
GraphMixup: Improving Class-Imbalanced Node Classification on
Graphs by Self-supervised Context Prediction

Lirong Wu 1,2,3, Haitao Lin1,2, Zhangyang Gao1,2,3, Cheng Tan1,2, Stan.Z.Li1,2,†
1 AI Lab, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China

2 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
3 Zhejiang University, Hangzhou 310058, Zhejiang Province, China

{wulirong, linhaitao, gaozhangyang, tancheng, stan.zq.li}@westlake.edu.cn

Abstract
Recent years have witnessed great success in handling node
classification tasks with Graph Neural Networks (GNNs).
However, most existing GNNs are based on the assumption
that node samples for different classes are balanced, while for
many real-world graphs, there exists the problem of class im-
balance, i.e., some classes may have much fewer samples than
others. In this case, directly training a GNN classifier with
raw data would under-represent samples from those minor-
ity classes and result in sub-optimal performance. This paper
presents GraphMixup, a novel mixup-based framework for
improving class-imbalanced node classification on graphs.
However, directly performing mixup in the input space or
embedding space may produce out-of-domain samples due
to the extreme sparsity of minority classes; hence we con-
struct semantic relation spaces that allows the Feature Mixup
to be performed at the semantic level. Moreover, we apply
two context-based self-supervised techniques to capture both
local and global information in the graph structure and then
propose Edge Mixup specifically for graph data. Finally, we
develop a Reinforcement Mixup mechanism to adaptively de-
termine how many samples are to be generated by mixup for
those minority classes. Extensive experiments on three real-
world datasets show that GraphMixup yields truly encourag-
ing results for class-imbalanced node classification tasks.

Introduction
Recently, the emerging Graph Neural Networks (GNNs)
have demonstrated their powerful capability to handle the
task of semi-supervised node classification: inferring un-
known node labels by using the graph structure and node
features with partially known node labels. Despite all these
successes, existing works are mainly based on the assump-
tion that node samples for different classes are roughly bal-
anced. However, in many real-world applications, there ex-
ists the serious class-imbalanced problem, i.e., some classes
may have significantly fewer samples for training than other
classes. For example, the majority of users in a transaction
fraud network are benign users, while only a small portion of
them are bots. Similarly, topic classification for citation net-
works also suffers from this problem, as the papers for some
topics may be scarce, comparing to those on-trend topics.

The class-imbalanced problems have been well studied in
the image domain, and data-level algorithms can be sum-
marized into two groups: down-sampling and over-sampling

† Corresponding author. Manuscript is under review.

(More 2016). The down-sampling methods sample a repre-
sentative sample set from the majority class to make its size
close to the minority class, but this inevitably entails a loss of
information. In contrast, the over-sampling methods aim to
generate new samples for minority classes, which have been
found to be more effective and stable. However, directly ap-
plying existing over-sampling strategies to graph data may
lead to sub-optimal results due to the non-Euclidean prop-
erty of graphs. Three key problems for mitigating the class-
imbalanced problem on graphs by over-sampling are: (1)
How to generate new nodes and their features for minor-
ity classes? (2) How to capture the connections between the
generated node and the existing nodes in the graph? (3) How
to determine the upsampling scale for each minority class?

Mixup (Zhang et al. 2017; Verma et al. 2019) is an effec-
tive method to solve Problem (1), which performs feature
interpolation for minority classes to generate new samples.
However, most existing mixup methods are performed either
in the input space or embedding space, which may generate
out-of-domain samples, especially for those minority classes
due to their extreme sparsity. To alleviate this problem, dis-
entangled semantic spaces are constructed in this paper to
allow the Feature Mixup to be performed at the semantic
level. To solve Problem (2), GraphSMOTE (Zhao, Zhang,
and Wang 2021) proposes to train an edge generator through
the task of adjacency matrix reconstruction and then applies
it to predict the existence of edges between generated nodes
and existing nodes. However, MSE-based matrix reconstruc-
tion completely ignores local and global structural informa-
tion, making the edge generator overemphasize the connec-
tions between nodes with similar features while neglecting
the long-range dependencies between nodes. Therefore, we
design two context-based self-supervised tasks to consider
both local and global information in the graph structure. Fi-
nally, unlike heuristic estimation for Problem (3), we de-
velop a reinforcement mixup mechanism to adaptively de-
termine the upsampling scale for each minority class.

Our main contributions are summarized as follows:

• Disentangled semantic spaces are constructed to perform
Semantic Feature Mixup at the semantic level.

• Propose Contextual Edge Mixup specifically for graphs
and apply two context-based self-supervised techniques
to consider both local and global structure information.

ar
X

iv
:2

10
6.

11
13

3v
1

 [
cs

.L
G

]
 2

1
Ju

n
20

21

• Develop a reinforcement mixup mechanism instead of
heuristic hyperparameters to adaptively determine the up-
sampling ratio for each minority class.

• Extensive experiments on three real-world datasets show
that GraphMixup outperforms other leading methods cov-
ering the full spectrum of low-to-high imbalance ratios.

