameter

Λ. Note that in case other zero-inflated distributions are chosen, this step must
be adapted to the corresponding distributions.

Proposition 4. The updating formula of Λ is:

Λq� =

∑
i,j,t τiq(t)ηj�(t)

(
Xij(t) − δij(t)Xij(t)

)

∑
i,j,t τiq(t)ηj�(t)

(
1 − δij(t)

) . (24)

The proof is provided in the Appendix ??. We just wish to point out that the
above update formula is indeed very intuitive: it corresponds to a sample mean
accounting for both the probability that null Xij(t)s come from a Poisson dis-
tribution (via 1 − δij(t)) and the probability that non-null Xij(t)s come from
co-cluster (q, l).

Update of α, β and π Through Deep Neural Networks. The mixture pro-
portions α and β, as well as the sparsity parameter π are driven by three systems
of differential equations, in Eqs. (5), (6) and (7), respectively. As we assumed
that the functions fA, fW and fZ are continuous, we propose to parametrize
them with three fully connected neural networks (Gent and Sheppard 1992),
with two hidden layers of 200 neurons each, equipped with ReLu activation func-
tions, with parameters ωA, ωZ and ωW , respectively. Thus, optimizing the lower
bound L(q; θ) with respect to α, β and π reduces to maximize it with respect to
the parameters of the neural nets as well as to the initial values a(0), b(0) and
c(0).

For k ∈ {A,Z,W}, if we denote by ωk(h) the set of weights of the corre-
sponding neural network at iteration h of the GD algorithm, then

ωk(h) = ωk(h − 1) − γ∇ωk
L, (25)

where γ is a user defined learning rate, ∇ωk
(·) is the gradient operator, with

respect to ωk and ωk(0) is randomly sampled. In the experiments, this update
is implemented in PyTorch via automatic differentiation (Paszke et al. 2017)
and relies on stochastic optimisation (ADAM, Kingma and Ba 2014). The learn-
ing rates are fixed at γ = 1e−4. Once the neural nets are trained via back-
propagation they provide us with the ML estimates of α, β and π. The inference
procedure is summarized in Algorithm 1.
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Algorithm 1 VEM-GD Algorithm (Zero-Inflated Poisson)
Require: X, Q, L, n iter, nb epochs and α, β, π, Λ from Algorithm 2.

� Initialization of τ and η, sampled from M(N, α) and M(M, β), respectively;
� Initialization of δ as ones(N, M), then setting δij = 0 when Xij > 0;
while not L converges do

VE-Step:
for counter = 1 to n iter do

alternatively update δ, τ , η % fix point eqs
end for
M-Step:
Update Λ via Eq. (24)
Update α, β, π via ADAM % over nb epochs

end while

3.4 Initialization and Model Selection

When dealing with clustering methods based on the EM algorithm, the initial-
ization and the selection of the appropriate numbers of clusters (for rows and
columns here) are two issues which deserve an appropriate treatment. The issues
related to these two points are slightly complicated here by the use of deep neural
networks for modeling the dynamics of cluster and sparsity proportions. Despite
this apparent difficulty due to the intrinsic complexity of these networks, they
will nevertheless offer some unexpected flexibilities that we may use to lower
the computational cost of the whole algorithm. Indeed, and as it is illustrated
in the numerical experiments (Appendix ??), the use of deep neural networks
for modeling the row and column cluster proportions will allow our algorithm
to work with some empty clusters. Therefore, in the objective of avoiding the
usual computationally demanding procedure of testing all pairs of row and col-
umn cluster numbers, we propose the following strategy for both initialization
and model selection. First, we select a single specific slice of the data Xtinit

fit
to it a static version of our ZIP -dLBM (technically a ZIP -LBM) for a list of
pairs of cluster numbers, i.e. (q, �) for q = 2, . . . , Qmax and � = 2, . . . , Lmax. We
then use the ICL criterion (Integrated Classification Likelihood, Biernacki et al.
2000) to select the most appropriate row and column clusters’ numbers for this
specific slice of data. Let us remind that the ICL criterion aims at approximating
the complete-data integrated log-likelihood and can be derived for ZIP -LBM as
follows:

ICL(Q, L) = log p(X, Ẑ, Ŵ ; θ̂)− Q − 1

2
log N − L − 1

2
log M − QL − 1

2
log(NM). (26)

The pair (Q̂, L̂) that leads to the highest value of the ICL is retained for the data
Xtinit

. Remark that, unless a further specific notice, the slice Xtinit
considered

for this step in our experiments will be the first slice of the data, i.e. Xt0 . Second,
in order to initialize our VEM-GD algorithm (see Algorithm 1) with useful initial
values of the model parameters, we adopt a cascade process in order to propagate
the parameters estimates obtained on the slice Xtinit

to other slices. In more
detail, fixing for the moment the numbers of row and column clusters to (Q̂, L̂),
we fit the static ZIP -LBM to the next slice Xtinit+1 with parameters θ̂tinit

as
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initial values. Then, the estimated parameters θ̂tinit+1 are used as initialization
for a static ZIP -LBM fitted to the slice Xtinit+2, and so on up to XT . This
strategy allows us to obtain initial values (say θ̂(t)) for all the model parameters
for t = 0, ..., T . Finally, as we expect that the choice of Q̂ row and L̂ column
cluster components could not be the best when considering the data set as a
whole, the VEM-GD algorithm (see Algorithm 1) is run with more components
than considered in the initialization. Indeed, we run the VEM-GD algorithm
with Qmax ≥ Q̂ and Lmax ≥ L̂ cluster components. Then, part of the model
parameters are initialized with θ̂(t) obtained via the initialization procedure
described above (see Algorithm 2) and the remaining parameters, corresponding
to the additional row and column clusters are set to zero. Thus, we aim at
exploiting the potential ”blessing” of the use of deep neural networks allowing
our VEM-GD algorithm to start with some empty clusters. These empty clusters
will have the possibility to be activated later in the inference process, if needed.
Therefore, we avoid the usual computationally demanding procedure of running
the whole algorithm with all pairs of row and column cluster numbers for the
whole data set. This strategy allows our approach to scale to massive data sets
in a reasonable computational time and with satisfying results, as shown in the
next section.

Algorithm 2 Initialization
Step 1: Static model selection

Require: X, Qmin, Qmax, Lmin, Lmax, max iter, n.sim.
for Q =Qmin, to Q=Qmax do

for L =Lmin, to L=Lmax do
Initialize randomly α, β, π, Λ;
Run ZIP -LBM on X1 and compute ICL;

end for
end for

Ensure: (Q∗, L∗) that gives the highest ICL value.
Step 2: Cascade process

Require: X , Q∗, L∗, max iter.
for t = 1 to T do

if t =1 then
Initialize randomly α, β, π, Λ;
Run ZIP -LBM(Q∗, L∗) on X1;
Store α̂(1), β̂(1), π̂(1), Λ̂.

else
Initialize with α̂(t − 1), β̂(t − 1), π̂(t − 1), Λ̂;
Run ZIP -LBM(Q∗, L∗) on Xt;
Store α̂(t), β̂(t), π̂(t), Λ̂.

end if
end for
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4 Analysis of the Adverse Drug Reaction Dataset

In Appendix ??, there are in-depth experiments to verify the performances of
the model on simulated data in different scenarios. This section focuses on the
application of ZIP -dLBM to a large-scale pharmacovigilance data set, with the
aim of illustrating the potential of the tool.

4.1 Protocol and Data

This section considers a dataset consisting of an adverse drug reaction (ADR)
data set, collected by the Regional Center of Pharmacovigilance (RCPV), located
in the University Hospital of Nice (France). A time horizon of 7 years is consid-
ered, from January 1st, 2015 to March 3th, 2022, the unity measure for the time
interval is a trimester. The overall dataset is made of 27,754 declarations, for
which the market name of the drug, the notified ADR and the reception date
are considered.

Fig. 2. Number of declarations received by the pharmacovigilance center from 2015
to 2022, sorted by trimester.

Moreover, we only considered drugs and ADRs that were notified
more than 20 times over the 7 years. The resulting dataset contains 236
drugs, 324 ADRs and 29 time intervals with 12,336 non-zero entries. Looking at
Fig. 2, it can be clearly noticed that there are two peaks, one in 2017 and the
other in 2021. In 2017, an unexpected rise of reports for ADRs happened con-
cerning a specific drug called Lévothyrox R©. This has been marketed in France
for about 40 years as a treatment for hypothyroidism and, in 2017, a new formula
was introduced on the market. The Lévothyrox R© case had a huge media cov-
erage in France: Lévothyrox R© spontaneous reports represent the 90% of all the
spontaneous notifications that the RCPV received in 2017 (Viard et al. 2019). In
addition, since the end of the year 2020, vaccinations against Covid-19 have been
introduced. At that time, three vaccines are licensed in Europe, Comirnaty R©

was the first Covid-19 vaccine available in France in December 2020, followed by
Moderna R© in January 2021 and Vaxzevria R© in February 2021.



706 G. Marchello et al.

Fig. 3. Evolution of the estimates α̂. Fig. 4. Evolution of the estimates β̂.

From Fig. 2, one can understand the difficulty to work with such data which
contain signals of very different amplitude. Indeed, behind those very visible
effects, many ADR signals need to be detected for obvious public health reasons.
In particular, those data also contain ADR reports regarding another health
scandal happened in 2017, involving Mirena R©, which is here far less visible than
Lévothyrox R©, but also led to many avoidable serious health issues.

4.2 Summary of the Results

To the initialize the algorithm, as explained in Sect. 3.4, we computed the ICL
criterion on one data slice, corresponding to the first trimester, where the opti-
mal numbers of clusters identified by the model selection criterion are Q̂ = 4
and L̂ = 4. Then, we initiated the model parameters through the cascade pro-
cess described in Algorithm 2 and we ran ZIP -dLBM with Q = 7 and L = 7
to allow the model to fill or empty clusters as needed. Figure 5 depicts the esti-
mated Poisson intensities Λ for ZIP -dLBM, focusing on 4 drug clusters (D) and
4 ADR clusters (A) that are activated during the inference. Each color represents
a drug or ADR cluster, with higher values indicating stronger relationships (i.e.,
expected number of declarations received per time unit) between the respective

Fig. 5. Estimated Poisson intensities. Fig. 6. Evolution of the estimates π̂.
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clusters. The figure reveals varying degrees of association, for example, clus-
ter D3 of the drug clusters is highly related with cluster A1 of ADR clusters.
Figures 3, 4 and 6 show the estimates of the model parameters α̂, β̂ and π̂,
respectively. Figure 3 shows the estimation of the mixing parameter α. Cross-
referencing the information from these results, we note that the clusters that
have the highest intensity are also the less populated. For example, cluster D3
of drugs has a very high intensity of interactions with cluster A1 of adversar-
ial effects, yet cluster D3 turns out to be very small in Fig. 3. This is due to
the fact that this cluster contains drugs that are declared with an unusually
high intensity. In fact, this cluster contains the drugs that are the causes of the
major health crises that occurred during the reporting period: Mirena R© in the
first half of 2017, Lévothyrox R© in the second part of 2017, and Covid-19 vac-
cines throughout 2021. Similarly, by analyzing the composition of cluster A1,
it is possible to identify which ADRs were the most reported in each of the
aforementioned crises. For instance, the most reported side effects during the
Mirena R© health crisis are mostly hormonal ones, such as anxiety, heat shock,
and aggressive behavior. Then, looking at Fig. 4, during the Lévothyrox R© health
crisis we notice a peak in the A1 cluster of adversarial effects, probably because
the great media coverage that the scandal had in those years made people declare
the most disparate side effects. Also, we see that in 2021 there is another peak,
corresponding to the period of the Covid-19 vaccination. Here, the adversarial
effects found in cluster A1 are mostly linked to problems related to the vaccina-
tion site (e.g. arm pain, arm inflammation, skin reaction) and flu syndrome as
a result of the vaccine. Cluster D2, on the other hand, contains a few but very
common and, consequently, much-reported drugs, for example, paracetamol and
some of the most popular anticoagulants. From Fig. 5 we note that this cluster
has a stronger intensity of interactions with cluster A1 and A2 of undesirable
effects. Looking at Fig. 4, we note that cluster A2 is thinly populated and seems
to follow the trend of health crises discussed above less closely. In fact, this cluster
contains less severe and more common adversarial effects, which can occur even
with the more frequent medications (e.g., itching, headache, weight gain, etc.)
Clusters D1 and D4, on the other hand, are characterized by very low interaction
intensities and are densely populated by all other drugs. Then, looking at Figs. 5
and 4, we see that the behavior of cluster A3 of adversarial effects is very pecu-
liar. It is characterized by almost zero interaction intensity with drug clusters
D1 and D4. After the Lévothyrox R© crisis, the number of reported adversarial
effects significantly decreased, indicating a turning point in pharmacovigilance
as people became more aware of its importance and started reporting side effects
more frequently. Moreover, analysing its composition, it was noticed that at the
beginning of the period it also contained all the specific side effects of Covid-19
vaccines, which were not yet known. Later, in 2021, those side effects, changed
clusters moving to cluster A1 as previously described. On the other hand, Fig. 6
shows the estimated evolution of the sparsity parameter over time. We see that,
at the beginning of the period, in 2015, the sparsity is at 98%, then as we app-
roach the 2017 peak, the number of declarations increases and consequently the
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sparsity decreases. In 2019, it again increases slightly (97%) and then decreases
as we approach the peak due to the Covid-19 vaccines. In fact, at the beginning
of 2021 the sparsity level reaches its minimum at a level of 90%. Therefore, from
the large initial data matrix, ZIP -dLBM was able to identify meaningful clusters
of such data.

4.3 Benchmark on Real Data

This section focuses on comparing ZIP -dLBM with state of the art models on
real-world data. We therefore carried out such an experiment by comparing ZIP -
dLBM with Zip-dLBMπ(·) = 0 and dLBM discussed in appendix B.3. We also
included in the comparison two models that do not consider the dynamic aspect:
LBM (Robert et al. 2021), baseline for model-based co-clustering methods, and
k-means (MacQueen 1967), applied on rows and columns separately. As we are in
an unsupervised context, the model performances are evaluated by the silhouette
score using cosine distance on rows and columns. Table 1 displays the results of
this comparison, in terms of average silhouette scores, reported with standard
deviations. From the reported results, one sees that ZIP -dLBM outperforms
its competitors. Also, it is worth noticing that unlike ZIP -dLBM, LBM and
k-means, being independently applied at each time instant, suffer from label
switching, which is not penalized in the silhouette score. This should make the
interpretation of these results even more in favor for ZIP -dLBM.