Related Work
Class-Imbalanced Problem. The class-imbalanced prob-
lem is common in real-world scenarios and has become a
popular research topic (Johnson and Khoshgoftaar 2019;
Rout, Mishra, and Mallick 2018). The mainstream algo-
rithms can be divided into two categories: algorithm-level
and data-level. The algorithm-level methods (Ling and
Sheng 2008; Zhou and Liu 2005; Parambath, Usunier, and
Grandvalet 2014) seek to directly increase the importance
of minority classes with suitable penalty functions. Instead,
the data-level methods usually adjust class sizes through
down-sampling or over-sampling. In this paper, we mainly
focus on solving the class-imbalanced problem for graph
data with oversampling-like algorithms. The vanilla over-
sampling is replicating existing samples, which reduces the
class imbalance but can lead to over-fitting as no extra infor-
mation is introduced. SMOTE (Chawla et al. 2002) solves
this problem by generating new samples by feature interpo-
lation between samples of minority classes and their near-
est neighbors, and many of its variants (Han, Wang, and
Mao 2005; Bunkhumpornpat, Sinapiromsaran, and Lursin-
sap 2009) have been proposed with promising results. How-
ever, most previous efforts focused on the image domain,
and few attempts have been made on class-imbalanced prob-
lems for non-Euclidean graph data. GraphSMOTE (Zhao,
Zhang, and Wang 2021) is the first work to consider the
problem of node-class imbalance on graphs, but their con-
tribution is only to extend SMOTE to graph settings without
making full use of the semantic feature information and lo-
cal/global structural information embedded in graph data.
Disentanglement Learning. The disentanglement aims to
decompose an entity, such as a feature vector, into several
independent components to better capture semantic informa-
tion. Most recent works are based on the autoencoder archi-
tecture, where the latent features generated by the encoder
are constrained to be independent in each dimension. The
works of DisenGCN (Ma et al. 2019) and IPGDN(Liu et al.
2020), as pioneering attempts, achieve node-level disentan-
glement through neighbor routines that divide the neighbors
of a node into several mutually exclusive parts. FactorGCN
(Yang et al. 2020), on the other hand, performs relation dis-
entanglement by taking into account global topological se-
mantics. The semantic disentanglement method proposed in
this paper is similar to FactorGNN in that the disentangled
semantic features are learned for each node by considering
higher-order semantic relations between nodes.
Graph Self-Supervised Learning (SSL). The primary goal
of Graph SSL is to learn transferable prior knowledge from
abundant unlabeled data with well-designed pretext tasks
and then generalize the learned knowledge to downstream
tasks. The existing graph SSL methods can be divided into
three categories: contrastive, generative, and predictive (Wu

et al. 2021). The contrastive methods contrast the views
generated from different augmentation by mutual informa-
tion maximization. Instead, the generative methods focus on
the (intra-data) information embedded in the graph, gener-
ally based on pretext tasks such as reconstruction. More-
over, the predictive methods generally self-generate labels
by some simple statistical analysis or expert knowledge and
then perform prediction-based tasks based on self-generated
labels. In this paper, we mainly focus on context-based self-
supervised prediction since it takes full account of the con-
textual information in the graph structure, both local and
global, allowing us to better capture connections between
generated nodes and existing nodes.

Methodology
Problem Statement

Given an input graph G = (V, E), where V is the set of N
nodes with features X = (x1,x2, · · · ,xN) ∈ RN×F and
E ⊆ V × V is the set of edges. Each node v ∈ V is as-
sociated with an features vector xv ∈ X , and each edge
eu,v ∈ E denotes a connection between node u and node
v. The graph structure can also be represented by an adja-
cency matrix A ∈ [0, 1]N×N with Au,v = 1 if eu,v ∈ E
and Au,v = 0 if eu,v /∈ E . We first define the concepts and
notions about node class-imbalance ratio:

Definition 1 Suppose there are m classes of nodes C =
{C1, . . . , Cm} in the graph G, where |Ci| is the number of
samples belong to i-th class. Class-Imbalance Ratio h =
mini(|Ci|)
maxi(|Ci|) is the ratio of the size of the largest majority class
to the smallest minority class in the graph G.

Node classification is a typical node-level task where only
a subset of node VL with corresponding features XL and la-
bels YL are known, and we denote the labeled set as DL =
(VL,XL,YL) and unlabeled set as DU = (VU ,XU ,YU).
The purpose of GraphMixup is to perform feature, label and
edge mixups for minority classes CS ⊆ C to generate a syn-
thetic set DS = (VS ,XS ,YS) and its corresponding edge
set ES = {ev′,u|v′ ∈ VS , u ∈ V}. Then the synthesized
set DS is moved into the labeled set DL to obtain a updated
labeled set DN = DL

⋃
DS . Similarly, we can obtain an

updated edge set EN = EL
⋃
ES as swell as its correspond-

ing adjacency matrix AN , where AN [: N, : N] = A. Let
Φ : V → Y be a graph network trained on labeled data DN
so that it can be used to infer the labels YU of unlabeled data.

In this paper, we present the details of the proposed
GraphMixup framework, with an overview shown in Fig. 1.
The main idea of GraphMixup is to perform feature mixup
to generate synthetic minority nodes in disentangled seman-
tic spaces by a Semantic Feature Mixup module. Next, two
context-based self-supervised pretext tasks are applied to
train a Contextual Edge Mixup module that captures both
local and global connections between generated nodes and
existing for synthetic edge generation. Finally, we detail the
Reinforcement Mixup mechanism, which can adaptively de-
termine the number of samples to be generated (upsampling
scale) by mixup for minority classes.

GNN
Classifier

Reinforcement Mixup Module

update
Upsampling

Scale
Classification

Results

Semantic Feature Learning Synthetic Minority
Node Generation

Synthetic Edge
Generation Node Classification

Label Minority Node

Label Majority Node

Unlabel Minority Node

UnLabel Majority Node

Input Node Features

Disentangled
Semantic Features

Figure 1: Illustration of the GraphMixp framework, which consists of the following steps: (1) learning disentangled semantic
features by constructing semantic relation spaces; (2) generate synthetic minority nodes by semantic-level feature mixup; (3)
generate synthetic edges by performing edge mixup with an edge predictor trained on two well-designed context-based self-
supervised tasks; (4) Classify using a GNN classifier and feed the results back to the RL agent to update the upsampling scale.

Semantic Feature Mixup
One effective way to generate minority nodes is to apply fea-
ture mixup directly in the input space or embedding space.
However, this may lead to sub-optimal results since samples
of minority classes are usually quite scarce, resulting in a
sparse distribution of samples in the input and embedding
space, which in turn produces out-of-domain samples dur-
ing the interpolation process. Therefore, we consider higher-
order relations between samples to learn disentangled se-
mantic features through a semantic feature extractor, and
thus perform semantic-level feature mixup. To this end, we
first construct several semantic relation spaces, represented
by semantic relation graphs. Then, we perform feature ag-
gregation and transformation in each semantic space sep-
arately, and finally merge the semantic features from each
space into a concatenated disentangled semantic feature.
Semantic Relation Learning. Specifically, we first trans-
form the input nodes to a low-dimensional space, done by
multiplying the features of nodes with a parameter matrix
Wh ∈ RFh×F , that is h′i = Whxi. The transformed fea-
tures are then used to generate a semantic relation graph with
respect to semantic relation k(1 ≤ k ≤ K) as follows

Gk,i,j = σ
(
Ωk(h′i,h

′
j)
)

(1)

where σ = tanh(·) is an activation function, and Ωk(·) is a
function that takes the concated features of node i and node
j as input and takes the form of an one-layer MLP in our im-
plementation. However, without any other constraints, some
of the generated relation graphs may contain similar struc-
tures. More importantly, it is not easy to directly maximize
the gap between various semantic relation graphs due to the
non-Euclidean property of graph structure. Therefore, we
first derive a graph descriptor dk for each relation graphGk,

dk = f
(

Readout
(
A(Gk,H

′)
))

(2)

where A(·) is a two-layer graph autoencoder (Kipf and
Welling 2016b) which takes H′ = {h′1,h′2, · · · ,h′N} as in-
puts, and generates new features for each node, Readout(·)

performs global average pooling for all nodes, and f(·) is a
fully connected layer. Note that all semantic relation graphs
share the same node features H′, making sure that the infor-
mation discovered by the feature extractor comes only from
the differences between graph structures rather than node
features. The loss used to train the extractor is defined as

Ldis =

K−1∑
i=1

K∑
j=i+1

di · dTj
‖di‖‖dj‖

(3)

Disentangled Semantic Feature Learning. Once the se-
mantic relation learning is completed, the disentangled
semantic-specific features can be learned by taking the
weighted sum of its neighbors for l-th (1 ≤ l ≤ L) layer,

h
(l)
i,k = σ

(∑
j∈Ni,k

Gk,i,jW
(l,k)h

(l−1)
j

)
(4)

where h
(0)
j = xj and h

(l)
i,k represents the semantic feature

of node i with respect to relation k in l-th layer. In the se-
mantic relation graph Gk, Ni,k is the neighbours of node i,
Gk,i,j is the weighting coefficient from node i to node j,
and W(l,k) ∈ RFh×Fh is a parameter matrix. Finally, the
learned features from different semantic relation space can
be merged to produce disentangled node features, as follows

h
(l)
i = ‖Kk=1h

(l)
i,k (5)

Synthetic Minority Node Generation. After obtaining the
disentangled semantic features for each node by seman-
tic feature extractor, we can perform semantic-level feature
mixup to generate new samples for minority classes. Specif-
ically, we perform interpolation on sample v from one target
minority class with its nearest neighbor nn(v), as follows

h
(L)
v′ = (1− δ) · h(L)

v + δ · h(L)
nn(v)

nn(v) = argmin
u∈{V/v},yu=yv

∥∥∥h(L)
u − h(L)

v

∥∥∥ (6)

where δ is a random variable, following uniform distribution
in the range [0, 1]. Since node v and nn(v) belong to the

same class and are very close to each other, the generated
node v′ should also belong to the same class. In this way,
the label mixup can be simplified to directly assign the same
label as the source node v to the newly synthesized node v′.

Contextual Edge Mixup
Now we have generated synthetic node VS , node featureXS ,
and label YS by means of feature mixup and label mixup de-
scribed above. However, these new synthetic nodes are still
isolated from the raw graph G and do not have any links with
the nodes in the raw node set V . Therefore, we introduce
edge mixup to capture the connections between generated
nodes and existing nodes. To this end, we design an edge
prediction that is trained on the raw node set V and edge
set E and then used to predict relation connectivity between
generated nodes in the set VS and existing nodes in the set
V . Specifically, we implement the edge predictor as:

Âv,u = σ
(
zv · zTu

)
; zu = Wh(L)

u , zv = Wh(L)
v (7)

where Âv,u refers to the predicted relation connectivity be-
tween node v and u, and W ∈ RFh×Fh is the parameter
matrix. The loss function for training the edge predictor is

Lrec = ‖Â−A‖2F (8)