Table 1. Results of ZIP -dLBM, Zip-dLBMπ(·) = 0, dLBM, LBM and k-means on phar-
macovigilance data. Average silhouette scores are reported with standard deviations.

ZIP -dLBM Zip-dLBMπ(·) = 0 dLBM kmeans LBM

Silhouette Score - Rows 0.37 ± 0.12 0.31 ± 0.12 −0.46 ± 0.25 0.21 ± 0.36 0.33 ± 0.12

Silhouette Score - Cols 0.36 ± 0.23 0.31 ± 0.25 −0.15 ± 0.06 0.31 ± 0.3 0.29 ± 0.23

5 Conclusion

We have developed a dynamic co-clustering technique for simultaneously cluster-
ing rows and columns along the time dimension of a dynamic matrix. The pro-
posed zero-inflated dynamic latent block model can be adapted to several zero-
inflated probability distributions. We use a Variational EM algorithm with GD
optimization to perform inference on the model’s parameters, then the model is
applied to a real dataset from the Regional Center of Pharmacovigilance of Nice
(France) to segment drugs and adverse drug reactions based on their dynamic
interactions over time. The proposed model provided a meaningful segmentation
of drugs and adverse drug reactions.
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Abstract. In this paper, we propose cuSLINK, a novel and state-of-the-
art reformulation of the SLINK algorithm on the GPU which requires
only O(Nk) space and uses a parameter k to trade off space and time.
We also propose a set of novel and reusable building blocks that com-
pose cuSLINK. These building blocks include highly optimized computa-
tional patterns for k-NN graph construction, spanning trees, and dendro-
gram cluster extraction. We show how we used our primitives to imple-
ment cuSLINK end-to-end on the GPU, further enabling a wide range
of real-world data mining and machine learning applications that were
once intractable. In addition to being a primary computational bottle-
neck in the popular HDBSCAN algorithm, the impact of our end-to-
end cuSLINK algorithm spans a large range of important applications,
including cluster analysis in social and computer networks, natural lan-
guage processing, and computer vision.

Keywords: KNN Graph · Neighborhood Methods · Nearest
Neighbors · Spanning Tree · Single-Linkage Hierarchical Clustering ·
Agglomerative Clustering · Cluster Analysis · Networks · Forest ·
Parallel Algorithms · GPU

1 Introduction

Hierarchical agglomerative clustering (HAC) is an important and fundamental
algorithm for classical machine learning and data mining. HAC variants are used
in many different informatics disciplines such as micro array analysis, genome
clustering, computer vision, document clustering, and social network analysis
[24]. In particular, the Single-Link HAC is still critically important in bioinfor-
matics and genomics [1,11,30], but a challenge to use due to its O(N2) cost where
N is the number of items to be clustered. Hierarchical agglomerative clustering
builds up a hierarchy of clusters from a set of vectors bottom-up, by starting
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with each vector in its own cluster and merging pairs of vectors together based
on predefined similarity criteria until a common root is reached, which produces
this quadratic lower bound.

The seminal SLINK algorithm [27] provided the first O(N2) time and O(N)
space algorithm for the Single-link HAC problem. However, it has evaded effi-
cient parallel implementation due to a lack of bulk work in the SLINK algorithm,
causing communication overhead to dominate runtime. In this work, we will
instead use a Minimum Spanning Tree (MST) based approach to the Single-link
HAC that allows us to perform more parallel work, but at a potentially larger
compute and memory complexity of O(N2 +Nk log N) and O(Nk) respectively.
This required inventing a new parallel MST approach that efficiently performs
the distance computations by an iterative expansion of a k-nearest neighbor
graph. We find in practice, this trade-off is worth it by enabling a GPU imple-
mentation capable of 2290× faster runtime over common CPU implementations,
and in all our tests is faster than alternative options today. An added benefit
of this primitives-based approach is the ability to generalize cuSLINK for other
distance measures, even in non-metric spaces.

We term our approach and implementation cuSLINK for its use of CUDA
APIs and it produces an exact solution to the SLHC problem. The primitives
we used to build cuSLINK are modular and can be reused to compose other
important algorithms for graph and machine learning. For this reason, we provide
separate benchmarks for these primitives, in addition to end-to-end benchmarks
of our cuSLINK implementation against the currently available state-of-the-art.
cuSLINK and its primitives are fully open source and have been contributed
upstream to the RAFT library (https://github.com/rapidsai/raft).

In the following Sect. 2, we will outline related works and better shape the
motivation for both our modular design and contributions. We present our contri-
bution in Sect. 3, and detail our primitives, as well as our novel reformulation of
single-linkage hierarchical clustering for the GPU. These primitives include con-
structing knn graphs by fusing the k-selection operation with the computation of
distances, computing an MST using a variant of Bor̊avka’s classic parallel algo-
rithm, and a novel method for extracting flattened clusters from a dendrogram.
Section 4 compares the performance of our single-linkage hierarchical clustering
algorithm, as well as its building blocks, against previous works.

2 Related Work

Single-linkage hierarchical clustering is commonly referred to as ’nearest neigh-
bors’ clustering and as such, our implementation makes direct use of nearest
neighbors computations in order to shrink the memory footprint of the naive
computation of single-linkage clustering and providing a GPU-accelerated ver-
sion that borrows its foundation from the original SLINK [27].

The original SLINK algorithm maintains 3 arrays, each of size n and loops
over the range [1, n], building up the dendrogram level by level, using two arrays
of pointers to represent the dendrogram itself and a third to store distances.

https://github.com/rapidsai/raft
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Sibsen notes that O(n2) is the optimally efficient runtime upper bound because
each neighbor pair will ultimately need to be compared at least once. The chal-
lenge with this algorithm, however, is in SLINK’s equivalence to the inherently
iterative nature of Prim’s algorithm for constructing an MST. Our algorithm
performs a similar iterative step to perform the agglomerative labeling, but we
perform this step on the sorted edges of an MST, after all needed distances have
been computed. As we describe below, we use a novel variant of Bor̊avka’s algo-
rithm to construct the MST in parallel. In Sect. 3, we note that our formulation
increases the overall complexity to O(N2+Nk log N) but enables a high amount
of parallelism.

Several approaches exist to perform single-linkage hierarchical clustering in
parallel architectures [20]. Many are variants of Bor̊avka and often combine the
affinities graph construction with the MST by computing distance metrics right
in the solver [3,22]. Other approaches build upon Kruskal’s algorithm, either
by exploiting parallelism within different steps, such as the sorting step, or by
building many trees independently in parallel and merging them into a single
hierarchy [13,14]. The latter approach forms the basis for an end-to-end parallel
algorithm for single-linkage hierarchical clustering, even up to the dendrogram
construction, but at the cost of performing many redundant computations and
duplicating memory. While there have been claims that only the pairwise dis-
tance computations can benefit from GPU-acceleration [7], we demonstrate in
Sect. 4 that the linkage and cluster extraction steps also find performance gains.

The FAISS library is well known for containing state-of-the-art implementa-
tions of both exact and approximate nearest neighbors search on the GPU [16],
though their exact implementation of nearest neighbors, known as brute-force,
computes and stores an intermediate buffer of pairwise distances, performing a
k-selection on each buffer. As we highlight in Sect. 3, we improve upon this design
by fusing the computation of the distances with the k-selection when k ≤ 64,
allowing us to lower the memory footprint while also reducing the number of
reads and writes to global memory.

Fast k-NN computations are critical for many types of algorithms in a class
we refer to as ’neighborhood methods’ which include information retrieval, clus-
tering, dimensionality reduction, and classification/regression. Centroid-based
clustering algorithms such as k-means and k-medioids rely on a fast compu-
tation of 1-nearest neighbors, or closest centroid, to each training data point.
Manifold learning algorithms such as TSNE [6] and UMAP [19] rely on a special
class of worse-case k-NN computations known as all-neighbors problems [8,23]
to construct a graph of affinities. Similar to single-linkage clustering, the HDB-
SCAN algorithm, which can be formulated as a special case of single-linkage
clustering, these problems specifically require a fast k-NN as all n2 point pairs
(or n

2 in metric spaces [26]) might need to be computed in the worst case for
exact results.

A natural optimization for k-NN-based approaches is to reduce computa-
tions by shrinking dimensionality [21], partitioning [5,10,25] and/or quantiz-
ing [15] the space. Such methods can offer further speedups, sometimes at the
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expense of correctness. cuSLINK demonstrates state-of-the-art performance, but
the primitives-based approach also leaves room for more optimized k-NN algo-
rithms to be used.

Implementation of the Bor̊avka algorithm on the GPU has been considered
before by several authors [2,9,29]. Early attempts demonstrated speedups in
comparison to parallel CPU solutions but focused on optimizing specific sparsity
patterns [9] or data structures [12]. Those results worked for the initial goal, but
tended to break down as the scope changed [2]. The breadth of MST applications
kept growing meanwhile [17], and translated to many distribution patterns and
use cases. Designing a fast parallel solution resilient to multiple graph types and
properties remains a primary concern.

Recent shifts in human communication, such as mobile phones and the inter-
net of things (IoT), coupled with technical progress, has triggered an extensive
growth of data volume. Scalability and speed have become a major concern
for MST solvers. Previous solutions tended to primarily focus on performance,
often at the cost of generous memory allocations. One of the strengths of the
GPU architecture is the memory bandwidth, but the memory size is limited. We
designed our MST algorithm to be memory efficient by avoiding explicit graph
coarsening in order to scale further than previous implementations: past a billion
edges on a single GPU.

A common problem in previous variants is cycle formation. Multiple edges
of equal minimum weight between two components lead to multiple equivalent
solutions. This results in ties when considering parallel execution, and can be
a source of non-deterministic outputs. Weight alterations have been success-
fully applied to algebraic multi-grid aggregation in the past as a way to extract
parallelism and break ties between strongly coupled nodes [18]. Unfortunately,
random weight alterations cannot be applied directly without risking a change
in the global relative ordering of the weights and thus the MST solution. In this
paper, we propose an alteration that guarantees that all weights are different
while preserving their relative order.

Our implementation adopts the scipy.hierarchy.linkage format, which is also
used by Scikit-learn, making it directly available on a trained AgglomerativeClus-
tering estimator. In addition to enabling SLINK, our MST implementation is
also capable of constructing a maximum spanning tree, which enables our hier-
archical clustering algorithm to also compute a complete-linkage clustering.

3 cuSLINK

Our strategy to implement a faster SLINK is outlined in Algorithm 1, where each
line denotes a sub-step with references to the section where each step is detailed
further. Current SLINK methods do significant unnecessary work by computing
the entire pairwise adjacency matrix at once, but maximize compute—or per-
form smaller work chunks but lose compute efficiency. Our strategy will instead
sub-divide the work into chunks that perform some redundant work, but allow
sufficient compute efficiency to result in a significant net speedup.
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Algorithm 1 cuSLINK Algorithm
1: Input: X, n clusters
2: Output: 1-d array of cluster labels
3: knn graph = compute connectivities(X) � §3.1.1, Alg. 3
4: mst edges, colors = mst(knn graph) � §3.2, Alg. 5
5: mst edges = connect graph(knn graph, mst edges, colors) � §3.1.1, Alg. 2
6: dendrogram = relabel(mst edges) � §3.3.1
7: return extract clusters(dendrogram, n clusters) � §3.3.2, Alg. 8

We start by converting tabular inputs from N points in d dimensions into
a sparse k-NN graph of affinities, which is then used as input to compute the
MST. As mentioned, the original SLINK algorithm computes the MST sequen-
tially by computing and maintaining the 1-NN of the data points (and clusters)
while constructing each of the O(log N) levels of the resulting dendrogram. Our
cuSLINK breaks the algorithm into four steps: 1) construction of affinities graph,
2) construction of MST, 3) construction of the dendrogram, and 4) extraction
of flat cluster assignments from the dendrogram. This separation uses Amdahl’s
Law to allow parallelism of the most performance-critical pieces and isolates the
sequential bits to only the third step.

In order for an MST to converge, the edges that it has available as input need
to form a connected graph and it is not guaranteed that the closest k neighbors
to each data point will form a connected graph. In the case where the MST
construction doesn’t converge, resulting in a minimum spanning forest (MSF,
i.e., multiple MSTs that are not connected), we compute an additional 1-NN
across the resulting super-vertexes in the MSF and perform another iteration of
the MST with the new edges to connect the super vertices. It’s possible there
could be multiple iterations of computing 1-NNs until the MSF converges to an
MST, the number of iterations bounded from above by O(log N) in the worst
case when k = 1. The algorithm for connecting anotherwise disconnected k-NN
graph is outlined in Algorithm 2

Algorithm 2 connect graph()
1: Input: knn graph, mst edges, colors
2: Output: additional mst edges to connect knn graph
3: while n unique(colors) �= 1 do
4: mst edges = mst edges ∪ cross color 1nn(knn graph, colors) � Alg. 4
5: mst edges, colors = mst(mst edges) � Alg. 5

6: return mst edges

The O(E log V ) complexity of computing the MST itself becomes
O(Nk log N) in our formulation, since k-NN bounds the number of edges, E,
to N × k and V = N . Our implementation uses brute-force k-NN, so we still
perform N2 distance computations, resulting in O(N2 + Nk log N) overall com-
putational complexity. While this complexity is slightly worse than the SLINK
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algorithm, it does so because it allows more parallel computation to occur with
less overhead, resulting in a lower total runtime.

As we describe in Sect. 3.3.2, flattened cluster assignments are obtained for
each point n ∈ N by cutting the dendrogram at the level which yields the desired
number of clusters and assigning a unique label to each resulting connected com-
ponent. While not currently supported by cuSLINK, complete-linkage cluster-
ing can be obtained by computing the maximum spanning tree and sorting the
resulting edges in descending order. With our building blocks, it’s also possible
to implement a variant which accepts a distance threshold for which to cut the
dendrogram, however we leave this to future work.