Since the above MSE-based matrix reconstruction only
considers the connectivity between nodes based on feature
similarity, it may ignore important information of the graph
structure, so we employ two additional context-based self-
supervised prediction tasks to capture both local and global
structural information for a better edge predictor.
Context-based Self-supervised Prediction. The first pre-
text task Local-Path Prediction is to predicte the shortest
path length between different node pairs. To prevent very
noisy ultra-long pairwise distances from dominating the op-
timization, we truncate the shortest path longer than 4, which
also forces the model to focus on the local structure. Specif-
ically, it first randomly samples a certain amount of node
pairs S from all node pairs {(v, u)|v, u ∈ V} and calcu-
lates the pairwise node shortest path length dv,u = d(v, u)
for each node pair (v, u) ∈ S. Furthermore, it groups the
shortest path lengths into four categories: Cv,u = 0, Cv,u =
1, Cv,u = 2, and Cv,u = 3 corresponding to dv,u =
1, dv,u = 2, dv,u = 3, and dv,u ≥ 3, respectively. The
learning objective is then formulated as a multi-class clas-
sification problem, as follows

Llocal =
1

|S|
∑

(v,u)∈S

`
(
f (1)ω

(
|zv − zu|

)
, Cv,u

)
(9)

where `(·) denotes the cross-entropy loss and f (1)ω (·) linearly
maps the input to a 4-dimension value.

The second pretext task Global-Path Prediction pre-
obtains a set of clusters from raw node set V and then guides
the model to preserve global topology information by pre-
dicting the shortest path from each node to the anchor nodes
associated with cluster centers. Specifically, it first partitions
the graph into T clusters {M1,M2, · · · ,MT } by applying
unsupervised graph partition algorithm (Karypis and Kumar
1998). Inside each cluster Mt (1 ≤ t ≤ T), the node with

the highest degree is taken as corresponding cluster center,
denoted asmt . Then it calculates the distance li ∈ RT from
node vi to cluster centers {mk}Tk=1. The learning objective
is then formulated as a regression problem, defined as

Lglobal =
1

|V|
∑
vi∈V

∥∥∥f (2)ω (zi)− li

∥∥∥2 (10)

where f (2)ω (·) linearly maps the input to K-dimension val-
ues. The total loss to train the edge predictor is defined as

Ledge = Lrec + Llocal + Lglobal (11)
Context-based self-supervised methods have been pro-

posed in other work (Jin et al. 2020; Peng et al. 2020) as
auxiliary tasks to help feature extraction. However, we ap-
ply self-supervised tasks for learning a better edge predic-
tor rather than for learning transferable knowledge on unla-
beled data. More importantly, the two self-supervised tasks
described above capture both local and global information in
the graph structure, which makes them more beneficial for
edge prediction as opposed to the task of feature extraction.
Synthetic Edge Generation. With the learned edge predic-
tor, we can perform Edge Mixup in two different ways. The
first scheme is to directly use continuous edges, that is

AN [v′, u] = Âv′,u (12)

where v′ ∈ VS and u ∈ V . The second scheme is to obtain
the binary edges by setting a threshold value, as follows

AN [v′, u] =

{
1, if Âv′,u > η
0, otherwise

(13)

The above two strategies are both implemented in this paper
denoted as GraphMixupC and GraphMixupB respectively,
and their performance are compared in the experiment part.
Reinforcement Mixup Mechanism
The upsampling scale, i.e., the number of synthetic samples
to be generated by mixup, is important for model perfor-
mance. A too large scale may introduce redundant and noisy
information, while a too small scale is not efficient enough to
alleviate the class-imbalanced problem. Therefore, instead
of setting the upsampling scale α as a fixed hyperparameter
for all minority classes and then estimating it heuristically,
we use a novel reinforcement learning algorithm that adap-
tively updates the upsampling scale for each minority class.
We model the updating process as a Markov Decision Pro-
cess (MDP) (White III and White 1989). Formally, the state,
action, transition, reward, and termination are defined as:
• State. For minority class set CS , the state se at epoch e is
represented by the number of new samples for each minority
class, that is se = {|Ci| · αi}Ci∈CS , where αi = αiniti + κi.
• Action. RL agent updates {κi}Ci∈CS by taking action ae
based on reward. We define the action ae as add or minus a
fixed value ∆κ from {κi}Ci∈CS at each epoch e.
• Transition. We generate |Ci| · αi new synthetic nodes as
defined in Eq. (6) for each minority class in the next epoch.
• Reward. Due to the black-box nature of GNN, it is hard to
sense its state and cumulative reward. So we define a discrete
reward function reward (se, ae) for each action ae at state se
directly based on the classification results, as follows

reward (se, ae) =

 +1, if clae > clae−1

0, if clae = clae−1

−1, if clae < clae−1

(14)

where clae is the macro-F1 score at epoch e. Eq. (14) indi-
cates that if the macro-F1 with action ae is higher than the
previous epoch, the reward for ae is positive, and vice versa.
• Termination. If the change of {κi}Ci∈CS among twenty
consecutive epochs is no more than ∆κ, the RL algorithm
will stop, and {κi}Ci∈CS will remain fixed during the next
training process. The terminal condition is formulated as:

Range
({
κe−20i , · · · , κei

})
≤ Tκ, Ci ∈ CS (15)

The Q-learning (Watkins and Dayan 1992) is applied to
learn the above MDP. Q-learning is an off-policy reinforce-
ment learning algorithm that seeks to find best actions given
the current state. It fits the Bellman optimality equation,

Q∗ (se, ae) = reward (se, ae) + γarg max
a′

Q∗
(
se+1, a

′) (16)
where γ ∈ [0, 1] is a discount factor of future reward. We
adopt a ε-greedy policy with an explore probability ε:

π (ae | se;Q∗) =

{
random action w.p. ε

arg max
ae

Q∗ (se, a) otherwise (17)

This means that the RL agent explores new states by select-
ing an action at random with probability ε instead of only
selecting actions based on the max future reward. The RL
agent and other modules can be trained jointly in an end-
to-end manner. The results in the experiment part verify the
effectiveness of the reinforcement mixup mechanism.
Optimization Objective & Training Strategy
Let P be a new embedding matrix by concatenating the se-
mantic embedding H(L) of real nodes V with the semantic
embedding H

(L)
S of the synthetics nodes VS . Then we can

obatain label prediction for node v with a node classifier,

h(L+1)
v = σ

(
W̃(1) · CONCAT

(
h(L)
v ,P · Â[:, v]

))
ŷv = softmax(W̃(2) · h(L+1)

v)
(18)

where W̃(1) ∈ RFh×Fh and W̃(2) ∈ Rm×Fh are parameter
matrices. The above node classifier is optimized using cross-
entropy loss on the updated labeled set VN = V

⋃
Vs as:

Lnode =
∑
v∈VN

∑
c

(1 (yv = c) · log (ŷv[c]) (19)

As the model performance is dependent on the quality
of embedding space and generated edges, to make training
phrase more stable, we adopt a two-stage training paradigm.
Let θ, γ, φ be the parameters for semantic feature extrac-
tor, edge predictor, and node classifier respectively. Firstly,
the semantic feature extractor and edge predictor are pre-
trained with loss Ldis and Ledge, then the pre-trained pa-
rameters θinit and γinit are used as the initialization. At
the fine-tuning stage, the pre-trained encoder θinit(·) with
a node classifier is trained under the supervision of Lnode.
The learning objective is defined as

θ∗, φ∗ = arg min
(θ,φ)
Lnode(θ, γ, φ) (20)

with initialization θinit, γinit = arg min(θ,γ) Ldis(θ) +
βLedge(γ), where β is the weight to balance these two
losses. Since Ldis and Ledge are roughly on the same or-
der of magnitude, without loss of generality we set β to 1.0

by default (hyperparametric search for β may yield better re-
sults, but this is not the focus of this paper). The pseudo code
of the proposed GraphMixup is summarized in Algorithm 1.

Algorithm 1 Algorithm for the proposed GraphMixup
Input: Feature Matrix: X; Adjacency Matrix: A.
Output: Predicted Labels.
1: Randomly initialize the semantic feature extractor, edge pre-

dictor and node classifier; Initialize upsampling scale αinit
i =

N
m|Ci|

and κi = 0 for minority class Ci ∈ CS ;
2: Train the feature extractor and edge predictor until conver-

gence, based on Ldis and Ledge defined in Eq. 3 and Eq. 11.
3: while Not Converged do
4: # Feature Mixup
5: Obtain disentangled features H(L) by Eq. 4 and Eq. 5;
6: for class i in minority classes set CS do
7: Calculate upsampling scale αi = αinit

i + κi

8: for j ∈ {0, 1, · · · , |Ci| ∗ αi} do
9: Generate new samples for class i by Eq. 6;

10: end for
11: end for
12: # Edge Mixup
13: Generate new adjacency matrix AN by Eq. 12 or Eq. 13;
14: Train feature extractor and classifier with Lnode by Eq. 19;
15: # RL process
16: if E thenq. 15 is False
17: reward (se, ae)← Eq. 14;
18: ae ← Eq. 17;
19: κi ← ae ·∆κ for Ci ∈ CS ;
20: end if
21: end while
22: return Predicted labels YU for unlabeled nodes VU .

Experiments
In this section, we show the effectiveness of the proposed
GraphMixup on three real-world datasets and provide exten-
sive ablation studies and analysis on its various components.
The experiments aim to answer the following five questions:
• Q1. How does GraphMixup perform in class-imbalance
node classification on various real-world datasets?
• Q2. Is GraphMixup robust to different imbalance ratios?
• Q3. How does semantic feature extractor (bottleneck en-
coder) influence the performance of GraphMixup?
• Q4. How do the two context-based self-supervised predic-
tion tasks influence the performance of GraphMixup?
• Q5. How does the reinforcement mixup mechanism work?
What happens if the upsampling scale is fixed?

Experimental setups
Datasets. The experiments are conducted on three widely
used datasets, namely BlogCatalog (Tang and Liu 2009),
Wiki-CS (Mernyei and Cangea 2020), and Cora (Sen et al.
2008) datasets. The first one is BlogCatalog dataset, where
14 classes with fewer than 100 samples are taken as minor-
ity classes. The second one is Wiki-CS dataset, where we
consider classes with fewer than the average samples per
class as minority classes. Finally, on the Cora dataset, we
randomly selected three classes as minority classes and the
rest as majority classes. All majority classes have a training
set of 20 samples. For each minority class, the number is
20×im ratio with im ratio being 0.5 by default, and we

Table 1: Performance comparison of different methods for class-imbalanced node classification.
Cora BlogCatlog Wiki-CS