Unlike the original SLINK formulation, cuSLINK separates the construction
of the dendrogram from the k-NN graph and MST steps in order to maximize
parallelism of the former steps since the order of dendrogram construction is
important, making it inherently sequential. Algorithm 1 shows the cuSLINK
steps and Algorithm 2 shows the steps to finding additional edges for connecting
the super-vertices.

3.1 Nearest Neighbors

3.1.1 k-NN Graph Construction
The connectivities graph is constructed in parallel using a novel GPU-accelerated
brute-force k-NN primitive that, as we will outline below, is able to fuse the k-
selection steps with computation of the distances in order to lower the required
memory footprint and remove the need for additional steps downstream.

A common approach to computing a brute-force k-NN is to first break up the
computation of the full m × n pairwise distance matrix into smaller tiles, each
requiring an intermediate buffer of device memory. A k-selection is performed
as a follow-on computation over each tile of pairwise distances to reduce the
columns down to the k smallest (or largest) distances and output them to another
memory buffer. If tiling over both dimensions of the pairwise distance matrix,
additional k-selection steps might be needed. These intermediate tiles and k-
selection steps require additional memory accesses that can be avoided when
k is small enough such that the closest neighbors can be reduced into shared
memory from each warp and selected within each thread-block. We use this
novel insight to develop a fast k-NN strategy outlined in Algorithm 3.

For the case where k ≤ 64, special optimizations can be done to the k-
selection in the GPU implementation of the FAISS’ [16] k-selection primitive.
Our improved version is detailed in the supplementary materials. This step
imposes a lot of pressure on the registers as each warp maintains its own thread-
level queue of new values to be merged along with a warp-wide queue of the
fully sorted top-k values and a register to store the current largest value in the
warp-wide queue for early filtering of candidates. When the thread-level queues
reach their max for new potential top-k values, a sorting and merging step is ini-
tiated synchronously in the warp by performing a bitonic sort of the thread-level
values with the warp-level queue, reducing the warp-level queue back down to
size k. Our warp-level k-selection routine follows the same general design used in
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Algorithm 3 Fused k-NN
1: gridStrideY = curBlockY × batchM � Determine output tile coordinates
2: shared kvp t topKs[batchM , 64] � Allocate shared mem top-k store
3: for gridStrideY < m; step batchM * nBlocksY; do
4: gridStrideX = curBlockX × batchN
5: init smem(topKs) � Initialize shared mem
6: for gridStrideX < n; step batchN × nBlocksX; do
7: prolog(gridStrideX, gridStrideY) � Zero init shared mem accumulator
8: gemm nt loop() � Compute dot product along k
9: epilog op topk(gridStrideX, gridStrideY) � Norm and top-k

10: row epilog op topk(gridStrideY) � Store topk in global mem

FAISS, but reduces the number of warp-selection computations, which require
expensive synchronization between threads within each warp, using the stream
compaction technique [4] within each block.

At the block level, each warp performs its warp-level k-selection and stores
the resulting k selected distances and indices in shared memory. Next, in a
grid-stride, each thread discards all distances and indices which are less than
the previous warp-level k-selection, performing the stream compaction to write
the new set of filtered indices and distances to shared memory. A warp-level
ballot sync() is performed over the filtered counts, 2 × 256 per warp and 2 × 8
per thread, resorting to a scan only if the number of filtered counts is > 0.
For each set of 2 × 256 distances computed by a warp, the warp-select calls
any sync() a total of 128 times per grid-stride by whole thread block. With
stream compaction, ballot sync() needs to be called only 16 times in the best
case.

3.1.2 k-NN Graph Connection
Unfortunately, a k-NN alone with only a naive choice of k doesn’t often scale
to larger datasets in practice as the size of k needed for the MST to converge
to a single supervertex can grow significantly large, being bounded above by
k = N in the worst-case. Since our MST implementation is robust to this type of
input, a minimum spanning forest (MSF) will be returned when this occurs and
additional edges are added to the MSF by performing a 1-NN query that connects
points only across different supervertices, or components, together before re-
computing the MST.

Similar to the fused k-NN primitive outlined above, Algorithm 4 shows the
general steps for our novel 1-NN primitive for Euclidean-based distances, which
also fuses together the computation of the minimum neighbor with the distance
computations. Since k = 1, we can avoid the sorting and merging of the warp-
selection altogether by computing and storing a single min as the distances are
computed. This effectively enables the use of registers alone within each thread of
the GPU for fast storage, comparison, and computation of the closest neighbor.
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Algorithm 4 Fused 1-NN
1: gridStrideY = curBlockY × batchM � Determine output tile coordinates
2: min kvp = (MAX FLOAT, MAX INT) � Init min with max values
3: for gridStrideY < m; step batchM * nBlocksY; do
4: gridStrideX = curBlockX × batchN
5: for gridStrideX < n; step batchN × nBlocksX; do
6: prolog(gridStrideX, gridStrideY) � Zero init shared mem accumulator
7: gemm nt loop() � Compute dot product along k
8: epilog(gridStrideX, gridStrideY) � L2 norm addition

9: row epilog op(gridStrideY) � Global mem min reduce across all tiles for row

3.2 Spanning Trees

Since the graph is assumed to be undirected (wi,j = wj,i), the resulting adjacency
matrix is symmetric. Our algorithm is resilient to negative weights and can solve
the maximum spanning tree problem natively. The maximum spanning tree has
weights greater than or equal to the weight of every other spanning tree, and
is found by forming the additive inverse G′ = (V,−E) and solving the MST
problem on G′.

Algorithm 5 provides an overview of our parallel MST implementation which
relies on the property that the minimum incident edge, or closest neighbor to
each vertex, has to be in the MST (e.g., same as original SLINK). The first
step is to identify these edges. Then, edge contraction of the minimum incident
edges is applied recursively until a steady state is reached. Instead of explicitly
contracting edges through expensive graph coarsening, the MST components
are represented using labels (i.e. colors). The problem is reduced to finding the
minimum incident edge across color boundaries [29].

Our MST solution is artificially made unique by applying a weight alteration
Sect. 3.2.1. MST and MSF are almost identical problems with the difference that
MSF refers to the case where G has multiple strongly connected components.
The latter is particularly relevant for k-NN applications which may consist of
multiple connected components described in Sect. 3.1. The historical Bor̊avka
MST formula iterates until only one color, or super-vertex, remains. Instead, to
find an MSF we detect a steady state and exit if no minimum incident edge to
another color has been found.

We leverage the Compressed Sparse Row (CSR) format as input to our MST
primitive because it enables an efficient memory access pattern.

3.2.1 Weight Alteration
Cycle detection and removal was identified as one of the main challenges in previ-
ously published GPU solutions [29]. The problem can be reduced to selecting an
incident edge to every vertex in parallel without creating cycles. Multiple edges
of equal minimum weight between two components result in multiple equivalent
solutions for the MST problem. In parallel, each component could select a dif-
ferent edge which would result in adding a cycle between them and breaking the
tree structure. To address this issue, we propose a simple solution to prevent
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Algorithm 5 MST Algorithm
1: Input: G
2: Output: mst edges, colors
3: G altered = weight alteration(G) � §3.2.1
4: while !exit do
5: min edges = min edge per vertex(G altered, colors)
6: new mst edges = min edge per supervertex(min edges) � §3.2.2
7: exit = len(new mst edges)
8: if exit then � Return MSF by exiting
9: break

10: done = false � Continue iterating over label propagation when necessary
11: new colors = label propagation(new mst edges, done) � §3.2.3

12: return new mst edges, new colors

cycle formation by generating an alteration on the edge weights that guarantees
that all weights are different while preserving the relative order of all weights.
For any graph that has only a distinct set of edges, this produces a deterministic
result. As a result, all vertices can consistently select edges in an embarrassingly
parallel fashion. Notice that this has the side effect of altering explicit zeroes,
which means our solution cannot support graphs that have zeroed edge weights.
The technique for altering the weights is done in 3 steps:

– Identify θ > 0, where θ is the minimum edge weight difference between any
two pairs of edges in the graph

– For each edge in the upper triangular side of the matrix, add noise to each
edge weight by generating a random number ε ∈ [0, θ).

– Replicate the upper triangular part into the lower triangular part so that
wij = wji

3.2.2 Minimum Incident Edges
A common solution, as noted with [9,12], is to assign one thread per vertex
to scan all edges. However, this comes with the risk that the kernel becomes
bound to the slowest performing thread. With the help of Sect. 3.2.1, we over-
come the issue of tie-breaking when trying to find the minimum outgoing edge
per supervertex as each edge has a unique weight. Thus, overcoming the cycle-
detection problem, we divide the task of finding the minimum outgoing edge in
two sub-tasks:

– Minimum Edge Per Vertex : Using the CSR format, we assign 32 threads (one
warp) to scan the edges of each vertex. These threads, using shared memory
reduction, find an outgoing edge to a destination vertex that is part of a
different supervertex than the source and also atomically record a minimum
edge weight for that source supervertex

– Minimum Edge Per Supervertex : Continuing from the previous task where we
found the minimum outgoing edge for each vertex, we still need to reconcile
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the minimum source, destination pair for each supervertex. Whichever vertex
found an edge that was the minimum for its supervertex adds it to the final
solution

Note that self edges are automatically invalid because they point to the
source’s color.

3.2.3 Label Propagation
Label propagation in [29] is performed by ensuring all vertices explicitly try
to converge to supervertex 0, while [9] uses graph contraction to form a new
graph of supervertices in the current MST iteration. Instead, our label prop-
agation improves upon the speed of the former and memory requirements of
that latter by indirectly keeping track of supervertices using the color and
supervertex arrays. By working only on newly added MST edges in a given
iteration, we ensure that fewer iterations of label propagation are needed
compared to preceding MST iterations as each iteration adds fewer edges to
the solution. This was instrumental in removing the bottleneck that comes
with wide graphs (such as road networks). Initially, each vi holds the color i.
Algorithm 6 shows how the minimum colors between source and desti-
nation vertices is resolved, for each newly added edge to the MST.

Algorithm 6 min pair colors(V )
1: for vertex ∈ V do � The incident vertex
2: edge = filtered min edges[vertex]
3: if found by vertices(edge) then
4: neighbor vertex = get neighbor vertex[edge] � The neighbor vertex this

edge connects
5: supervertex = supervertices[vertex]
6: color = colors[supervertex]
7: neighbor supervertex = supervertices[neighbor vertex]
8: neighbor color = colors[neighbor supervertex]
9: atomicMin(next color[supervertex], neighbor color)

10: atomicMin(next color[neighbor supervertex], color)

The color for every v ∈ V whose supervertex changed colors in Algorithm 6
gets updated in Algorithm 7. We determine whether Algorithm 6 and Algorithm
7 need to be iterated on again, in case a supervertex has not reached its final
color as defined by newly added MST edges.

Finally, we propagate and resolve colors for the entire topology by updating
vertices whose supervertices changed colors.
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Algorithm 7 update colors(V )
1: for vertex ∈ V do
2: color = colors[vertex]
3: supervertex = supervertices[vertex]
4: new color = next color[supervertex]
5: if color > new color then
6: colors[vertex] = new color
7: done = false

3.3 Dendrogram

3.3.1 Relabel into Dendrogram
After computing the minimum spanning tree on the connectivities graph, the
resulting N − 1 edges are sorted in parallel by weight. The dendrogram is con-
structed on the CPU by expanding the total set of vertices from N to (N −1)∗2
and renumbering the original vertices as they are merged together into the hier-
archy. A parent vertex for any level i in the hierarchy, where 0 ≤ i < N−1

2 , will
always be ≥ N and can be computed with the simple formula i+N . A union-find
structure with union-by-rank and path compression is used to achieve runtime
of O(Nα(N)) [17,28].

The strict ordering of the dendrogram construction step makes it inher-
ently sequential [7,20]. More recently, the optimization outlined by [17] produces
acceptable performance on the CPU, so we exploit as much parallelism in the
remaining steps as possible.

Algorithm 8 extract flattened clusters(dendrogram)
1: label roots = find label roots() � Find the root nodes for each label
2: sort(label roots)
3: cut level = (n points -1) - (n clusters - 1)
4: labels = inherit labels(cut level, dendrogram) � Leaves inherit from label roots

3.3.2 Cut the Dendrogram
Cluster assignments (Algorithm 8) are extracted from the dendrogram by first
cutting it at a particular level, yielding a desired n clusters number of cluster
tree roots. These tree roots are computed by sorting the last n clusters ∗ 2
elements of the dendrogram and extracting the smallest n clusters elements
from the sorted array. Unique labels are given to each of these tree roots and all
nodes in levels of the tree lower than the dendrogram label root nodes inherit
the labels from their closest labeled ancestors in parallel (Algorithm 9).
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Algorithm 9 inherit labels(cut level, dendrogram)
1: for vertex ∈ dendrogram do � Loop through all nodes in dendrogram
2: cur level = get tree level(vertex)
3: if cur level ≤ cut level then ‘
4: cur label = get parent label()
5: while !is labeled(cur label) do � Iterate parents until label is found
6: cur parent = get parent()
7: cur level = get parent tree level()
8: cur label = get parent label()

9: label[vertex] = cur label � Assign label of labeled parent

4 Experiments

In this section, we benchmark both cuSLINK end-to-end along with our k-NN, 1-
NN and MST primitives. We show that all components of cuSLINK outperform
the available state-of-the-art solutions. All benchmarks are performed w/CUDA
11.8 on Nvidia A100 GPUs. We selected our comparison implementations based
on availability of packages and/or source code which was able to built and run
by our best effort. We also made every effort to update existing state-of-the-
art solutions to run CUDA 11.8 when needed. Note that we compare against
implementations on the CPU only when corresponding GPU source code was
not available.

4.1 Nearest Neighbors

We measured the performance of our fused 1-NN and k-NN implementations
against FAISS on the GPU, which is the current known state-of-the-art for k-
selection and brute-force nearest neighbors on the GPU.

Table 1. Performance comparison between FAISS and cuSLINK’s k-NN on randomly
generated data for k = 32. Our Fused k-NN enables consistent speedups at all sizes,
particularly smaller sizes where memory transfers dominate all time spent. By fusing
the operations we do not require additional allocation.

Index Rows Query Rows GPU-FAISS cuSLINK

100K 100K 261 ms 143 ms

200K 200K 783 ms 537 ms

400K 400K 2706 ms 2017 ms

1M 1M 1.607 s 1.218 s

4.2 Spanning Tree

Previous work already showed that parallel MST solver on GPU outperformed
CPU versions [29]. Hence we compare against previous GPU implementations
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Table 2. Performance comparison between FAISS and cuSLINK’s 1-NN on randomly
generated data. Similar to Table 1 our performance dominates, even more dramatically
for lower sizes—up to 178 × faster. Due to the iterative nature of 1 and the merging
in HAC, problems of all sizes will occur during a larger clustering, so all performance
levels are relevant to final speedup.

Index Rows Query Rows Cols GPU-FAISS cuSLINK

100K 100 128 98.4 ms 0.55 ms

100K 100 256 95.6 ms 0.967 ms

100K 1k 64 96.6 ms 1.85 ms

100K 1K 128 98.9 ms 3.39 ms

100K 1K 256 104 ms 6.46 ms

100K 10K 64 126 ms 17 ms

100K 10K 128 146 ms 32 ms

100K 10K 256 156 ms 62.2 ms

and consider CPU comparisons to be out of the scope of this paper. While
performance of [12] is better than [29], we did not compare against it because
the bitwise technique greatly limits the supported input size, as shown in [2]
(Table 2).

In Table 3 we selected road networks from the 9th DIMACS challenge to
compare against the experiments performed by [29].

Table 3. We selected road networks from the 9th DIMACS challenge to compare
against the experiments performed by [9]. Compared to the prior state-of-the-art algo-
rithm, our method is always faster and up to 3.5× faster as the problem size increases.

Description no. nodes no. edges Sousa2015 cuSLINK

New York City 263, 346 733, 846 29.265ms 20.217 ms

SF Bay Area 321, 270 800, 172 32.689ms 22.606 ms

CO 435, 666 1, 057, 066 38.819ms 23.680 ms

FL 1, 070, 376 2, 712, 7986 82.822ms 35.552 ms

Northwest USA 1, 207, 945 2, 840, 208 84.203ms 36.884 ms

Northeast USA 1, 524, 453 3, 897, 636 112.173ms 51.879 ms

CA & NV 1, 890, 815 4, 657, 742 132.726ms 61.366 ms

Great Lakes 2, 758, 119 6, 885, 658 191.827ms 81.994 ms

Eastern USA 3, 598, 623 8, 778, 114 265.426ms 96.100 ms

Western USA 6, 262, 104 15, 248, 146 450.833ms 127.545 ms

Central USA 14, 081, 816 34, 292, 496 1004.624ms 278.841 ms

Full USA 23, 947, 347 58, 333, 344 1685.172ms 478.898 ms
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On larger road networks, our implementation scales better than [9]. Recall
that the latter is explicitly forming super-vertices which becomes increasingly
expensive as the size of the problem increases.

4.3 Single-Linkage Hierarchical Agglomerative Clustering

Since dendrogram construction is not often exposed as an independent step,
we evaluate our end-to-end single-linkage hierarchical clustering implementation
on the GPU against Scikit-learn’s AgglomerativeClustering implementation on
the CPU in Table 4. Each experiment was performed on a NVIDIA DGX1
using several real-world datasets, often encountered in clustering and nearest
neighbors research. These experiments demonstrate that the performance of our
SLHC implementation has the potential to lower the time spent in compute
during the data analysis process, enabling near real-time speeds for data sets
that take nearly 40 min to process on the CPU.

Table 4. End-to-end execution times comparing our GPU-accelerated SLHC imple-
mentation against Scikit-learn on the CPU for real-world datasets. In most cases Scikit-
learn times out (after 24 h), and so no result is available.

Dataset Shape Clusters Scikit-learn cuSLINK

Deep-1B 8M × 96 100 — 1806 s

SIFT-128 1M × 128 100 — 37.23 s

NYTimes 290k × 256 100 — 9.227 s

MNIST 60K × 784 10 2171 s 0.926 s

Fashion MNIST 60K × 784 25 2169 s 0.947 s

5 Conclusion

In addition to a novel, modular, and state-of-the-art implementation of single-
linkage hierarchical clustering, we’ve outlined and contributed multiple reusable,
novel and state-of-the-art primitives in this paper. These primitives include k-
nearest graph construction, graph-based minimum spanning tree solver, and a
novel parallel dendrogram cluster extraction method.

We demonstrated that our primitives are both flexible and fast, and have a
potential to impact several different industries as existing state-of-the-art meth-
ods for end-to-end single-linkage clustering are intractable on large datasets.
These primitives are all fully open source and available as part of the RAFT
library (https://github.com/rapidsai/raft).

https://github.com/rapidsai/raft
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Abstract. Center-based clustering (e.g., k-means, k-medians) and clus-
tering using linear subspaces are the two most popular objectives for
partitioning real-world data into smaller clusters. Both these objectives
minimize the average cost of clustering over all the points. However,
when the points belong to different sensitive demographic groups and
the optimal clustering has a significantly different cost per point for dif-
ferent groups, it can cause fairness-related harms (e.g., different quality-
of-service). To mitigate these harms, the socially fair clustering objective
minimizes the cost of clustering per point for the worst-off group. In this
work, we propose a unified framework to solve socially fair center-based
and linear subspace clustering and give practical and efficient approxima-
tion algorithms for these problems. We perform extensive experiments to
show that our algorithms closely match or outperform existing baselines
on multiple benchmark datasets.

1 Introduction

Given a set of n data points in a d-dimensional Euclidean space, the goal of
clustering is to partition these data points into k disjoint parts or clusters so that
the points in the same cluster are close to each other or close to a well-defined
structure. It is a challenging problem to efficiently determine the right number
of clusters from the data [20,35]. As a result, in many clustering objectives, the
desired number of clusters k is given as a part of the input. In center-based
clustering, the objective is to find k points or centers that minimize the average
distance of any data point to its nearest center. This definition of clustering
has been widely used in applications such as computational biology [22], market
segmentation [19], and many more [7,26,30].

While clustering is a widely used technique to represent the data succinctly,
it is sometimes the case that clustering using subspaces gives clusters of much
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lower cost than clustering using points as centers, as has also been illustrated
in [34]. Formally, subspace clustering asks for k subspaces of dimension at most
q (where q < d) that minimize the average distance of any data point to its
nearest subspace. Clustering using subspaces has applications in computer vision
[21,40], face recognition [6,27], representation learning [32,33], and many more.
We consider the linear subspace clustering objective that uses linear subspaces.

Previous work has observed that automated decision-making on big data can
have a potentially adverse social and economic impact on individuals and sensi-
tive demographic groups (e.g., race, gender) [5]. For example, [15] has observed
highly unequal group-wise costs for different sensitive groups in several real-
world datasets when clustering with the k-means objective. As a result, various
fairness-constrained clustering objectives have been proposed. In this work, we
study the socially fair clustering problem. The goal is to minimize the clustering
cost per point for the worst-off group, where groups are based on socially salient
features such as race, gender, etc. Here we consider the problem of clustering
using the z-th power of the Euclidean distance metric. This notion generalizes
the well-known clustering objectives such as socially-fair k-median (z = 1) [1],
k-means (z = 2) [15], and k-center (z = ∞) clustering.

In the case of linear subspace clustering with k = 1, the optimal solution
can be obtained efficiently by Principal Component Analysis (PCA). However,
applying PCA to the data in a group-blind fashion might result in inequitable
group-wise costs, as observed in [36]. Similarly, clustering using linear subspaces
could also suffer from unequal costs for different groups. Hence, we study the
socially fair variants of clustering.

In this work, we propose a framework for socially fair clustering using which
we give a (1 + ε) approximation algorithm for socially fair (k, z) clustering that
runs in time ˜O(ndk) + 2O(ε−zk3� log L), where L is the input bit complexity. We
also show that the same framework also gives an algorithm to solve socially fair
linear subspace clustering using k linear subspaces of dimension q each so as to
minimize the clustering cost per point for the worst-off group, defined using z-th
power of distances. Here the distances from a point to the linear subspaces are
the lengths of orthogonal projections (in the �2 norm) of the points in linear
subspace, to the power z, for z � 1.

Contributions. Our main contributions can be summarized as follows,

– We propose a generic framework (Algorithm 1), where we first assume that
there is an oracle that, given a k-partitioning of the data, outputs k centers
(or linear subspaces) such that the socially fair center-based (or linear sub-
space) clustering cost with respect to these centers (subspaces) is at most α
times the optimal socially fair clustering cost for this k-partitioning. Then our
framework gives an α(1+ε)-approximation algorithm to the socially fair clus-
tering problem, given access to an appropriate strong ε-coreset construction
algorithm and the α approximate oracle (Theorem 2).

– If the best known strong coreset construction algorithm for an unconstrained
clustering problem outputs a coreset S, we show that we can construct a
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strong coreset of size � · |S| for socially fair clustering. Here � is the number
of groups the points belong to (Theorem 1).

– We also give constructions of efficient oracles, which, when used in our frame-
work, give a (1 + ε) approximation algorithm for socially fair center-based
clustering (Theorem 3) and a

√
2�

1
z γz(1 + ε) approximation algorithm for

socially fair linear subspace clustering, for z � 2, where γz ≈ √

z/e(1 + o(1))
(Theorem 4).

– We also propose a Lloyd-like heuristic algorithm (Algorithm 2) to perform
socially fair clustering efficiently on many benchmark datasets and compare
the results with unconstrained as well as fair baselines wherever applicable
(Sect. 6).

1.1 Related Works

Previous Results. Socially fair k-means clustering (in our case, socially fair
center-based clustering with z = 2) has been introduced and studied in [1,15]
simultaneously. [1] gave an O (�)-approximation algorithm, whereas [15] gave a
Lloyd-like heuristic algorithm that performs well in practice. Recently [18] came
up with (33 + ε) approximation algorithm which runs in time (k/ε)O(k)

nO(1).
For socially-fair k-medians clustering (in our case, socially fair center-based

clustering with z = 1), a recent work [18] gave a (5+ε)-approximation algorithm
which runs in time (k/ε)O(k)

nO(1).
For socially-fair center-based clustering with a general z, [29] presented a

polynomial time
(

eO(z) log �/ log log �
)

-approximation algorithm. The work [9]
generalizes the socially fair clustering objective further and asks to minimize the
�p norm of the average group-wise clustering costs. When p = ∞, this recovers
the socially fair center-based clustering. They also achieve the same approxi-
mation guarantee as [29]. In an independent and concurrent work [16] came up
with a (5 + 2

√
6 + ε) approximation algorithm that runs in time n2O(z)·�2 and

a (15 + 6
√

6) approximation algorithm that runs in time k� · poly(n). We give
a (1 + ε) approximation algorithm that runs in time ˜O(ndk) + 2O(ε−zk3� log L),
where L is the input bit complexity.

In [15], the authors study a slightly different problem, where the goal is to
find optimal subspace such that among all the groups, the increase in the per-
point cost of the group due to fairness constraints compared to PCA of that
group is minimized. To the best of our knowledge, we are the first to study the
socially fair linear subspace clustering problem and propose a unified framework
for both center-based and linear subspace clustering.

Techniques. As large data sets often have a large number of points, a popu-
lar technique relevant to our paper is to construct a small coreset of the given
data and perform clustering on the coreset. A coreset is a small weighted sample
of the data such that the clustering cost for this smaller set of points gives a
(1 + ε) approximation to the clustering cost for the entire data. Following the
unified framework for clustering using coresets proposed in [14], recent works
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[10,24] have constructed coresets for k-means or k-medians clustering of size
poly(k, 1/ε), independent of n and d. Different from socially fair clustering, fair
representation clustering asks for a proportional representation of all the groups
in each cluster. For such a fair k-means and fair k-median objective, a coreset
of size O (

Γε−dk2
)

can be constructed by a deterministic algorithm [23], and
a coreset of size poly(Γ, log n, k, 1/ε) can be constructed by a sampling-based
algorithm [4], where Γ is the number of types of items (i.e., number of disjoint
groups). It is important to keep in mind that the above fair clustering objective
can be inadequate when the benefits or harms of clustering for different demo-
graphic groups are better represented by their clustering cost rather than their
proportional representation, as shown in [15]. We note that we are the first to
use coresets for socially fair clustering.

2 Preliminaries

2.1 Notation

Recall that we are given a set X of n points in R
d. We assume we have the

group information of the data points in X, where each point belongs to exactly
one group. Henceforth we take (X1,X2, . . . , X�) to be the input, where Xj ⊆ X
represents the set of points from group j. We use C := (c1, c2, . . . , ck) to represent
k points as centers where ci ∈ R

d,∀i ∈ [k], and V := (V1, V2, . . . , Vk) to represent
k subspaces of dimension at most q in R

d as centers, where q is given as input.
We use k to represent the number of clusters. We note that k is given as input
to all our algorithms; however, estimating the correct value of k for the given
dataset is an interesting problem and beyond the scope of this work. We use z
to represent the z-th power of the cost of clustering, which is also given as input.
We represent the Euclidean norm using ‖ · ‖2. We use L to represent the bit
complexity of the input; that is, the coordinates of each point are represented
as a fraction where both the numerator and the denominator can be of at most
L bits. We use S to represent a coreset, the weighted sample of the data points
in X. In the rest of the paper, i represents the index of a cluster in [k], and j
represents the index of a group in [�].

2.2 Problem Definition

The problem of socially fair center-based clustering can now be stated as follows.

Definition 1 (socially fair (k, z) clustering). Given (X1, . . . , X�), k ∈ Z
+

and z � 1, the goal of socially fair (k, z) clustering is to find k points C that min-
imize the clustering cost per point of the worst off group. We represent socially
fair (k, z) clustering cost as,

fair-cost(C,X) := max
j∈[�]

⎛

⎝

1
|Xj |

∑

x∈Xj

d(C, x)z

⎞

⎠

1/z

,
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where d(C, x) := mini∈[k] d(ci, x) and d(ci, x) = ‖ci −x‖2. We call (c1, c2, . . . , ck)
the socially fair centers.