Methods Acc AUC-ROC Macro±F1 Acc AUC-ROC Macro±F1 Acc AUC-ROC Macro±F1
Origin 0.718±0.002 0.919±0.002 0.715±0.003 0.208±0.005 0.583±0.004 0.067±0.002 0.767±0.001 0.940±0.002 0.735±0.001
Over-Sampling 0.731±0.007 0.927±0.006 0.728±0.008 0.202±0.004 0.592±0.003 0.072±0.003 0.779±0.002 0.948±0.002 0.744±0.002
Re-weight 0.728±0.009 0.925±0.005 0.724±0.006 0.204±0.005 0.785±0.004 0.069±0.002 0.761±0.002 0.939±0.002 0.738±0.002
SMOTE 0.732±0.010 0.925±0.007 0.729±0.005 0.206±0.004 0.795±0.003 0.073±0.001 0.780±0.004 0.945±0.003 0.745±0.003
Embed-SMOTE 0.722±0.006 0.918±0.003 0.721±0.004 0.202±0.006 0.781±0.004 0.070±0.003 0.750±0.005 0.943±0.003 0.721±0.004
GraphSMOTE 0.742±0.003 0.930±0.002 0.739±0.002 0.247±0.004 0.644±0.005 0.123±0.002 0.785±0.003 0.955±0.004 0.752±0.003
GraphMixupB 0.761±0.001 0.934±0.002 0.758±0.002 0.255±0.003 0.663±0.003 0.126±0.002 0.792±0.002 0.958±0.002 0.764±0.002
GraphMixupC 0.775±0.003 0.942±0.002 0.773±0.001 0.268±0.003 0.673±0.001 0.132±0.002 0.804±0.002 0.964±0.003 0.775±0.001

have varied im ratio to evaluate the performance of Graph-
Mixup under different imbalanced ratios in the following.
Baselines. To demonstrate the power of GraphMixup to han-
dle class-imbalance problems, we compare it with six base-
lines: (1) Origin: original implementation without additional
tricks; (2) Over-Sampling: repeat samples directly from mi-
nority classes; (3) Re-weight: assign higher loss weights to
samples from minority classes (Yuan and Ma 2012); (4)
SMOTE: generate synthetic samples by interpolating in the
input space, and the edges of newly generated nodes are
set to be the same as the source nodes; (5) Embed-SMOTE:
an extension of SMOTE by interpolating in the embedding
space (Ando and Huang 2017); (6) GraphSMOTE: an exten-
sion of Embed-SMOTE by linking generated nodes to exist-
ing nodes through a well-trained edge generator. Basing on
strategies for setting edges, two varients of GraphMixup are
tested: (7) GraphMixupB : the generated edges are set to bi-
nary values by thresholding as Eq. (13); (8) GraphMixupC :
the generated edges are set as continuous values as Eq. (12).
Evaluation Metrics. Following existing works in eval-
uating imbalanced classification, three evaluation metrics
are adopted in this paper: Accuracy(Acc), AUC-ROC, and
Macro-F1. Acc is calculated on all test samples at once and
thus may underestimate those minority classes. In contrast,
both AUC-ROC and Macro-F1 are calculated for each class
separately and then non-weighted average over them, thus
better reflecting the performance on minority classes.
Hyperparameters. The following hyperparameters are set
for all datasets: Adam optimizer with learning rate lr =
0.001 and weight decay decay = 5e-4; Maximum EpochE =
4000; Layer number L = 1 with hidden dimension dF = 32;
Semantic Relation K = 4; Loss weights α = 1.0; Threshold
η = 0.5. In the reinforcement mixup module, we set γ = 1, ε
= 0.9, ∆κ = 0.05. Besides, the initial κiniti is set class-wise:
N

m|Ci| for minority class Ci ∈ CS on each dataset. Each set
of experiments is run 5 times with different random seeds,
and the average results are reported as performance metrics.

Class-Imbalanced Classification (Q1)
To evaluate the effectiveness of GraphMixup in class-
imbalanced node classification tasks, we compare it with the
other six baselines on three datasets. Table. 1 shows that the
improvements brought by GraphMixup are much larger than
directly applying other over-sampling algorithms. For exam-
ple, compared with GraphSMOTE, GraphMixupC shows an
improvement of 3.3% in Acc score and 3.4% in Macro-F1
score. Moreover, both two variants of GraphSMOTE show
significant improvements for imbalanced node classifica-
tion, compared to almost all baselines on all datasets. No-
tably, we find that GraphMixupC exhibits slightly better per-

formance than GraphMixupB , which implies the advantage
of soft continuous edges over thresholded binary edges.

Influence of Imbalance Ratio (Q2)
The performance under different imbalance ratios is re-
ported in Table. 2 to evaluate their robustness. Experiments
are conducted in the Cora dataset by varying class imbalance
ratio im ratio as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The ROC-
AUC scores in Table. 2 show that: (1) GraphMixup gener-
alizes well to different imbalance ratios and achieves the
best performance across all settings. (2) The improvement
of GraphMixup is more significant when the imbalance ra-
tio is more extreme. For example, when the imbalance ratio
is 0.1, GraphMixupC outperforms SMOTE by 6.4%, and the
gap reduces 1.5% when the imbalance ratio reaches 0.6.

Table 2: Performance under different imbalance ratios.
Class-Imbalanced Ratio

Methods 0.1 0.2 0.3 0.4 0.5 0.6
Origin 0.843 0.890 0.907 0.913 0.919 0.920
Over-Sampling 0.830 0.898 0.917 0.922 0.927 0.929
Re-weight 0.869 0.906 0.921 0.923 0.925 0.928
SMOTE 0.839 0.897 0.917 0.924 0.925 0.929
Embed-SMOTE 0.870 0.897 0.906 0.912 0.918 0.925
GraphSMOTE 0.887 0.912 0.923 0.927 0.930 0.932
GraphMixupB 0.898 0.915 0.923 0.932 0.934 0.935
GraphMixupC 0.903 0.919 0.931 0.935 0.942 0.944