This definition generalizes the well-known clustering objectives such as socially-
fair k-median (z = 1) [1], k-means (z = 2) [15], and k-center (z = ∞) clustering.
Note that in Definition 1, each point is assigned to its nearest center according to
the distance ‖ci − x‖2, the Euclidean distance. However, the distance of a point
to a subspace in the definition below is the length of the orthogonal projection
of the point onto the subspace.

Definition 2 (socially fair (q, k, z) linear subspace clustering). Given
(X1, . . . , X�), k ∈ Z

+, z � 1, and q < d, the goal of socially fair (q, k, z) linear
subspace clustering is to find k linear subspaces V of dimension at most q in
R

d so as to minimize the clustering cost per point of the worst off group. We
represent socially fair (q, k, z) linear subspace clustering cost as

fair-cost(V,X) := max
j∈[�]

⎛

⎝

1
|Xj |

∑

x∈Xj

d(V, x)z

⎞

⎠

1/z

,

where d(V, x) := mini∈[k] d(Vi, x) and d(Vi, x) = ‖xT Zi‖2, where Zi is orthogonal
projection matrix corresponding to Vi, for every i ∈ [k]. We call (V1, V2, . . . , Vk)
the socially fair linear subspaces.

We note that when all the data points are assumed to be from the same group
in Definitions 1 and 2, we recover the objective functions of (k, z) clustering and
(q, k, z) linear subspace clustering respectively.

3 Framework with Theoretical Guarantees

Recall that we are given a set of n points. A coreset is a small weighted sample
of the data that closely approximates the clustering cost of the data. Hence,
clustering algorithms run much faster on coresets. In this section, we present
our theoretical results. We first show that we can construct a coreset for the
socially fair clustering objective, given coresets for the unconstrained clustering
objective for each of the groups. Our second result is a framework (see Algorithm
1) that can be used to solve both variants of the socially fair clustering problems
described in Sect. 2.2. More formally, consider the following definition of coresets
for clustering.

Definition 3 (strong coresets for (k, z) clustering). Given a set X of n
points and a constant ε > 0, a weighted sample S of the points with weight
function w : S → R+ is a strong ε-coreset of X for the (k, z) clustering problem
if for every k centers C = (c1, . . . , ck) such that ci ∈ R

d,∀i ∈ [k],
(

∑

x∈S

w(x) · d(C, x)z

)1/z

∈ (1 ± ε)

(

1/|X|
∑

x∈X

d(C, x)z

)1/z

.
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Definition 4 (strong coresets for (q, k, z) linear subspace clustering).
Given a set X of n points and a constant ε > 0, a weighted sample S of the points
with weight function w : S → R+ is a strong ε-coreset for the (q, k, z) linear
subspace clustering problem if for every k linear subspaces V = (V1, V2, . . . , Vk),
where each Vi is a linear subspace in R

d of dimension at most q,
(

∑

x∈S

w(x) · d(V, x)z

)1/z

∈ (1 ± ε)

(

1/|X|
∑

x∈X

d(V, x)z

)1/z

.

Henceforth, whenever we say coreset, we refer to a strong coreset. Recall that
we are additionally given that the points belong to � disjoint groups. Given the
partition of the data based on these groups, X1, . . . , X�, the key observation we
first make is that a union of coresets for each of the groups for the unconstrained
clustering cost is also a coreset for the entire data for the socially fair clustering
cost. This applies to socially fair (k, z) clustering and socially fair (q, k, z) linear
subspace clustering. Note that a union of coresets for groups has been used
as a coreset for other variants of fair clustering (e.g., [23], for the problem of
(α, β)-proportionally-fair clustering).

Theorem 1 (coresets for socially fair clustering) Let Sj be a strong ε-
coreset for Xj, for each j ∈ [�], with respect to the clustering cost. Then, S =
⋃�

j=1 Sj is a strong ε-coreset for the entire data X with respect to the socially
fair clustering cost.

Proof. Let Sj be a strong ε-coreset for the points belonging to group j ∈ [�]
with respect to the clustering cost and wj be the corresponding weight func-
tion. Then for any k centers C = (c1, . . . , ck), let X1,X2, . . . , Xk be cluster-
ing obtained by assigning the points in X to their closest centers in C. For
any S ⊆ X and a given weight function w : S → R+, let cost(C,S,w) :=
(
∑

x∈S mini∈[k] w(s) · d(ci, x)z
)1/z. When there are no weights on the points, we

use cost(C,S, 1) or simply cost(C,S) to represent the cost function with uniform
weights, i.e., 1(x) = 1/|S|. Then we have,

(1 − ε) · cost(C,Xj) � cost(C,Sj , wj) � (1 + ε) · cost(C,Xj).

Now let S =
⋃�

j=1 Sj . For the same cluster centers and partitioning of the data,
we have,

fair-cost(C,S) = max
j∈[�]

cost(C,Sj , wj)

=⇒ max
j∈[�]

(1 − ε) · cost(C,Xj) � fair-cost(C,S) � max
j∈[�]

(1 + ε) · cost(C,Xj)

=⇒ (1 − ε) · max
j∈[�]

cost(C,Xj) � fair-cost(C,S) � (1 + ε) · max
j∈[�]

cost(C,Xj)

=⇒ (1 − ε) · fair-cost(C,X) � fair-cost(C,S) � (1 + ε) · fair-cost(C,X),

where the first implication is because Sj is an ε coreset of Xj . Therefore S is an
ε-coreset for the whole dataset w.r.t. the socially fair clustering cost. The same
arguments also work for socially fair (q, k, z) linear subspace clustering.
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Algorithm 1. Socially Fair (k, z) Clustering
Input: The set of points X and their group memberships, the numbers k, z.
Output: The cluster centers C.
1: Compute Sj , a strong ε/3-coreset for group j, ∀j ∈ [�].
2: Let S :=

⋃
j∈[�] Sj .

3: for each k partitioning of the coreset P(S, k) := (P1(S), P2(S), . . . , Pk(S)) do
4: C := Fair-Centers(P(S, k)).
5: t := maxj∈[�] cost(C, Sj).

6: return The centers C with minimum value of t.

As a consequence of Theorem 1, we propose an iterative framework to solve
socially fair clustering (see Algorithm 1). The framework crucially depends on
the existence of an efficient algorithm called Fair-Centers, that, given a set
of clusters, outputs α-approximate socially fair centers. Then the socially fair
clustering cost output by this function is at most α times the optimal socially fair
clustering cost, where α � 1. Our socially fair (q, k, z) linear subspace clustering
(see Algorithm 3 in the full version of the paper [17]) also follows the same
framework. Therefore, this framework is generic in the sense that we can recover
algorithms to solve both variants of the socially fair clustering problems given
appropriate oracles in Step 4. We now state our theorem for socially fair center-
based clustering. The same result also holds for socially fair linear subspace
clustering with an appropriate oracle for finding fair linear subspaces for each
partition in Step 4.

Theorem 2. Let Sj be a strong ε/3-coreset for group j for some ε ∈ [0, 1],
∀j ∈ [�]. Let t (S, α) be the time taken by Fair-Centers that gives an α-
approximate socially fair cluster centers, given clusters. Then there exists an
α(1 + ε) approximation algorithm for the socially fair clustering problem that
runs in time O (

k|S| · t (S, α)
)

where S =
⋃�

j=1 Sj.

Proof of Theorem 2 can be found in the full version of the paper [17, Theorem 8].

4 Implementation of Fair-Centers

In this section, we give an exact implementation of Fair-Centers for socially
fair (k, z) clustering and an approximate one for socially fair (q, k, z) linear sub-
space clustering. We do both by formulating them as convex programs that can
be solved efficiently using the well-known Ellipsoid method. Note that in Algo-
rithm 2 we call the function Fair-Centers for the ε-coreset S corresponding
to the given dataset X for the socially fair clustering objective. We show the
implementation of the Fair-Centers for S, but it works for any subset of X.

4.1 Socially Fair (k, z) Clustering

Similar to X, S can also be partitioned into S1, S2, . . . , S�, based on groups.
Let Pi(S) represent the ith cluster (or partition) of the coreset S and Sij :=
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Pi(S) ∩ Sj . Then the problem of finding k centers that minimize the socially
fair (k, z) clustering cost, given the clusters, can be expressed as the following
convex program,

min
β∈R,c1,··· ,ck∈Rd

β, (1)

such that
1

|Sj |
∑

i∈[k]

∑

x∈Sij

‖x − ci‖z � β, ∀j ∈ [�].

It is easy to see that the optimal solution to this convex program β∗, c∗
1, c

∗
2, . . . , c

∗
k

gives socially fair clustering cost β∗, with the centers (c∗
1, c

∗
2, . . . , c

∗
k). Let L be

the bit complexity of the input; that is, each point x is a vector in Q
d, and all

the rational numbers are represented as fractions where the values of numerator
and denominator can be represented using at most L bits. Then our framework
results in the following theorem.

Theorem 3. Given (X1,X2, . . . , X�), with bit complexity L, numbers k ∈ Z�0,
z � 1, an algorithm with running time TS to compute a strong ε-coreset S for
socially fair (k, z) clustering, there exists a (1 + ε)-approximation algorithm to
socially fair (k, z) clustering that runs in time

˜O
(

k|S| · (

k2d2 + �kL2(d + z)|S|) · k2d2 · (Lz + d + log |S|)2 + TS

)

.

To the best of our knowledge, the best-known coreset size for the (k, z) cluster-
ing is |S| = ˜O (

min{ε−2z−2, 22zε−4k}�k
)

by [24]. We note that the size of the
coreset is independent of n. This makes the number of iterations in Step 3 of
our algorithm the same for any size of the dataset. The algorithm to construct
this coreset runs in time ˜O (ndk). Moreover, [28] shows that the cost of any
clustering is preserved up to a factor of (1 + ε) under a projection onto a ran-
dom O(log(k/ε)/ε2)-dimensional subspace. Therefore, the running time of our
algorithm is ˜O(ndk)+2O(ε−zk3� log L). Note that even for unconstrained k-means
clustering problem, the best known (1 + ε) approximation algorithm runs in
time exponential in k (see Theorem 1 in [8]). Many works have given polynomial
time algorithms for k means clustering under some additional assumptions on
the data [2,3]. Studying our problem with additional assumptions on the data
remains an interesting open direction.

4.2 Socially Fair (q, k, z) Linear Subspace Clustering

Let zi,1, zi,2, · · · , zi,d−q denote the orthonormal basis of the orthogonal comple-
ment of Vi and let Zi ∈ R

d×d−q denote the matrix with the hth column as zi,h.
We know that the distance of a point x to the ith subspace is its projection on the
orthogonal subspace. Thus, d(x, Vi) = ‖xT Zi‖2. Here let S be an ε-coreset for
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X with respect to the socially fair (q, k, z) linear subspace clustering objective.
Then, the oracle can be expressed as follows,

min
β∈R,Z1,··· ,Zk∈Rd×d−q

β, (2)

s.t.,
1

|Sj |
∑

i∈[k]

∑

x∈Sij

‖xT Zi‖z
2 � β, ∀j ∈ [�],

‖Z
(h)
i ‖2 � 1, ∀i ∈ [k],∀h ∈ [d − q],

〈Z(h1)
i , Z

(h2)
i 〉 = 0, ∀h1 �= h2, i ∈ [k].

This problem can be approximated by utilizing techniques from [11]. More
precisely, we have the following theorem,

Theorem 4. Given (X1,X2, . . . , X�), with bit complexity L, numbers k, q ∈
Z�0, z � 1, and an algorithm with running time TS to compute a strong ε-coreset
S for socially fair (q, k, z) linear subspace clustering, there exists a

√
2�

1
z γz(1+ε)

approximation algorithm to socially fair (q, k, z) linear subspace clustering that
runs in time

˜O
(

k|S| · (

k2d4 + �kd2zL|S| + �d3L
) · k2d4 · (Lz + d + log |S|)2 + TS

)

.

In a recent work [39] that studies the problem of constructing a strong coreset for
(q, k, z)-projective clustering when the points come from a polynomial grid, the
authors provide a O(1)-approximation coreset of size O

(

(

8q3 log(dΔ)
)O(qk)

)

for z = ∞, with running time O
(

nq4 (log Δ)q2k
)

, and an ε-coreset of size

O
(

(

8q3 log(dΔ)
)O(qk) log n

)

for z = 2 with running time O
(

n2q4 (log Δ)q2k
)

,
where Δ is the ratio of the largest and the smallest coordinate magnitudes. Sub-
stituting this we get that our algorithm runs in time O

(

n2q4 (log Δ)q2k
)

+ n ·
2O((q log(dΔ)O(qk) log L) for socially fair (q, k, 2) linear subspace clustering.

Due to space constraints, we omit all the proofs here. We refer the reader to
the full version of the paper [17] for all the omitted proofs. In the next section,
we propose a practical heuristic algorithm for solving socially fair clustering with
the ideas developed in this section combined with a Lloyd-like update step.

5 A Practical Method for Socially Fair Clustering

In this section, we first describe a Lloyd-like heuristic implementation of our
framework (see Algorithm 2) that is more practical in running time for exper-
iments on real-world datasets. In Algorithm 2, rather than iterating over all
possible k-clusters of the representative set, we perform a Lloyd-like iterative
update. Note that unlike described in Algorithm 1, we construct a representa-
tive subset of each of the partitions in every iteration. This enables us to take
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Algorithm 2. Socially Fair (k, z) Lloyd’s Heuristic
Input: The set of points X and their group memberships, the clustering parameters

k, z, and the sample size M .
Output: Cluster centers C. (Note that we also get a similar heuristic for socially fair

(q, k, z) linear subspace clustering by replacing Step 7 with an appropriate function
to find linear subspaces).

1: Initialize the clusters P(X, k) = (P1(X), P2(X), . . . , Pk(X)) uniformly at random.
2: for T iterations do
3: Xij := Pi(X) ∩ Xj , ∀i ∈ [k], j ∈ [�].
4: Construct Sij by sampling M points from Xij uniformly at random and set

the weight of each point to be |Xij |/M . (Note: If M > |Xij |, then Sij = Xij with
weights as 1).

5: S :=
⋃

i∈[k]

⋃
j∈[�] Sij .

6: P̂ := (P1(X) ∩ S, P2(X) ∩ S, . . . , Pk(X) ∩ S).

7: C = Fair-Centers
(
P̂

)
.

8: Update the clusters P by assigning points in X to their nearest center in C.

9: return cluster centers C.

advantage of the partitions created in every iteration by constructing a represen-
tative subset for the 1-means (and 1-median) objective for every Xij and taking
a union of these representative sets.

Speedup on Real-World Data. We observe in our experimental results that
our practical algorithm finds a good enough solution in a very small number
of iterations – maximum 20 iterations in all our experiments – at which point
we stop the algorithm and return the current centers (subspaces). This suggests
that our practical algorithm runs much faster in practice rather than Algorithm
1 due to the replacement of a large number of iterations (k|S|) with a small
number of Lloyd-like update steps. We note that [15] also proposed a variant of
Lloyd’s heuristic called Fair-Lloyd where, starting with a uniform random set
of clusters of the whole data, in each iteration, it finds a set of centers that
minimize the socially-fair k-means clustering cost for the current set of clusters,
and re-assigns all the points to their nearest center. For an arbitrary number of
groups, [15] finds the centers via a heuristic based on the multiplicative weights
update method. Different from this, we work with a representative sample of
the data, and in each iteration, we find α-approximate centers for the clusters
in that iteration, where α is as given in Sect. 4. Our experimental results show
that [15] incurs a much higher cost compared to our algorithm when there are
more than two groups (see Fig. 1).

6 Experimental Results

Utilizing Algorithm 2, we perform an experimental evaluation on multiple bench-
mark datasets for center-based clustering (k-means and k-medians objectives)
as well as linear subspace clustering. The experiments were run on an Intel(R)
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Xeon(R) Silver 4110 CPU consisting of 8 cores, with a clock speed of 2.1 GHz
and DRAM of 128 GB. We refer the reader to the full version of the paper [17]
for running time comparison plots for the algorithms.

We experiment over a diverse set of real-world datasets comprising various
sensitive features. Table 1 summarizes the datasets. We normalize the continuous
attributes to have mean 0 and variance 1 and encode the categorical attributes
using one-hot encoding, similar to our baseline [15]. It is a common practice
to reduce the dimension using PCA as a pre-processing step [12], also used in
the baseline for socially fair k-means, Fair-Lloyd [15]. In our experiments for
socially fair k-means and k-medians, we use PCA to get the best k dimensional
approximation of the data. All the algorithms are initialized with the same set of
centers in all experiments. All choices of hyperparameters have been made after
much experimentation, and these choices appear in the caption of the Figures
for specific datasets.

Table 1. Datasets

Dataset #samples #attr. Sensitive feature Groups

Credit [41] 30000 23 Education Higher, Lower

Adult Income [13] 48842 104 Gender Male, Female

Race Amer-Indian-Eskim, Asian-Pac-Islander, Black, White, Other

Bank [31] 41188 63 Age � 25, 25–60, � 60

German Credit [13] 1000 51 Age � 25, 25–60, � 60

Skillcraft [38] 3340 20 Age < 21, � 21

6.1 Socially Fair K-Means

Before proceeding to the experimental observations, consider the following.

Lemma 1 (Lemma 2.1 in [25]). Let X be a set of n points in R
d belonging to

� groups X1, · · · ,X� ⊆ X. Given a partition P(X, k) = (P1(X), · · · , Pk(X)), let
Xij denote Pi(X)∩Xj. Given a set of centers C = (c1, · · · , ck), ∀i ∈ [k], j ∈ [�],
∑

x∈Xij
‖x − ci‖2 =

∑

x∈Xij
‖x − μij‖2 + |Xij | · ‖μij − ci‖2, where μij is the

centroid of the set Xij.

Due to Lemma 1 we get a very small “exact” representation (or, a 0-coreset) for
k-means clustering to use in Algorithm 2, as follows. We add to the coreset S,
the mean μij of the points in Xij with weight |Xij |, for all i ∈ [k] and j ∈ [�].
This gives us a coreset of size k�.

For the experimental analysis of socially fair k-means clustering, we run Algo-
rithm 2 (with the coreset defined above) along with the baselines on the Adult
Income, Credit and Bank datasets. We perform experiments both with and with-
out the PCA pre-processing. We run the algorithms for 50 different initializa-
tions. Algorithm 2 is run for 20 iterations while the baselines are run for 100
iterations each.
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Fig. 1. All algorithms are run on 50 different initializations; ALGO2 is run for 20
iterations, and Fair-Lloyd and Lloyd are run for 100 iterations. For ALGO2, coreset
construction uses 5 samples of size M = 100 for each Pij . The plots show mean and
standard deviation of the socially fair clustering cost (woPCA = without PCA, wPCA
= with PCA, ALGO2 = Algorithm 2).

Baselines and Comparison. We compare our results with (i) Fair-Lloyd [15]
for socially fair k means clustering. This is a Lloyd-like heuristic algorithm that
performs well for practical purposes. (ii) In our results we also show the socially
fair clustering cost obtained by the unconstrained Lloyd’s algorithm. To the
best of our knowledge, there are no implementations of the other socially fair
clustering algorithms available for public use. As established in [15], different
groups incur very different costs with Lloyd’s algorithm (see Fig. 1). On the
Credit (Education) dataset, both Fair-Lloyd and Algorithm 2 incur almost equal
socially fair k means cost. In the multi-group case, such as Adult Income (Race)
and Bank (Age), Algorithm 2 outperforms Fair-Lloyd. These observations are
consistent with or without PCA preprocessing of the data. In all the experiments
in Fig. 1 both Fair-Lloyd and Algorithm 2 incur much less fair-cost compared
to Lloyd. Due to paucity of space, we refer the reader to the full version of the
paper [17] for the group-wise costs plots.

6.2 Socially Fair Subspace Approximation

For experiments on the socially fair linear subspace clustering problem, we con-
sider the socially fair variant of the well studied subspace approximation prob-
lem, which is equivalent to the socially fair (q, 1, 2) linear subspace clustering
problem, as defined. We run Algorithm 2 along with the baseline on the Adult
(Gender) dataset for the two groups case. We also run experiments on the Adult
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Fig. 2. For ALGO2, coreset construction uses 20 samples of size M = 500 for each
group. Plots show the average group wise cost incurred. J on x-axis represents dimen-
sion of the linear subspace.

(Race) and Bank (Age) datasets for the multigroups case. Since there is only
one subspace (one cluster), the algorithms neither have to be run for multiple
iterations nor do we have to consider multiple initializations.

Baselines and Comparison. As a baseline, we run the unconstrained PCA
algorithm. To the best of our knowledge, there is no implementation of a socially
fair linear subspace clustering available. Both Algorithm 2 and PCA perform
almost equally good on the Adult Income dataset (Gender) in terms of fair-cost
(see Fig. 2). However, we observe that for more than two groups (Adult Income
(Race) and Bank (Age)), Algorithm 2 outperforms PCA significantly in terms
of fair-cost and achieves almost equal group-wise costs as the dimension of the
subspace increases.

6.3 Experiments for Socially Fair K-Medians

For the socially fair k-medians experiments, we use the German Credit (Age)
and Skillcraft (Age) datasets (Fig. 3). Both algorithms are initialized with the
same set of centers and run on 10 different initializations for 20 iterations. We
consider both cases of with and without PCA pre-processing.

Fig. 3. Both ALGO2 and KMedoids are run on 10 different initializations for 20 itera-
tions. For ALGO2, coreset construction uses 5 samples of size M = 20 for each Pij . The
plots show mean and standard deviation of the socially fair clustering cost (woPCA =
without PCA, wPCA = with PCA, ALGO2 = Algorithm 2).
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Baselines and Comparison. We compare our results with (i) FasterPAM [37],
a fast and practical k-Medoids based algorithm. (ii) We consider the socially fair
k-medians cost obtained by the unconstrained FasterPAM algorithm. Although
FasterPAM is time-efficient, it is space-inefficient. Hence, we run experiments on
datasets with relatively smaller number of data points. The baseline k-medoids
based algorithm incurs very different costs for different groups. Further, the fair-
cost obtained by the k-medoids algorithm is much higher compared to that of
Algorithm 2 (see Fig. 3). Algorithm 2 achieves almost equal costs for different
groups in all experiments.

7 Conclusion

Clustering using center-based objectives and subspaces on large image, text,
financial and scientific data sets has a wide range of applications. In order to
alleviate harms to different demographic groups arising from inequitable cluster-
ing costs across different groups, we study the objective of socially fair clustering.
We develop a unified framework to solve socially fair center-based clustering and
linear subspace clustering problems, and propose practical and efficient approxi-
mation algorithms for them. Our algorithms either closely match or outperform
the state-of-the-art baselines on standard real-world data sets in fairness liter-
ature. When p and the number of groups l are constants, an interesting open
problem is to find the optimal approximation algorithms for socially fair center-
based �p-norm clustering objectives and affine subspace clustering objectives
with running time polynomial in k, n, and d.
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Abstract. Finding (bi-)clusters in bipartite graphs is a popular data
analysis approach. Analysts typically want to visualize the clusters,
which is simple as long as the clusters are disjoint. However, many mod-
ern algorithms find overlapping clusters, making visualization more com-
plicated. In this paper, we study the problem of visualizing a given clus-
tering of overlapping clusters in bipartite graphs and the related problem
of visualizing Boolean Matrix Factorizations. We conceptualize three dif-
ferent objectives that any good visualization should satisfy: (1) proximity
of cluster elements, (2) large consecutive areas of elements from the same
cluster, and (3) large uninterrupted areas in the visualization, regardless
of the cluster membership. We provide objective functions that capture
these goals and algorithms that optimize these objective functions. Inter-
estingly, in experiments on real-world datasets, we find that the best
trade-off between these competing goals is achieved by a novel heuris-
tic, which locally aims to place rows and columns with similar cluster
membership next to each other.

Keywords: Visualization · Biclustering · Boolean Matrix
Factorization

1 Introduction

Finding biclusters in bipartite graphs has been studied for several decades [10,30]
and it is closely related to other problems, such as co-clustering [5] and Boolean
Matrix Factorization [16]. While the goal of classic methods is to find mutually
disjoint biclusters, i.e., each vertex appears in at most one bicluster, modern
methods allow for overlap: vertices can appear in multiple clusters [12,15–17,20].

To assess the outputs of biclustering algorithms, it can be helpful to visualize
their outputs. If all clusters are disjoint, one can plot the biclusters one after
another in an arbitrary order. If clusters overlap, the visualization task becomes
more difficult [28]: it might not be possible to draw all biclusters as consecutive
rectangles, as is the case in Fig. 2c, forcing the visualization to choose which
clusters to split up.
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Fig. 1. Visualization of the same biclustering using ADVISER [4] (top) and our TSP-
based heuristic (bottom). The pictures at the bottom contain larger uninterrupted
areas, which makes it easier to assess the structure in the data. (Color figure online)

This problem was studied in earlier work [4,13], with the main goal of opti-
mizing the proximity of elements that belong to the same bicluster. However,
this notion has drawbacks as biclusters which are similar in one dimension but
non-overlapping in another are not incentivized to be visualized close to another.
This leads to suboptimal visualizations for some biclusterings, as shown in Fig. 1.

In this paper, we revisit the problem of visualizing given biclusterings. Rather
than just looking at the proximity of elements from the same bicluster, we iden-
tify three different aspects of good visualizations: (1) Proximity of elements from
the same bicluster. (2) Large consecutive areas of elements from the same biclus-
ter. (3) Large uninterrupted areas in the visualization, regardless of the bicluster
membership. For each of these three different aspects, we provide novel objective
functions that allow us to formally capture these intuitions. Especially Aspect (3)
will help us to bypass the limitations from the approaches in [4,13].

We also present several algorithms to optimize our objective functions. As
optimizing them directly is expensive in terms of time and difficult in terms of
quality, we present a novel heuristic which is based on the concept of demerit,
which penalizes visualizations that place rows and columns close to each other
when they belong to different biclusters. We present experiments on real-world
datasets which show that this heuristic can be computed efficiently and that
it provides a very good tradeoff between the three objective functions, outper-
forming the method from Colantonio et al. [4]. In our experiments we focus on
medium-sized datasets, since visualizing large bipartite graphs requires different
methods [23].

Additionally, we introduce a novel post-processing step, which automatically
finds unclustered rows and columns that have high similarity with the provided
biclusters. We believe that this will enable domain experts to efficiently find
structures that might have been missed by the original biclustering algorithm.
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We make our code1 and plots2 for all datasets available on GitHub. We note
that, even though previous works studied the question of visualizing overlapping
biclusterings, none of these works has its code available online. Due to lack of
space, we present pseudocode and additional experiments in the full version of
our paper, which is available on arxiv.

Related Work. Computing biclusterings of bipartite graphs is a classic problem
that has been studied at least since the 1970s [10] and it is related to several other
problems, such as bipartite graph partitioning [30], hypergraph partitioning [1],
bipartite stochastic block models [20] and co-clustering [5]. It is also known that
Boolean Matrix Factorization, which has been a popular problem in the data
mining community [11,14,16], is closely related [17].

Colantonio et al. [4] studied the visualization of a given set of overlapping
biclusters as a biadjacency matrix. They introduced an objective function, which
optimizes the proximity of the rows and columns that are contained in biclus-
ters and which simultaneously tries to minimize gaps in the visualization of each
bicluster. They also proposed a greedy heuristic called ADVISER for optimiz-
ing this objective function. They experimentally showed that their approach is
superior to the approach by Jin et al. [13], which only considers the perimeter
of the visualized biclusters. The main drawback of the approach in [4] is that
biclusters which are highly similar in one dimension but are non-overlapping in
another (e.g., they have overlapping column clusters but non-overlapping row
clusters) are not incentivized to be visualized close to another.