Influence of Bottleneck Encoder (Q3)
To analyze the effectiveness of the Semantic Feature Ex-
tractor (SEM) and the applicability of GraphMixup to dif-
ferent bottleneck encoders, we apply three other common
encoders: GCN (Kipf and Welling 2016a), SAGE (Hamil-
ton, Ying, and Leskovec 2017), and GAT (Veličković et al.
2017). Due to space limitations, only the performance of the
AUC-ROC scores on the Cora dataset is reported. Table. 3
shows that GraphSMOTE works well with all four bottle-
neck encoders, achieving the best performance. Moreover,
results with SEM as the bottleneck encoder are slightly bet-
ter than the other three across all methods, indicating the
benefits of constructing semantic relation spaces, extract-
ing semantic features, and performing semantic-level mixup.
Furthermore, Fig. 2 shows the correlation analysis of 128-
dimensional latent features with K = 4 semantic relations
obtained from four different bottleneck encoders. We find
that only the correlation map of SEM exhibits four clear di-
agonal blocks, which demonstrates its excellent capability to
extract highly independent disentangled semantic features.

RL Process Analysis (Q4)
To verify the importance of the reinforcement mixup mech-
anism, we remove it from GraphMixup to obtain a new
variant - GraphMixup-Fix, which sets a fixed upsampling

Table 3: Performance with different bottleneck encoders.
Bottleneck Encoder

Methods GCN SAGE GAT SEM
Origin 0.909 0.897 0.912 0.919
Over-Sampling 0.916 0.907 0.923 0.927
Re-weight 0.917 0.904 0.919 0.925
SMOTE 0.917 0.907 0.919 0.925
Embed-SMOTE 0.914 0.906 0.916 0.918
GraphSMOTE 0.920 0.914 0.923 0.930
GraphMixupB 0.924 0.916 0.926 0.934
GraphMixupC 0.926 0.919 0.932 0.942

Figure 2: Feature correlation analysis on the Cora dataset.

scale for all minority classes. Then, we plot the performance
curve of GraphMixup-Fix and four baselines under different
(fixed) upsampling scales on the Cora dataset. As shown in
Fig. 3(a), we find that generating more samples for minority
classes helps achieve better performance when the upsam-
pling scale is smaller than 0.8 (or 1.0). However, when the
upsampling scale becomes larger, keep increasing it may re-
sult in the opposite effect, as too many new synthesis nodes
will only introduce redundant and noisy information.

Since the RL algorithm is trained jointly with GNNs,
its updating and convergence process is very important. In
Fig. 3(b), we visualize the updating process of the cumula-
tive change in upsampling ratio α, e.g., ∆α = αi − αiniti .
Since other modules in the framework are updated together
with the RL module, the RL environment is not very sta-
ble at the beginning, so the RL algorithm starts to run only
after the first 50 epochs. When the framework gradually con-
verges, ∆α bumps for several rounds and meets the termi-
nal condition. From Fig. 3(b), we find that ∆α eventually
converges to 0.3 on the Cora dataset, resulting in an up-
sampling scale αi = ∆α + αiniti = 0.8 with initial value
αiniti = round(N

m|Ci|) = 0.5. This corresponds to the re-
sult in Fig. 3(a) where GraphMixupC obtains the best per-
formance when the upsampling scale is 0.8, which demon-
strates the effectiveness of the reinforcement mixup mecha-
nism, i.e., it adaptively determines suitable upsampling scale
without the need for heuristic estimation like Fig. 3(a).

Self-Supervised Prediction Analysis (Q5)
This evaluates the effectiveness of self-supervised predic-
tion tasks in the proposed framework through four sets of
experiments: the model without (A) Local-Path Prediction
(w/o LP); (B) Glocal-Path Prediction (w/o GP); (C) both
Local-Path and Global-Path Prediction (w/o LP and GP, and
(D) the full model. Experiments are conducted on the Cora
dataset, and ROC-AUC scores are reported as performance
evaluation. After analyzing the reported results in Fig. 4,
we can find that both Local-Path Prediction and Glocal-
Path Prediction contribute to improving model performance.
More importantly, applying these two tasks together can fur-
ther improve performance on top of each of them, result-

0.2 0.4 0.6 0.8 1.0 1.2
Upsampling Scale

0.91

0.92

0.93

0.94

AU
C-

RO
C

Over-Sampling
SMOTE
Embed-SMOTE
GraphSMOTE
GraphMixB Fix
GraphMixC Fix

(a) Performance under different (fixed) upsampling scale.

0 100 200 300 400 500
Epoch

0.5

0.0

0.5

1.0 Cora
BlogCatalog
Wiki-CS

(b) Updating process of the cumulative change in κ.

Figure 3: Reinforcement mixup mechanism analysis.

ing in the best performance, which demonstrates the bene-
fit of self-supervised prediction tasks on capturing local and
global information embedded in the graph structure.

Cora BlogCatalog Wiki-CS0.92

0.93

0.94

0.95

0.96

RO
C-

AU
C

(C
or

a)

0.62

0.64

0.66

0.68

RO
C-

AU
C

(B
lo

gC
at

al
og

)

0.93

0.94

0.95

0.96

0.97

RO
C-

AU
C

(W
ik

i-C
S)

0.927

0.931

0.935

0.942

0.636

0.648

0.66

0.673

0.953

0.958

0.964

0.949

w/o LP and GP
w/o LP
w/o GP
full model

Figure 4: Ablation study with different self-supervised tasks.

Conclusion
In this paper, we propose GraphMixup, a novel frame-
work for improving class-imbalanced node classification on
graphs. GraphMixup implements feature, label, and edge
mixup simultaneously in a unified framework in an end-to-
end manner. Specifically, GraphMixup performs semantic-
level feature mixup by constructing semantic relation spaces
and edge mixup with an edge predictor trained on two well-
designed context-based self-supervised tasks; Moreover, a
Reinforcement Mixup mechanism is applied to adaptively
determine the number of samples to be generated (upsam-
pling scale) by mixup for minority classes. Extensive ex-
periments on three real-world datasets have shown that the
proposed GraphMixup outperforms other leading methods
on class-imbalanced node classification tasks.

References
Ando, S.; and Huang, C. Y. 2017. Deep over-sampling
framework for classifying imbalanced data. In Joint Euro-
pean Conference on Machine Learning and Knowledge Dis-
covery in Databases, 770–785. Springer.
Bunkhumpornpat, C.; Sinapiromsaran, K.; and Lursinsap, C.
2009. Safe-level-smote: Safe-level-synthetic minority over-
sampling technique for handling the class imbalanced prob-
lem. In Pacific-Asia conference on knowledge discovery and
data mining, 475–482. Springer.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. SMOTE: synthetic minority over-sampling tech-
nique. Journal of artificial intelligence research 16: 321–
357.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.
Han, H.; Wang, W.-Y.; and Mao, B.-H. 2005. Borderline-
SMOTE: a new over-sampling method in imbalanced data
sets learning. In International conference on intelligent com-
puting, 878–887. Springer.
Jin, W.; Derr, T.; Liu, H.; Wang, Y.; Wang, S.; Liu, Z.; and
Tang, J. 2020. Self-supervised learning on graphs: Deep in-
sights and new direction. arXiv preprint arXiv:2006.10141
.
Johnson, J. M.; and Khoshgoftaar, T. M. 2019. Survey on
deep learning with class imbalance. Journal of Big Data
6(1): 1–54.
Karypis, G.; and Kumar, V. 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing 20(1): 359–392.
Kipf, T. N.; and Welling, M. 2016a. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .
Kipf, T. N.; and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .
Ling, C. X.; and Sheng, V. S. 2008. Cost-sensitive learning
and the class imbalance problem. Encyclopedia of machine
learning 2011: 231–235.
Liu, Y.; Wang, X.; Wu, S.; and Xiao, Z. 2020. Independence
Promoted Graph Disentangled Networks. In AAAI, 4916–
4923.
Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019. Dis-
entangled graph convolutional networks. In International
Conference on Machine Learning, 4212–4221.
Mernyei, P.; and Cangea, C. 2020. Wiki-cs: A wikipedia-
based benchmark for graph neural networks. arXiv preprint
arXiv:2007.02901 .
More, A. 2016. Survey of resampling techniques for im-
proving classification performance in unbalanced datasets.
arXiv preprint arXiv:1608.06048 .
Parambath, S. P.; Usunier, N.; and Grandvalet, Y. 2014. Op-
timizing F-measures by cost-sensitive classification. In Ad-
vances in Neural Information Processing Systems 27.

Peng, Z.; Dong, Y.; Luo, M.; Wu, X.-M.; and Zheng, Q.
2020. Self-supervised graph representation learning via
global context prediction. arXiv preprint arXiv:2003.01604
.
Rout, N.; Mishra, D.; and Mallick, M. K. 2018. Handling
imbalanced data: a survey. In International Proceedings on
Advances in Soft Computing, Intelligent Systems and Appli-
cations, 431–443. Springer.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3): 93–93.
Tang, L.; and Liu, H. 2009. Relational learning via latent so-
cial dimensions. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 817–826.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .
Verma, V.; Lamb, A.; Beckham, C.; Najafi, A.; Mitliagkas,
I.; Lopez-Paz, D.; and Bengio, Y. 2019. Manifold mixup:
Better representations by interpolating hidden states. In In-
ternational Conference on Machine Learning, 6438–6447.
PMLR.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4): 279–292.
White III, C. C.; and White, D. J. 1989. Markov deci-
sion processes. European Journal of Operational Research
39(1): 1–16.
Wu, L.; Lin, H.; Gao, Z.; Tan, C.; Li, S.; et al. 2021. Self-
supervised on Graphs: Contrastive, Generative, or Predic-
tive. arXiv preprint arXiv:2105.07342 .
Yang, Y.; Feng, Z.; Song, M.; and Wang, X. 2020. Factor-
izable Graph Convolutional Networks. Advances in Neural
Information Processing Systems 33.
Yuan, B.; and Ma, X. 2012. Sampling+ reweighting: Boost-
ing the performance of AdaBoost on imbalanced datasets. In
The 2012 international joint conference on neural networks
(IJCNN), 1–6. IEEE.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412 .
Zhao, T.; Zhang, X.; and Wang, S. 2021. GraphSMOTE: Im-
balanced Node Classification on Graphs with Graph Neural
Networks. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, 833–841.
Zhou, Z.-H.; and Liu, X.-Y. 2005. Training cost-sensitive
neural networks with methods addressing the class imbal-
ance problem. IEEE Transactions on knowledge and data
engineering 18(1): 63–77.

	Introduction
	Related Work
	Methodology
	Problem Statement
	Semantic Feature Mixup
	Contextual Edge Mixup
	Reinforcement Mixup Mechanism
	Optimization Objective & Training Strategy

	Experiments
	Experimental setups
	Class-Imbalanced Classification (Q1)
	Influence of Imbalance Ratio (Q2)
	Influence of Bottleneck Encoder (Q3)
	RL Process Analysis (Q4)
	Self-Supervised Prediction Analysis (Q5)

	Conclusion