Classic seriation methods [2,29] that visualize biadjacency matrices are
related to our work, but they do not support visualizing a given input bicluster-
ing. Leaf-ordering methods that visualize dendrograms, e.g., [25], can visualize a
given hierarchical clustering, but biclustering algorithms do not report a hierar-
chy of the biclusters and thus these methods are not applicable. The BiVoC algo-
rithm [9] is also related, but its visualization repeats rows and columns, which we
do not permit here because visualizations with many repetitions quickly become
unclear.

We use biadjacency matrices to visualize biclusterings. Alternatives include
edge bundlings [26,27] or anchored-maps [18]. Our algorithms are completely
unsupervised, but semi-supervised methods [29] exist.

2 Preliminaries

Let G = (R∪C,E) be an unweighted, undirected bipartite graph and set m = |R|
and n = |C|. We assume that R = [m] and C = [n], where [k] := {1, . . . , k}. A
biclustering ((R1, C1), . . . , (Rk, Ck)) of G is a set of biclusters (Ri, Ci), where
Ri ⊆ R and Ci ⊆ C for all i. Note that this is a very general definition of
biclustering: we do not assume that the clusters Ri are mutually disjoint or that⋃

i Ri = R, and neither do we make these assumptions for the Ci. Two biclusters
(Ri, Ci) and (Rj , Cj) overlap if Ri ∩ Rj �= ∅ and Ci ∩ Cj �= ∅.
1 https://github.com/tmarette/biclusterVisualization.
2 https://github.com/tmarette/VisualizingOverlappingBiclusteringsAndBMF-plots.

https://github.com/tmarette/biclusterVisualization
https://github.com/tmarette/VisualizingOverlappingBiclusteringsAndBMF-plots
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Visualization. We visualize G using its m × n biadjacency matrix A ∈
{0, 1}m×n. Note that the vertices in R correspond to the rows of A and the
vertices in C correspond to the columns of A. Thus, we will often refer to the
clusters Ri as the row clusters and to the clusters Ci as the column clusters.
When plotting A, we use bright tiles for 1-entries and dark tiles for 0-entries.

To visualize A, our goal is to find permutations πR : [m] → [m] and
πC : [n] → [n] of the rows and columns of the biadjacency matrix, respectively.
Each element r ∈ R (c ∈ C) is visualized in the πR(r)’th row (πC(c)’th column)
of the biadjacency matrix, i.e., we set Aπ(r),π(c) = 1 iff (r, c) ∈ E.

Throughout the paper we study the following problem. Given a bipartite
graph G = (R ∪ C,E) and a biclustering ((R1, C1), . . . , (Rk, Ck)), find permuta-
tions πR : [m] → [m] and πC : [n] → [n] of the rows and columns that optimize
an objective function, which encodes how well the biclustering is visualized.

Notation. Let X be a set of integers and π a permutation. We write π(X) =
{π(x) : x ∈ X} to denote X under the permutation π. We write cons(X) to
denote the partition of X into maximal disjoint sets of consecutive integers. For
instance, if X = {1, 2, 5} then cons(X) = {{1, 2}, {5}}. Note that if Ri is a set of
rows and πR is the row permutation, then πR(Ri) is the set of rows in which the
elements of Ri are visualized; the sets of consecutive rows (columns) in which
elements from Ri (Ci) are visualized is given by cons(πR(Ri)) (cons(πC(Ci))).

Finally, for our algorithms it will be convenient to operate on row and col-
umn blocks. For brevity, we only give the definition for row blocks. The row
blocks partition the sets of rows, and they are defined such that each cluster
can be expressed as the union of a set of blocks. More formally, for r ∈ [m]
we let clustersR(r) = {i : r ∈ Ri} denote the set of indices of all row clus-
ters that contain row r. Now, the row block of r is given by blockR(r) = {r′ :
clustersR(r) = clustersR(r′)}, i.e., it is the set of all rows r′ that are contained
in exactly the same row clusters as r. Next, the set of row blocks is given by
BR = {blockR(r) : r ∈ R}; see Fig. 3 for an example. Given a row block b ∈ BR

it will be convenient for us to write clustersR(b) to denote the row clusters in
which b is contained, i.e., clustersR(b) = clustersR(r) for all r ∈ b. For column
blocks, we define clustersC(c), blockC(c) and BC in the same way.

Visualizing Weighted and Directed Graphs. The algorithm we propose
in this paper is tailored to visualize unweighted bipartite graphs, through their
Boolean biadjacency matrix A. We note that since in general A is asymmetric,
our algorithms can also be used to visualize the adjacency matrix of directed
graphs (note that in this case the set of row and column clusters will be the
identical). It is also possible to use our algorithm to visualize weighted graphs;
however, in this case one has to make adjustments to the coloring scheme to
visualize the different weights (here, we focus on the Boolean case in which we
never need more than six colors).
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Fig. 2. Visualizations of biclusters for each of our objective functions. For each of
them, the right visualization is preferable. Every color represents a different bicluster,
except for purple which represents 0-elements. Observe that in Fig. c, no matter how
we arrange the columns, one of the three biclusters must always be visualized with
non-consecutive columns. (Color figure online)

3 Visualization Objectives

In this section, we introduce our objective functions that measure different
aspects of how well a biclustering is visualized.

Recall that biclusters represent pairs of elements that relate to each other. An
ideal depiction of a single bicluster (Ri, Ci) consists of a single large consecutive
rectangle in the visualized matrix. More formally, we would like to have that
|cons(πR(Ri))| = 1 and |cons(πC(Ci))| = 1. However, when the row or column
clusters of a biclustering overlap, obtaining a visualization which simultaneously
presents all biclusters ideally is not possible (see, e.g., Fig. 2c). Thus, we have to
define criteria that enable us to compare non-ideal depictions of biclusters.

Informally, the three criteria that we study are as follows:

1. Proximity: All rows and columns of each bicluster should be close to each
other, as shown in Fig. 2a.

2. Size of the consecutive cluster areas: The rows and columns of each
bicluster should form large consecutive areas, as shown in Fig. 2b.

3. Size of uninterrupted areas: Areas that belong to (possibly different)
biclusters should form large uninterrupted areas, as shown in Fig. 2c. Unlike
the previous objectives, this objective is global, i.e., it is not limited to indi-
vidual biclusters.

The formal definitions follow below. Note that even though the first and
second criteria look similar at first, they are different: even when a bicluster is
visualized with low proximity, it may still consist of several non-consecutive areas.
Furthermore, the third criterion is particularly important when dealing with
non-overlapping biclusterings; it will be useful, for instance, when visualizing
biclusterings that have non-overlapping row clusters but overlapping column
clusters, which is not captured by the previous two definitions. Previous work
focused on proximity [4,13] and also implicitly the consecutive area [4].

Next, we formally present three different objective functions, one for each
criterion. Having different objective functions, instead of a single combined one,
allows a more fine-grained evaluation of the visualizations.



748 T. Marette et al.

Fig. 3. Examples of how the concepts translate to the visualization. We assume
πR = idR and πC = idC . Purple colored tiles are 0-elements, and identically col-
ored tiles belong to the same bicluster. On the left, cons(πR(R1)) = {{1, 2}, {5}}
and cons(πC(C1)) = {{2, 3, 4}}. The convex hull of the cluster is shown in red and
Sprox(πR, πC) = 15. On the right, four biclusters are visualized with different color and
nonzero(bC

2 , πR) = {1, 2, 3, 5} and nonzero(bC
3 , πR) = {2, 3, 4, 5}. (Color figure online)

Proximity. Our first objective function measures proximity. As stated above,
our intuition is that for each bicluster, all of its rows and columns should be
close to each other. To capture this intuition, we want to visualize the biclusters
so that the convex hull of rows and columns that belong to the bicluster is small.

Consider permutations πR and πC and a bicluster (Ri, Ci). The size of the
convex hull of (Ri, Ci) in the biadjacency matrix A is given by

Sprox((Ri, Ci), (πR, πC))
= [max{πR(Ri)} − min{πR(Ri)} + 1] · [max{πC(Ci)} − min{πC(Ci)} + 1].

(1)

Observe that for a single bicluster (Ri, Ci) this quantity is minimized when
it is visualized as a single consecutive rectangle, i.e., |cons(πR(Ri))| = 1 and
|cons(πC(Ci))| = 1. See also Fig. 3.

For all k biclusters, our objective function for minimizing the proximity is

fprox(πR, πC) =
k∑

i=1

Sprox((Ri, Ci), (πR, πC)). (2)

Size of the Consecutive Cluster Areas. Next, we consider the aspect that
the rows and columns of the same bicluster should form large consecutive areas.

First observe that when we visualize a bicluster (Ri, Ci) under permutations
πR and πC , then the consecutive areas are given by cons(πR(Ri))×cons(πC(Ci)).
For instance, if cons(πR(Ri)) = {{1, 2}, {5}} and cons(πC(Ci)) = {{3}, {7}},
then the consecutive areas are {{(1, 3), (2, 3)}, {(5, 3)}, {(1, 7), (2, 7)}, {(5, 7)}}.

Given this observation, we define the score SclArea((Ri, Ci), (πR, πC)) for a
single bicluster (Ri, Ci) under the permutations πR and πC as follows:

SclArea((Ri, Ci), (πR, πC)) =
∑

(X,Y )∈cons(πR(Ri))×cons(πC(Ci))

|X × Y |2. (3)
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In this score, we sum over the squared areas of the induced submatrices. Note
that maximizing this score incentivizes layouts with larger consecutive areas. In
particular, SclArea((Ri, Ci), (πR, πC)) is maximized iff the bicluster (Ri, Ci) is
visualized as a single connected component, i.e., when the rows and columns
in πR(Ri) and πC(Ci) are consecutive. Also observe that if in the score we
summed over |X ×Y | instead of |X ×Y |2, the sum would be independent of the
permutations and always equal to |Ri × Ci|; this is why we sum over |X × Y |2.

The corresponding global objective function is:

fclArea(πR, πC) =
k∑

i=1

SclArea((Ri, Ci), (πR, πC)). (4)

Size of Uninterrupted Areas. Lastly, we introduce an objective function
which incentivizes that areas that belong to (possibly different) biclusters should
form large uninterrupted areas. This is for useful for visualizing biclusters that
are similar but non-overlapping, e.g., because they have disjoint row clusters but
highly similar column clusters.

Recall that BR = {bR
1 , . . . , bR

s } and BC = {bC
1 , . . . , bC

t } are the row and
column blocks, respectively. Since splitting up elements of blocks would only
be detrimental to our visualizations, we henceforth assume that the elements
from all row and column blocks are consecutive in our permutations, i.e.,
|cons(πR(bR

i ))| = 1 and |cons(πC(bC
j ))| = 1 for all i and j.

Now consider a row block bR
i and the submatrix A[πR(bR

i ), :] which it
induces. Observe that in this submatrix, column πC(c) is contained in a biclus-
ter if c ∈ bC

j and clustersR(bR
i ) ∩ clustersC(bC

j ) �= ∅, i.e., if c is from a col-
umn block bC

j which co-occurs in a bicluster together with a row block bR
i .

Similarly, if c ∈ bR
j for j with clustersR(bR

i ) ∩ clustersC(bC
j ) = ∅ then col-

umn πC(c) is not contained in a bicluster. Thus, the set of all columns in
A[πR(bR

i ), :] which are contained a bicluster after applying the permutation πC

is nonzero(bR
i , πC) :=

⋃
j : clustersR(bRi )∩clustersC(bCj ) �=∅ πC(bC

j ). See Fig. 3 for an
example. Thus, the size of the uninterrupted area of columns in biclusters in
A[πR(bR

i ), :] is given by

SR
uninter(b

R
i , πC) =

∑

Y ∈cons(nonzero(bRi ,πC))

|bR
i × Y |2. (5)

Notice the similarity of (5) and (3) above. The main difference is that in (3)
we sum over the areas induced by the biclusters, whereas here we sum over the
area induced by columns inside biclusters, regardless of bicluster membership.
This is beneficial since when row block bR

i co-occurs with column block bC
j1

and
with column block bC

j2
, then this definition incentivizes to place the column blocks

bC
j1

and bC
j2

next to each other, even though they might not share a bicluster (i.e.,
even when clustersC(bC

j1
) ∩ clustersC(bC

j2
) = ∅), which is not covered by (3).

Similar to above, we also want to measure the area of consecu-
tive rows that appear in a bicluster in a submatrix A[:, πC(bC

j )] that is
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induced by a fixed column cluster bC
j . We thus define nonzero(bC

j , πR)
=

⋃
i : clustersR(bRi )∩clustersC(bCj ) �=∅ πR(bR

i ) and set SC
uninter(b

C
j , πR) =

∑
X∈cons(nonzero(bRj ,πR))|X × bC

j |2.
Now our overall objective function becomes:

funinter(πR, πC) =
s∑

i=1

SR
uninter(b

R
i , πC) +

t∑

j=1

SC
uninter(b

C
j , πR). (6)

4 Algorithms

In this section, we describe our algorithms to obtain the permutations πR : [m] →
[m] and πC : [n] → [n] that optimize our objective functions.

For better efficiency, we focus on finding permutations in which the rows of
row blocks are always consecutive (and the same holds for the columns of column
blocks). Observe that this assumption is without loss of generality, i.e., splitting
the elements of a row or column block into multiple consecutive parts will never
improve the objective functions we study.

Thus, suppose that we have row blocks bR
1 , . . . , bR

s ⊆ [m]. Then our new goal
is to find a row block permutation σ : [s] → [s] that optimizes our objective
functions.3 This will be more efficient since in practice s 	 m. The same can be
done for finding a column block permutation.

We present the pseudocode of our algorithms in the full paper.

4.1 Greedy Algorithms

We start by considering a simple greedy algorithm for optimizing the three objec-
tive functions from Sect. 3. Our algorithm starts by sorting the row and column
blocks based on their importance. Here, the importance score of a block b is the
sum of the area of the biclusters b belongs to, i.e.,

∑
i∈clusters(b)|Ri × Ci|. The

idea is that blocks which are involved in large clusters are treated first and thus
have priority when picking their position.

The greedy algorithm computes the row and column block permutations
σR and σC simultaneously. Initially, they are set to the empty permutations
σR ← ∅ and σC ← ∅ without any elements. Now the greedy algorithm proceeds in
iterations until all row and column blocks have been assigned to the permutations.
In iteration j, we add the row (column) block b with j’th highest importance
to σR (σC). To pick the position of b, we iterate over i = 1, . . . , j and consider
the permutation σR with b added in the i’th position. Then we insert b in the
position i∗ that achieved the best objective function value.
3 Note that we can turn the row block permutation σ into a row permutation

πR : [m] → [m] as follows: For each i ∈ [s], we fix an arbitrary order of the ele-
ments in bR

i . Now we create a list L by iterating over i ∈ [s] and adding the elements
in bR

σ(i) one after another to L. If element r is at the p’th position in L, then we set
πR(r) = p.
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We note that while building the permutations above, they only map to the
subset of the rows and columns that are contained in the row and column blocks
that were assigned to the permutations. Therefore, to compute the objective
function values, we only consider rows and columns that are contained in blocks
that were already added to the permutations.

4.2 Demerit-Based Algorithms

In practice, the greedy algorithm can be inefficient as it recomputes the objec-
tive functions several times during each iteration and each such recomputation
requires a global pass over all clusters and blocks.

To remedy this problem, next we introduce the notion of demerit, which can
be optimized locally and which acts as a penalty function for placing dissimilar
blocks next to each other. Formally, the demerit for row block bR and column
blocks bC

i and bC
j is given by:

demerit(bR; bC
i , bC

j ) =

{
|bR| · (|c1 ∪ c2| + 1) if c1 = ∅ or c2 = ∅,

|bR| · (|c1 ∪ c2| − |c1 ∩ c2|) otherwise,

where c1 = clustersR(bR)∩clustersC(bC
i ) and c2 = clustersR(bR)∩clustersC(bC

j ).
Observe that the demerit is a penalty term that measures the size of the row
block bR and how dissimilar the blocks bC

i and bC
j are in terms of their cluster

membership, i.e., it counts the number of clusters which contain row block bR

but only exactly one of bC
i and bC

j .
To measure the demerit of the column block permutation σC , we set

demerit(σC) =
∑

bR∈BR

t−1∑

i=1

demerit(bR; bC
σC(i), b

C
σC(i+1)),

where t is the number of column blocks. This is the overall penalty incurred
across all row blocks for column blocks that are placed next to each other. Opti-
mizing this objective function should be somewhat simpler than the previous
ones, because we only have to consider consecutive pairs of column blocks bC

σC(i)

and bC
σC(i+1), which can be checked locally. This is in contrast to our previous

objective functions, which have to globally take into account all blocks that
belong to a single bicluster (proximity and consecutive cluster area) or all blocks
that appear consecutively (uninterrupted area).

Next, we introduce algorithms for minimizing the demerit, where we assume
that we have a fixed row block permutation σR and we wish to compute an
improved ordering of the column blocks σC . The same procedure can be used
for fixed σC and for finding σR with small demerit.

TSP Heuristic. We first consider a TSP (traveling salesperson) heuristic
to find a permutation σC that minimizes the demerit. First, we construct a
complete graph containing all column blocks bC ∈ BC as nodes. For two
column blocks bC

i and bC
j , we set the weight of the corresponding edge to
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wi,j =
∑

bR∈BR demerit(bR; bC
i , bC

j ) which corresponds to the demerit of plac-
ing bC

i and bC
j next to each other. This is a complete graph, i.e., there are edges

for all pairs of column blocks. Then we use a TSP solver to find a TSP tour in
the corresponding graph, which is given by a cycle (bC

i1
, . . . , bC

it
) that visits every

vertex exactly once. This corresponds to a column block permutation σC . Since
the objective of TSP is to minimize the cost of the cycle, this corresponds to
minimizing the demerit. Note that for defining σC , we can start with any of the
blocks from the cycle, i.e., we can set σC(1) = bC

ij
for any j and then proceed in

the order of the cycle. To obtain the best results in practice, we pick the value j
which maximizes the cluster area (4).

Greedy Demerit Algorithm. We also consider a greedy algorithm which
orders the blocks by their importance score and inserts them one by one. When
inserting a block, it tries out all possible positions and picks the one which
minimizes the total demerit. See the full version of the paper for details.

4.3 Post-processing: Suggesting Unclustered Rows and Columns

Finally, we present a post-processing scheme that finds unclustered rows and
columns that have high similarity with existing biclusters. This will enable
domain experts to easily identify structures which might have been missed by
the biclustering algorithm. We describe our post-processing scheme for finding
unclustered rows whose 1-entries have high similarity to existing column clusters;
it can also be used for finding columns that are similar to existing row clusters.

We say that a row r is unclustered if it is not contained in any row cluster,
i.e., if r �∈ ⋃

i Ri, and we write R̄ to denote the set of unclustered rows. For
r ∈ R̄, we write nonzero(r) = {c ∈ C : Arc = 1} to denote the columns of
all 1-entries in r. Now the similarity of r and a column cluster Ci is given
by similarity(r, Ci) = |Ci|−1|nonzero(r) ∩ Ci|, i.e., it measures the fraction of
elements from Ci that also appear in nonzero(r). Furthermore, the density of
a bicluster (Ri, Ci) is density(Ri, Ci) = (|Ri| · |Ci|)−1

∑
r∈Ri,c∈Ci

Ar,c, i.e., it is
the average number of non-zero entries in the submatrix induced by Ri × Ci.

Now our idea is to create biclusters (R̄i, Ci), which consist of unclustered
rows R̄i and “original” column clusters Ci. Here, we assign a row r ∈ R̄ to R̄i if
similarity(r, Ci) ≥ density(Ri, Ci)/2. This encodes the intuition that the rows in
R̄i are allowed to be slightly sparser than those in the original bicluster (Ri, Ci);
for a domain expert it might be interesting to inspect them because the original
biclustering algorithm might have “missed” them.

In the visualization, these new biclusters have a special place. The original
biclusters (Ri, Ci) are situated in the middle of the figure. Then, adjacent to
that central part, the new biclusters (R̄i, Ci) and (Ri, C̄i) are added, and then
the remaining unclustered rows and columns follow.

5 Experiments

We implemented our algorithms in Python and we practically evaluate them on
real-world datasets. The source code (see Footnote 1) and the plots (see Footnote
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2) of all biclusterings are available on GitHub. The experiments were performed
on a 40-core Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

The datasets we used are listed in Table 1, where we focused on small- to
medium-sized datasets since visualizing very large datasets requires other tech-
niques [23]. We note that for 20news and movieLens we only considered the
top-500 densest rows and columns to reduce the size of the datasets.

Table 1. Datasets used in the experiments
dataset rows columns density ref.

20news 500 500 0.221 [24]

americas_large 3485 10127 0.005 [19]

americas_small 3477 1687 0.018 [19]

apj 2044 1164 0.003 [19]

dialect 1334 506 0.161 [6,7]

domino 79 231 0.040 [19]

fire1 365 709 0.123 [19]

fire2 325 709 0.158 [19]

healthcare 46 46 0.702 [19]

movieLens 500 500 0.550 [21]

Mushroom (sample) 250 117 0.368 [13]

paleo 124 139 0.115 [8]

To obtain our biclusterings, we
used the PCV algorithm [20], which
returns non-overlapping row clus-
ters but overlapping column clus-
ters, and the basso algorithm [16],
which returns overlapping row and
column clusters. Both algorithms
have a parameter k that deter-
mines the number of clusters and
we report the choice of k for each
experiment.

In some of our visualizations,
we use a 6-color system to convey
more information (e.g., Fig. 1, 5a
and 5c). Each of the colors is asso-
ciated with a distinct category of
data in the visualization: clustered
elements appear in green, unclus-
tered elements that were picked in our post-processing step (Sect. 4.3) are red,
and all remaining unclustered elements are blue. The dark tones of each color
correspond to 1-entries in the original matrix.4 This allows us to assert whether
or not an element belongs to the biclustering and/or to the original data, and it
further allows to assess the density of the clustered (and non-clustered) areas.

In our experiments, we consider four greedy algorithms for optimizing the
objective functions, denoting them greedyProximity, greedyConsecutiveCluster-
sArea, greedyUninterruptedArea, greedyDemerit. Our TSP-based algorithm is
denoted TSPheuristic and to solve TSP we use a solver from Google OR tools [22].
We compare them against the state-of-the-art method ADVISER [4]. Since there
was no code available for ADVISER, we implemented our own version of it, avail-
able with our software.

Qualitative Evaluation. We start with the qualitative evaluation of the algo-
rithms. Our findings in this section are twofold: our TSPheuristic provides better
visualizations than ADVISER [4] and our objective functions indeed measure the
aspects of the visualizations which they are supposed to measure.

4 We picked the colors using color brewer [3], so that the core set of colors (excluding
the post-processing step) is colorblind safe and print friendly. As there is no 6-colors
set that is colorblind safe, the final set of colors only retains the print friendly
property.
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First, let us briefly argue about the merit of visualizing biclusterings. In
Fig. 4a, we present visualizations of Fire1 without any ordering and the visual-
ization created using TSPheuristic. The unordered dataset hints that some rows
and columns seem related. After using basso for biclustering with k = 5 and
reordering the data with TSPheuristic, we can easily see the relation between
rows and columns, as well as notice sparser areas inside the biclusters.

Fig. 4. (a): Visualization of Fire1 without any reordering (top) and after reordering
using TSPheuristic (bottom). (b): Visualization of movieLens using ADVISER. The
result is colored using plain 0/1 entries (left) and our color scheme (right). (Color
figure online)

Next, we consider biclusterings obtained from PCV, which returns non-
overlapping row clusters but overlapping column clusters. Figures 1a and 1b
depict visualizations of dialect and paleo using ADVISER and TSPheuristic.
Since ADVISER’s objective function does not take into account uninterrupted
areas, its visualization is much less coherent than the one by TSPheuristic.
The uninterrupted areas objective function captures this aspect well, where
TSPheuristic obtains an 18.9% higher score on dialect and a 7% higher score
on paleo.

Now we consider basso’s more complex biclusterings for 20news with k = 11,
which contains overlapping row and column clusters. In this case, TSPheuristic
is more resilient than ADVISER w.r.t. the proximity of the bicluster elements.
In Figs. 5a and 5c, we show the convex hulls of the same bicluster in red. One can
see that the representation of the cluster is more compact in the visualization
generated from TSPheuristic, compared to ADVISER. This also translates to
the proximity objective function, where TSPheuristic achieves a proximity score
that is 30.8% lower than that of ADVISER (note that optimizing the proximity
is a minimization problem).

Next, let us consider the uninterrupted areas that are generated by the algo-
rithms. In Figs. 5b and 5d, the respective biclusters have a similar proximity
score (269 125 and 253 400), but the visualization proposed by greedyDemerit is
nicer, as all the clusters are drawn as one consecutive block. This is also high-
lighted by the objective function value for uninterrupted bicluster area, which is
26.4% higher for greedyDemerit.
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Finally, we highlight the usefulness of our coloring scheme and our post-
processing step from Sect. 4.3 in Fig. 4b. The coloring scheme highlights the very
dense areas that basso selected as biclusters in green. Then our post-processing
scheme clearly indicates that the remaining unclustered rows and columns con-
tain areas similar to the original clusters, but of slightly lower density, which
could be worth considering when manually inspecting the clusters. We note that
the dense area in the bottom right of the plot is not marked in red, since the
corresponding submatrix was not considered as part of the bicluster by basso;
we decided not to consider such areas in our post-processing step.

Fig. 5. Visualizations (a) and (c) represent 20news. The red boxes denote the convex
hull of the same cluster in both visualizations. The biclustering was obtained using
basso with k = 11. Visualizations (b) and (d) represent Fire1. The biclustering was
obtained using basso with k = 10. (Color figure online)

Quantitative Evaluation. For the quantitative validation, we run basso and
PCV on all datasets from Table 1 with k = 6, 10, 14, . . . , 54 to obtain biclus-
terings. We run all visualization algorithms for each of these biclusterings and
compute our objective function values from Sects. 3 and 4.2. We also compute the
objective function visualisationCost from ADVISER [4]. All plots are available
online (see Footnote 2).

To obtain comparability across different datasets and different biclusterings,
we use normalization: For each dataset and a fixed biclustering, we report the
ratio rf

A = f(A)−averageRandomScore
maxA′∈A(f(A′))−averageRandomScore , where A is the visualization algo-

rithm we consider, f(A) is the objective function value obtained by A and A
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is the set of all visualization algorithms. We subtract the averageRandomScore
which denotes the average objective function of five random permutations; this
is motivated by the fact that even the worst possible visualization will achieve
non-negligible scores in our objective functions since typically their values are
lower bounded by the squares of the block sizes. Note that if rf

A = 1, A achieved
the best objective function value among all algorithms we compare.

Fig. 6. Aggregated ratio values, grouped by the clustering algorithm used. The reported
numbers are averages over all datasets and all k, error bars are the variances of the
ratio values.

We report our experimental results in Fig. 6, where Fig. 6a presents the results
on biclusterings that were generated by PCV and Fig. 6b presents the results on
biclusterings that were generated by basso. We observe that TSPheuristic per-
forms well across all objective functions, even though on the consecutiveCluster-
Area it is slightly outperformed by ADVISER. Notably, TSPheuristic performs
significantly better for the uninterrupted area score compared to ADVISER,
especially for the biclusterings that were computed by PCV; this corroborates
our findings from the qualitative evaluation. We note that among the greedy algo-
rithms, greedyDemerit is the best, which further underscores that using demerit
to guide visualizations is a good idea. Furthermore, on both sets of experiments,
TSPheuristic outperforms ADVISER on the visualisationCost objective function
which is being optimized by ADVISER. We conclude that TSPheuristic provides
the best tradeoff across the different datasets and objective functions.

We present the running times of the algorithms in the full paper.

6 Conclusion

We studied the visualization of overlapping biclusterings and identified three
different aspects that good visualizations should satisfy: proximity of cluster
elements, large consecutive areas consisting of cluster elements, and large unin-
terrupted areas of clusters. We provided objective functions that capture these
goals and showed experimentally that the best trade-off between these compet-
ing aspects is achieved by optimizing the demerit, which aims to place rows and
columns with similar cluster membership next to each other.
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